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A) Objectives of the Deliverable 

Deliverable 7.2 “App store ready and extendible by developers” relates to task 1 “Programming 

interfaces and platform” and task 2 “App store and workflow management” of work package 7 as 

described in the Description of Action. It contains details on the software framework allowing for 

integration of methods developed in WPs 4-6, the programming interfaces FeatureCloud provides, 

how artificial intelligence (AI) applications can be contributed by external developers and how 

workflows are managed by the FeatureCloud system. Hence this deliverable contains all progress 

related to the FeatureCloud platform and AI store, including the overall system. 

B) Executive Summary 

FeatureCloud is a federated, privacy-preserving machine learning (ML) platform, aiming to simplify 

the development and usage of ML algorithms in collaborative settings. The main challenge in 

collaborative environments is that vast amounts of scattered data exist, particularly in medical 

facilities but privacy restrictions prevent unleashing the full potential of rapidly emerging and 

evolving ML algorithms. FeatureCloud overcomes this challenge by providing all software 

components and libraries necessary to develop and execute federated ML applications. While 

most existing federated ML frameworks focus on aiding during development and leave deployment 

to the user, FeatureCloud comes with an AI store of ready-to-use federated ML applications. These 

apps can be used out of the box or combined into a workflow, covering among other things pre-

processing, model training, and result visualization. The AI store can be extended by the apps of 

external app developers, making it available for custom applications. Our experiments show that 

federated ML yields similar and sometimes even identical results compared to central approaches 

that have direct access to the entire dataset. The computational overhead is usually limited, 

making it a viable solution for various scenarios. 

C) FeatureCloud Platform and AI Store 

1 Introduction 

Driven by advances in machine learning (ML) and rising privacy concerns on sharing data, 

techniques for collaborative machine learning have received more and more attention. Particularly 

in biomedicine, where vast amounts of data exist and could aid in diagnostics, understanding 

disease mechanisms or assessing risk factors, privacy concerns hinder even faster advances and 

sometimes render usage of ML impossible. Various cryptographic and algorithmic techniques such 

as homomorphic encryption (HE) or secure multiparty computation (SMPC) have been suggested 

and successfully employed to address these concerns. However, these techniques are 

computationally expensive and often require profound changes to the original ML algorithm. In 

contrast, federated ML is a comparably simple and efficient approach and therefore suited for most 

ML algorithms yielding comparable or even identical results while still maintaining a sufficient level 

of privacy. In most cases, an ML model, such as a neural network, a support vector machine 

(SVM) or a random forest, is trained locally at the data holders’ site and sent afterward to a central 

instance where the local models are combined into a global model. The general assumption is that 

these models do no longer contain sensitive information. In some cases where this is not 

necessarily true, such a naive federation can be enhanced with techniques such as differential 
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privacy (DP) to establish the required level of privacy, usually at the expense of the global model’s 

quality. 

2 Design Considerations 

This section contains fundamental considerations for the FeatureCloud platform. It is divided into a 

methodology section laying out current approaches and available solutions in the area of federated 

machine learning, and a section about design choices made in FeatureCloud. 

2.1 Methodology 

Privacy-aware machine learning has received much attention due to the ever growing amounts of 

biomedical data. Different techniques and approaches exist, which are described in subsection 2.1.1, 

and several frameworks and platforms implementing these approaches have emerged, which are 

described and compared in section 2.1.2. 

2.1.1 Privacy-aware ML 

In recent decades, machine learning techniques have been successfully applied to various fields, 

including healthcare. However, studies have shown that ML models trained without any privacy 

consideration are vulnerable to potential privacy attacks, such as membership inference attacks. 

Besides individual concerns about sensitive data in healthcare, also privacy regulations, such as 

the European GDPR, request a higher awareness of privacy considerations in machine learning. 

The efforts in making ML models privacy-preserving can be categorized into four groups based on 

the method they employ: (1) federated learning (FL), (2) cryptographic techniques (including HE 

and SMPC), (3) differential privacy (DP) and (4) hybrid approaches. Each of these categories has 

its strengths and weaknesses in terms of computational and communication efficiency, utility and 

privacy guarantee. For example, FL suffers from high communication cost compared to HE and 

SMPC. However, as FL is based on the “moving computation to data” methodology rather than 

“moving data to computation”, it is computationally more efficient than HE and SMPC. As another 

example, an FL model does not provide a privacy guarantee while a differentially private ML model 

does so (namely epsilon and delta). On the other hand, FL is a more utility-aware technique than 

DP as it does not inject any noise perturbation to the data or the training process 5. 

Considering the advantage and disadvantages of the privacy-aware ML models as well as the 

curse of dimensionality and importance of achieving high utility in healthcare settings, FL and the 

hybrid approaches that are based on FL (FL + HE 1,2,FL + DP 3–7 and FL + DP + HE 8–10) seem to 

be the most promising and practical privacy-aware ML methods for healthcare applications. By 

using FL the health institutions (or the clients in general) can collaborate in training a common ML 

model while ensuring that the individuals’ private data will not move out of their local sites (even in 

encrypted form). Moreover, if there is a case in which enhanced privacy is required, they can also 

privatize the FL model parameters using DP or other types of obfuscating techniques. 

 

 

https://paperpile.com/c/t1a7eF/1uHF+1OVr
https://paperpile.com/c/t1a7eF/WlSv+gssX+K9xc+miAA+lCrX
https://paperpile.com/c/t1a7eF/blC2+O2Lh+iKOs
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2.1.2 Frameworks and Platforms 

Several frameworks for FL have been developed in recent years (Table 1). We identified two 

different approaches: backend-only and all-in-one approaches. On the one hand, backend 

frameworks, such as Tensorflow Federated and PySyft, mostly focus on deep learning algorithms 

and provide developers with methods to simplify the implementation of federated and privacy-

aware machine learning analysis. 

 

On the other hand, all-in-one frameworks try to bring privacy-aware analyses to users without 

developer knowledge. Additionally to a backend framework, they also provide a frontend, enabling 

non-developer users to perform federated and privacy-aware analyses. Most of these frameworks 

are tailored for specific areas: NVIDIA Clara is a federated learning framework for imaging and 

genomics, focusing on an easy deployment in medical infrastructures. COINSTAC 11 is a platform 

for decentralized brain imaging analyses that is available for all major platforms. Melloddy aims to 

connect the decentralized data of 10 pharmaceutical companies and enable privacy-preserving 

analyses for drug discovery. 

  

Furthermore, few platforms such as Owkin or Acuratio enable federated learning on non-specific 

datasets. Acuratio offers various horizontal and vertical federated learning algorithms that can be 

executed on the platform. Owkin has a strong medical focus and connects data by therapeutic 

area. For now, with around 70 models (December 18, 2020), the Owkin platform seems to be the 

largest federated learning platform in medical environments. In contrast to federated approaches, 

decentralized approaches do not contain a central aggregation instance. As an example, the 

Personal Health Train 12 (PHT) connects different data centers and allows scientists to create value 

from the data of different sources. A “train” (model) goes from one “station” (data source) to 

another and trains with the respective data until the training has finished. It has already 

successfully learned a distributed model on more than 20.000 lung cancer patients 11,13. 

  

As a matter of fact, each of the frameworks brings its benefits and can be useful in specific 

scenarios. However, most of them are not suited for application in clinical environments. Deep 

learning (DL) models have already been useful in healthcare and clinics 14 but are usually not 

interpretable. The interpretability of models is a massive concern in clinical research to justify 

medical decisions, and therefore, a focus only on DL models is not applicable in a clinical context. 

Backend-only approaches in clinical environments are limited to users with a developer 

background and coding experience. This background can usually not be expected by clinical 

experts without a statistics department and, therefore, restricts usability massively. 

  

All-in-one platforms either have a strong focus on one specific field (COINSTAC for brain imaging, 

Melloddy for drug development) or still require a lot of technical knowledge and developers for the 

set up (NVIDIA Clara, PHT). Unfortunately, the demos of the federated frameworks DiscreetAI and 

Fed-BioMed 15 could not be executed and also the sign up did not work. This shows that some 

platforms are still at a very early stage or do not focus on robustness or convenient development. 

For now, the probably most significant player of the all-in-one platforms in the medical sector is 

Owkin. While it offers many models and connects therapeutic areas, it is not open-source, and 

therefore, its algorithms remain a black box for the users. Also, it is not instantly and freely 

available which makes it difficult if not impossible to use for certain scientific target groups. 

https://paperpile.com/c/t1a7eF/sSJR
https://paperpile.com/c/t1a7eF/KIkQ
https://paperpile.com/c/t1a7eF/sSJR+N7Aa
https://paperpile.com/c/t1a7eF/xc2o
https://paperpile.com/c/t1a7eF/VK9K
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Reviewing the players in federated learning frameworks and platforms, it is striking that there is no 

convenient open-source solution yet that combines two crucial tasks in bringing federated learning 

to a medical environment: model training and model development. While some platforms certainly 

try to ease the training of federated learning models for the end-user, models are either not 

collected to be shared within the framework or the API is not open to developers and end-users 

can only use predefined models. This restriction is a huge disadvantage in the area of AI, which is 

rapidly evolving and algorithms get published or enhanced very frequently. 

 

Name Framework Type Open Source Algorithms Privacy Technique 

Tensorflow Federated Backend yes DL FL 

PySyft Backend yes DL FL, DP, MPC, HE 

Flower Backend yes DL FL 

PaddleFL Backend yes DL FL, MPC, DP 

CrypTen Backend yes DL MPC 

XayNet Backend yes DL FL, HE 

FATE Backend yes Various HE, MPC, FL 

NVIDIA Clara All-in-one yes Various FL 

DiscreetAI All-in-one yes Various FL 

Fed-BioMed All-in-one yes Various FL 

PHT All-in-one yes Various FL 

Owkin All-in-one no Various FL, DP 

COINSTAC All-in-one yes Various FL, DP 

Melloddy All-in-one yes Various FL 

Acuratio All-in-one no Various FL, DP 

FeatureCloud All-in-one planned Various FL 

 

Table 1. Privacy-Preserving Machine Learning Frameworks and Platforms. 

2.2 Federated ML in FeatureCloud 

Federated ML broadly involves two general operations, possibly alternating in multiple iterations: 

local optimization and global aggregation. In FeatureCloud, all running instances of a federated 

application (app) take one of two roles: participant and coordinator, performing the respective 

federated operation. FeatureCloud expects precisely one coordinator and an arbitrary number of 

participants, leading to a star-based architecture (see fig. 1). 
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Figure 1. Four stages of federated execution in FeatureCloud. The four main stages are 1) 

local data loading, 2) broadcasting a global model, 3) gathering local models, 4) compiling results. 

Stage 2 and 3 can be repeated depending on the executed algorithm. ‘C’ and ‘P’ stand for 

coordinator and participant, respectively. The yellow stars in stage 1 and 4 represent local training 

data and global parameters, respectively. 

 

After a local optimization operation has been completed by a participant, it sends the local 

parameters to the coordinator. The coordinator collects these parameters and aggregates them 

into a common (global) model, which is shared with the participants. Depending on the type of ML 

algorithm, these two operations can alternate a couple of times, e.g. until convergence or a pre-

defined number of iteration has been reached. For some algorithms (e.g. random forest, linear 

regression), only one iteration is necessary. However, this strict separation between optimization 

and aggregation is not actively enforced by FeatureCloud. In many cases, aggregation can already 

start after the first parameters have been received, thereby increasing efficiency through 

parallelization of the computation. Figure 1 shows the logical roles of coordinator and participant, 

however in practice the coordinator usually has local data as well. Therefore, FeatureCloud also 

allows the coordinator to additionally assume the logical role of a participant. 

3 Platform and AI Store 

FeatureCloud’s primary goal is to simplify the development and usage of federated ML algorithms. 

This involves three major challenges: development of apps, distribution of apps, and usage of 

apps. Each of these challenges is tackled by FeatureCloud and described in the following 

subsections. 

3.1 App Development 

Since FeatureCloud does not impose restrictions on the kinds of algorithms it supports, the running 

environment of the federated apps is kept very general. It allows for implementing any type of ML 

algorithm and an optional custom graphical user interface (GUI) for user interaction, also referred 

to as app frontend. 

 

From a technical point of view, a FeatureCloud app acts as a web server (see section 4.2.1), 

responding to requests sent from the FeatureCloud system or the app frontend. No direct Internet 
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access is granted to apps, which would pose a security risk (see fig. 2). A complete overview of the 

architecture can be found in section 4.2. 

3.1.1 Isolation of Apps 

System access of apps should be as limited as possible to rule out attack vectors, such as leakage 

of sensitive data or access of data, which should not be included in an ML algorithm (e.g. due to 

lack of consent). FeatureCloud uses Docker as a virtualization technique. Docker has been widely 

adopted in the developer community, particularly in the area of web development. It is available for 

all major operating systems (Linux, Microsoft Windows, macOS), making FeatureCloud nearly 

platform-independent. Docker also offers the necessary level of isolation, preventing Internet and 

file access if not explicitly granted, and sandboxing to limit the usage of compute and memory 

resources if necessary. These isolated running environments (containers) are created from pre-

defined images, which are the federated apps in our case. 

3.1.2 Data Loading and Sharing of Results 

ML apps need access to training data to optimize their models. As depicted in fig. 2, apps cannot 

access sensitive data directly. Instead, the app user needs to provide the data to the FeatureCloud 

system, making it available to an app. From an app perspective, the data can be expected to 

reside inside a dedicated input directory mounted to the app container. Analogously, all results 

generated by an app must be put inside an output directory, which is provided by FeatureCloud as 

well, whose contents can be downloaded via the FeatureCloud user interface. 

 

This output data can also be picked up by another app that is executed successively and finds the 

output data of the previously ran app inside its input folder. Chaining these apps is a feature that 

allows the composition of multiple apps into a workflow, a concept that is further described in 

section 3.3. 

3.1.3 FeatureCloud Interface for Apps 

The FeatureCloud controller (fig. 2) regularly asks a running app whether it has new model 

parameters to share with the other members of the federation. If this is the case, it loads them from 

the app and hands it over to the other apps, depending on whether it is a participant or a 

coordinator, as described in section 2. If the global model parameters need to be shared with the 

app, the controller actively sends them to the app. 
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Figure 2: Execution environment for FeatureCloud apps. App users decide what data to load 

into the system. FeatureCloud apps cannot directly access the file system or the internet. 

 

The API is based on the TCP/IP-based HTTP protocol, which is asynchronous by its nature. In web 

terms, the FeatureCloud app acts as a web server and the FeatureCloud controller acts as a web 

client. The full specification of the API is included in the supplement, section 2.3. 

 

An app can also provide its custom user interface to allow for monitoring the computation or for 

interaction with the user. To this end, additional endpoints need to be defined, which can then be 

accessed from the app user’s browser. Web technologies are used for GUI design, i.e. 

HTML/CSS/JavaScript. Custom endpoints cannot be accessed directly due to technical and 

security reasons. In a typical scenario, the FeatureCloud controller runs on a central server inside 

a data holder’s local network and users access the frontend from a different machine inside the 

network. To make this possible, the FeatureCloud controller listens on only one port, which can 

e.g. be accessed through an SSH tunnel, redirecting all app-targeted traffic to the correct 

container. 

3.1.4 Testing and Debugging 

The development of algorithms involves intensive testing and debugging. For rapid development, it 

is crucial that these testing and debugging cycles are as quick as possible. Therefore, 

FeatureCloud comes with a local test framework that enables app developers to instantly run their 

application on their machine without deploying it first. When using this functionality, one has to 

specify the number of participants, i.e. app instances to simulate, and a data directory for each 

instance containing the respective input data. When started, the FeatureCloud controller creates 

one container for each instance and connects them logically identically on the developer’s machine 

to a truly federated setup on different machines. 

3.1.5 App Templates 

The API has deliberately been designed in an algorithm and usage agnostic way. This leads to 

high flexibility but requires the app developer to implement all algorithm-specific functionality by 

themselves. To quickly introduce developers to the API and provide a convenient starting point for 
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app development, FeatureCloud comes with a collection of easily extendable templates. This 

collection includes a minimal template with a demo Python/Flask implementation, stubs for all API 

calls and a blank demo frontend, and a federated mean app. In section 6, we describe how to 

extend the API in the future so that less functionality needs to be implemented inside the apps and 

more functionality is provided by the FeatureCloud system itself. 

3.2 AI Store 

FeatureCloud presents all implemented apps in an easily searchable AI store to make federated 

ML available for as many users as possible. Conversely, app developers need a simple way to 

share their apps and attach important information, such as the required input data format, the 

format of the produced output, usage instructions, and privacy considerations. 

 

 
 

Figure 3: FeatureCloud AI store. Users can select from a variety of ready-to-use apps. 

3.2.1 Pushing New Apps and App Updates 

As described in section 3.1.1, all apps are stored as Docker images. Conventionally, docker 

images are shared using a Docker registry, to which new or updated images can be pushed and 

existing images can be pulled. FeatureCloud uses a standard Docker registry and controls its 

access through a proxy server (see fig. 4). 
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Figure 4: Users and developers access the Docker registry through an AI Store Server. App 

users can only pull, app developers can also push new images. 

 

Sharing the app after implementation on the FeatureCloud AI store involves the FeatureCloud 

website and usage of the Docker CLI (see supplement, section 2). When a new image is pushed to 

the registry, the AI Store Server assures that the developer has the required permissions to push 

the respective image by connecting to the Auth Server (see fig. 4). If it is successfully 

authenticated, the image is uploaded to the FeatureCloud Docker registry and becomes available 

to other users. 

 

Pulling the images is done automatically when the workflow starts running (see section 3.3.2 and 

supplement, section 3). The only technical requirement is a Docker installation on the user end. All 

the other steps are performed without user interaction. 

3.2.2 Publishing Apps in the AI Store 

After the app image is available in the FeatureCloud App Registry, developers can publish their 

app in the AI Store. As a first step, a FeatureCloud account needs to be created and verified by a 

confirmation link sent to the corresponding email address. As soon as the user activates the 

developer mode in the profile settings, the AI store (see fig. 5) provides an additional tab 

“Developed” which will list all of the user’s developed apps. Furthermore, a developer sidebar, 

including a “Create App” button, becomes visible. 
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Figure 5: AI Store for developers. Developers can see the apps they already published in the 

“Developed” tab. 

 

 

Clicking the “Create App” button forwards the user to an input form (see fig. 6) that is used to 

describe the information about the app. An app consists of a name, short and large description, an 

icon, and one or multiple labels that can be used as search tags. Furthermore, an app type needs 

to be selected that is either “Preprocessing”, “Analysis”, or “Visualization”. The privacy technique 

defines what methods are used in the app to preserve privacy. For now, this can be “Federated 

Learning”, “Differential Privacy”, “Secure Multi-Party Computation”, “Homomorphic Encryption”, or 

combinations of them. Finally, the image name needs to be defined to connect it to the 

corresponding app in the FeatureCloud App Registry. The app information can always be updated 

by the app author at a later point. 
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Figure 6: Publishing an app. Developers can publish an app by defining the app information and 

link it to a Docker image in the FeatureCloud App Registry. 

3.2.3 Using Apps and Providing Feedback 

Users can search the AI store using full-text search or by choosing an app category or tag (see fig. 

5). Apps that have been reviewed by FeatureCloud are marked as such and shown by default. 

Other apps are only shown if the user explicitly accepts unsafe apps. Before using an app, users 

need to add it to their personal library of apps. This serves as bookmarking and allows for adding 

an extra licensing step in the future. Once added to their library, users can include an app in their 

workflow and provide the developer with feedback, i.e. a star-based rating and a clarifying 

comment. 

3.2.4 App Certification 

Allowing third-party developers to quickly and easily push apps to the app store and use them for 

collaborative studies is one of FeatureCloud’s selling points. However, it is difficult to automatically 

ensure privacy awareness of such apps (see deliverable 2.2, KPI ‘Privacy Requirements’). 

Therefore, FeatureCloud distinguishes between two types of apps: 1) certified ones and 2) 

uncertified ones. By default, the app store only displays apps that have been certified by a privacy 

expert of the FeatureCloud consortium. The user needs to actively choose to display uncertified 

apps and is warned and informed about the risks. In general, users are advised to only use 

uncertified apps from a source they trust, e.g. a collaboration partner they already work together 

with. 
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If developers want their apps to be certified, the source code needs to be completely accessible to 

the responsible FeatureCloud member. After the code has been reviewed and deemed secure, the 

Docker image is built by the consortium member and pushed to the app store via the Docker CLI. 

The FeatureCloud system recognizes the author of the image as a trusted party and marks the 

corresponding image version, identified by its SHA256 digest, as certified. After a successful 

certification, third-party developers can still push new uncertified versions to update the app or fix 

bugs. However, each update of the app, and respectively each new version, needs to be certified 

again to make sure that the update does not raise any privacy issues. In the meantime, all users 

who added a particular version of an app from the app store to their personal library of apps will 

automatically keep this version in their library. At this point, if a user wants to update their app to a 

new (certified) version, they need to remove it and add it again. This process will be simplified in 

future AI store releases and replaced with a convenient update functionality as it is already 

established for mobile phone app updates. 

3.3 Workflow Management and Execution 

 

Figure 7: Workflow has finished successfully. A workflow which has successfully completed 

offers its results as download in the FeatureCloud frontend. Logs can also be downloaded for 

debugging purposes. 

 

To run a study with other collaborators, a project needs to be created in the FeatureCloud frontend 

first. Projects consist of a name and a brief description to provide information for invited 

collaborators. Additionally, they contain a workflow, defining which apps will be executed in which 

order. The creation of a project is only possible for FeatureCloud users assigned to a data holder 

site (see section 4.2.3, fig. 12). When they create a project, they act on behalf of their site. In 

practice, users typically are medical doctors or academic researchers who administer a 

FeatureCloud project, and sites are medical facilities or academic institutions. 

 

The following two subsections describe how a workflow can be composed from a user 

(coordinator) perspective and how the consecutive execution is performed from a technical 

perspective. 

3.3.1 Workflow Composition and Invitation 

All apps that should be part of the workflow need to be added from the user’s library of apps (see 

fig. 5). However, it is not required that all participants later have the apps in their library. After all 

apps have been added, the project is finalized and becomes immutable. To invite other 
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collaborators, tokens (i.e. large random strings) need to be shared with them. Tokens are uniquely 

linked to a project and allow for joining the project. They can only be used once for security 

reasons and need to be entered in the FeatureCloud frontend. Once all participants have joined, 

the coordinator can take a final look and start the project. From that moment on, no one can join 

anymore and the execution begins. 

 

 
 

Figure 8: Process of composing a project, inviting participants and starting a project. Green 

symbolizes human interaction, blue symbolizes automatic behaviour. 

3.3.2 Execution of a Workflow 

Once the coordinator has triggered the execution, the FeatureCloud controller creates the input 

volume for the first app in the workflow at each participating site. This volume needs to be provided 

with the actual data relevant to the study, which is processed by the workflow. The users need to 

select the data via the FeatureCloud frontend, which is then sent to their local controller, 

importantly not leaving the data holder’s domain. As described in section 3.1.2, each app has an 

input and output directory, which serves as a file-based data interface to FeatureCloud. 
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Figure 9: Workflow execution managed by the FeatureCloud system. Green symbolizes 

human interaction, blue symbolizes automatic behaviour. 

 

After each participant has selected their input data, the first app is started as a docker container. 

The current progress of the workflow can be monitored in the frontend, showing the currently 

executed step (i.e. app) and providing its container logs if required (see fig. 7). In general, no user 

interaction is necessary from this point on unless an app in the workflow actively requires so 

through its custom frontend. The app frontends can be accessed from the workflow page as well, 

usually to monitor app-specific events or view visualizations provided by the app. When the 

computation of a step has been completed, indicated by the coordinator app instance, all 

containers of this step are shut down and the contents of the output directory are placed inside the 

input directory of the next app in the workflow. These intermediate results can also be downloaded 

from the frontend for later investigation or detecting potential errors in the analysis. All debugging 

output produced by apps is stored in a directory on the controller machine, to investigate errors 

that might occur during execution. 

 

A workflow can thus be regarded as a processing pipeline, composed of apps provided by 

FeatureCloud, enabling an additional level of customizability. For a selection of the currently 

available apps, see section 5. For a complete workflow sequence diagram, see supplement, 

section 3. 
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4 Architecture and Implementation 

In this section, the technical details of the FeatureCloud system are described. It is split into an 

overview of the system architecture, i.e. the high-level constellation of the system components and 

their tasks, and the respective software architectures and details on behaviour and applied 

technologies of these components. 

4.1 System Architecture 

The FeatureCloud architecture consists of the following system components (see fig. 10): local 

Controller, relay server, global backend, frontend, and AI store server. 

 

 
 

Figure 10: Interactions between the FeatureCloud system components. Frontend and local 

controller are at the data holder’s site, AI store server and global backend run on FeatureCloud 

servers. 

 

On the data holder’s site, the controller and frontend web application are running. On the 

FeatureCloud servers, the AI store server, including a Docker registry, and the global backend, are 

running. Optionally, a global relay server is provided by FeatureCloud as well, in case setting up a 

custom relay server is not required or not possible. 

 

The controller orchestrates app execution by instructing the Docker engine to create or shut down 

app containers, create and mount input and output volumes, and expose the required ports for the 

FeatureCloud API. It also serves as a proxy between the frontend and the app containers to 

decouple containers from the frontend. 

 

The frontend is used to access the controller and manage the FeatureCloud account, federated 

apps, and projects, which involves the global backend. 

 

The relay server acts as a communication hub for all participants of a workflow. Since it relays 

model parameters and has access to this data, users might want to use their own relay server 

instead of using the one provided by FeatureCloud. 
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The AI store server is used to host app images and is described in section 4.2.5 in more detail. 

 

The global backend stores all user information, information about data holders, apps, projects and 

workflows, and is involved during workflow execution by saving the current step and progress. 

However, it never has access to any raw data or traffic between apps participating in a workflow, 

which is one of the crucial properties of FeatureCloud. 

4.2 Implementation 

This section contains information about technology, software architecture and implementation 

details for each of the integral FeatureCloud system components. 

4.2.1 Local Controller 

The local controller needs to be able to handle large amounts of data and asynchronous tasks as 

well as keep up multiple socket connections and support HTTP-based and raw byte traffic. For this 

reason, this component has been implemented in Go (aka Golang), a native programming 

language developed for server applications. It allows for lightweight co-routines to monitor app 

containers and regularly query for updates from the global backend. 
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Figure 11: Software architecture of the local controller. It uses a layered architecture preventing 

arbitrary access across layers by enforcing a partially ordered access hierarchy. 

 

The software architecture has a layered structure, with a decreasing level of abstraction from top to 

bottom (see fig. 11). 

 

The platform application layer is the main entrypoint responsible for reading configuration values 

(e.g. local database credentials, address of the global backend) and starting an HTTP server and 

polling routines. The HTTP server provides endpoints for the frontend to control workflow-related 

tasks, such as loading data into the first input volume, show container logs. It also relays traffic to 

the app-specific frontends. The workflow layer offers abstract functions for the HTTP server and 

takes care of workflow management, such as setting up and attaching volumes, starting 

containers, shutting them down, reacting to updates from the global backend (by using the data 

layer through the core layer). The core layer provides an abstraction of the core business logic, 

especially app container management and functions for testing apps during development. The link 

layer handles communication between app containers and the relay server, translating raw byte-

traffic from the relay server to HTTP-based traffic for the containers and vice versa. The controller 

acts as an HTTP client in this case, and the app containers as HTTP servers. This way, active 

access by the app containers to the Internet can be avoided. The virtualization layer is a direct 

abstraction of Docker, which allows for replacing the virtualization technique in the future if needed 

for security or compatibility reasons. 

4.2.2 Relay Server 

The relay server implements basic relay functionality for star-based federations of clients. It knows 

the role of each client (i.e. participant or coordinator) and treats their traffic accordingly. If data is 

received from a participant, it relays it to the coordinator. If it is received from the coordinator, it is 

broadcast to all clients. A relay server can handle multiple workflows at once. For that, it uses 

workflow-specific credentials chosen by the coordinator and automatically distributed to the 

participants by the global API. Like the controller, it is written in Go since it needs to efficiently 

handle large amounts of binary data, which Go is capable of. 

4.2.3 Global Backend 

The global backend mainly offers an HTTP API for controllers and the frontends. It is responsible 

for managing all necessary data related to projects, apps, users and data holders (sites). It is 

implemented in Django, a Python web framework that offers the functionality for this kind of task, 

particularly database abstraction, URL routing and web-related utilities (e.g. JSON serialization, 

HTTP abstraction). 
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Figure 12: E/R diagram of the data model in the backend. Grey boxes represent entities, blue 

diamonds represent relationships. 

 

The E/R diagram of the data model is shown in figure 12. The global backend allows controlled 

access to instances of these entities. 

 

User. Users have an email address and a hashed and salted password allowing them to log in to 

the FeatureCloud frontend, which then queries the global backend. In practice, a user is either a 

developer who has apps linked to them through the ‘develops’ relation, or an end user. Both, 

developers and end users, can add apps to their library (relation ‘has in library’) and manage a site 

(relation ‘manages’). 

 

Site. Sites have necessary contact information and represent a data holder location, e.g. a hospital 

or academic research institution. Each site needs to run a controller instance (see section 4.2.1) to 

participate in projects (relation ‘is part of’). When a site is part of a project, it can either assume the 

role of the coordinator or a participant. 

 

Project. Projects encompass a workflow, descriptive information and a set of tokens allowing for 

joining a project (see section 3.3.1). Tokens are not modeled explicitly. Instead, the ‘is part of’ table 

is used, which can have entries with a token string and where the related site is NULL. Once a site 

joins a project, this entry is linked accordingly and can no longer be used by anyone else. 

 

App. Apps are AI applications which appear in the app store. They contain an image name, which 

needs to be used when pushing new versions of the app, an icon, a short and long description, 

tags, a category and link to the source code. They are linked to a developer through the ‘develops’ 

relation and workflows they are part of through the ‘is in workflow’ relation. 

 

App Version. New versions of apps are tracked automatically when pushing a new version via 

Docker by the developer and are linked to the respective app through the ‘has’ relation. 
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4.2.4 Frontend 

The frontend serves as a graphical user interface (GUI) for FeatureCloud users and developers. It 

is the only component FeatureCloud users directly interact with. It then calls the API of the 

controller or the global backend on behalf of the user, depending on the nature of the task (see 

sections 4.2.1 and 4.2.3). Since the frontend needs to be platform-independent, it has been 

implemented as a web application running inside a browser. This enforces a clear separation 

between GUI-related concerns and backend-related tasks by employing an HTTP-based API, as 

described earlier. Angular has been chosen as a web framework due to its high popularity, long-

term support and extensive functionality. 

 

 
 

Figure 13: FeatureCloud Frontend. The frontend serves as a GUI for the users and allows 

intuitive project management, workflow execution, presentation of apps in the AI store, and many 

more. 

 

The GUI is structured into the following sections (accessible through the menu): 1) Account 

management, 2) Site management, 3) App management, 4) Project management and 5) App 

testing, each divided into subsections again. For more details and walkthroughs, see supplement, 

section 1. 

4.2.5 AI Store Server 

As described in section 3.2.1, the AI store server is connected to the global backend that serves as 

an auth server and a Docker registry (see fig. 4). It performs two main tasks: relay queries from the 

local Docker engines using the Docker registry API1 and protecting images from unpermitted 

access, in particular restricting pushing of images to the respective app developers. For that, the AI 

store server provides endpoints to request a JWT token which is then attached automatically by 

                                                
1 https://docs.docker.com/registry/spec/api/  

https://docs.docker.com/registry/spec/api/
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the Docker CLI to authenticate consecutive actions. App developers need to be FeatureCloud 

users and use their FeatureCloud credentials to login. That way, the global backend acting as an 

auth server can check whether the user pushing an image is the corresponding app owner. 

 

Like the controller and relay server it is written in Go for performance reasons. App images can be 

several GB large and pulling images is a task performed each time before a workflow step is 

executed, making performance a critical consideration. 

5 Results 

This section describes different apps already implemented to show the generic nature of 

FeatureCloud and demonstrate its operability. 

5.1 FeatureCloud Apps 

5.1.1 Linear and Logistic Regression 

Linear and logistic regression algorithms are very popular in many fields of science including 

bioinformatics and biomedicine due to their simplicity and interpretability 16. The aim of regression 

models is to estimate (predict) the relationship between a dependent variable (label or output) and 

one or more independent variables (features or predictors). The data is represented as a table in 

which rows are the samples and columns are the values of the variables. We use S, X, and Y to 

indicate the sample space, feature space, and label space, respectively.  Linear regression is used 

for quantitative label values, whereas logistic regression predicts the binary (0/1) label values. 

 

Federated linear and logistic regression apps in FeatureCloud are based on their corresponding 

implementations in sPLINK 17. The apps implement a horizontal federated learning approach 18–20, 

where the sample space is different among the datasets distributed across the clients, but the 

datasets share the same feature and label spaces. The federated logistic and linear regression 

apps implement the privacy-preserving versions of the Newton-Raphson method for logistic 

regression and the ordinary least square method for linear regression. The former algorithm is an 

iterative one, while the latter is a single-step algorithm. 

 

In the federated linear regression app, each client i computes two local model parameters from its 

local dataset and shares them with the server (coordinator): P1
i=Xi

TXi and P2
i=Xi

TYi, where T is the 

transpose matrix operation. The server adds up the local parameters from all clients to compute 

global parameters P1
G and P2

G and compute the coefficients (weights) of the model using Beta = 

(P1
G)-1 (P2

G), where -1 indicates inverse matrix operation17. The important assumption here is that 

the number of features is less than the number of samples, so that the server cannot reconstruct 

the data from the model parameters. 

 

In the federated logistic regression, each client i calculates local gradient and Hessian matrices as 

well as the log-likelihood value as the local parameters using the following 17: 

https://paperpile.com/c/t1a7eF/BJF3M
https://paperpile.com/c/t1a7eF/SNMub
https://paperpile.com/c/t1a7eF/5Vwrz+sflP2+mStgu
https://paperpile.com/c/t1a7eF/SNMub
https://paperpile.com/c/t1a7eF/SNMub
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The server adds up the local parameter values to compute the corresponding global values. Next, it 

updates the coefficient using Betanew = Betaold + H−1∇, where Betaold is the beta values from the 

previous iteration, and H and ∇ are the global hessian and gradient matrices, respectively. 

 

It has been proved mathematically and shown empirically that the federated linear and logistic 

regression algorithms provide the same results as those from the corresponding centralized 

versions 17. Therefore, the regression apps are robust from the accuracy perspective, i.e. they 

incur no accuracy loss regardless of the data distribution across the clients (homogeneous or 

heterogeneous). 

5.1.2 Time-to-Event Analysis 

Time-to-event analysis, sometimes called survival analysis, describes a particular type of algorithm 

developed to analyse so-called time-to-event data 21. This data includes information about the time 

until a certain event happens, e.g. death, and comes with the difficulty that the event often has not 

occurred for all samples in the dataset (right-censored samples) during observation time 22. As this 

kind of data is often collected in clinical trials 23, an implementation of the most common algorithms 

as FeatureCloud apps can help bring together data from different sites, enlarge sample size, and 

enhance the quality of the models. 

 

Comparing our results with the implementations of the state-of-the-art survival analysis package 

Lifelines, we could show that the results of the federated Kaplan-Meier Estimator and federated 

Nelson-Aalen Estimator are equal to the centralized algorithms. Also, the federated logrank test 

produces highly similar results and only differs in the seventh decimal place. As the federated 

implementation of the Cox proportional hazard model varies slightly from the lifelines 

implementation, results are similar to the third decimal place but model quality measured using the 

concordance index is still comparable. All algorithms keep the results even with an increasing 

number of participants  or if the samples are unequally distributed between the clients. A 

publication proofing these results will follow next year. 

 

Kaplan-Meier Estimator. The Kaplan-Meier estimator is a statistic to estimate the survival function 

of time-to-event data 24. The FeatureCloud Kaplan-Meier Estimator app expects a csv/tsv/sass-file 

as input, including a time and an event column (1 event occurred, 0 censored). Optionally, a 

category column can be included, which e.g. defines the different treatment arms of a study. If this 

is the case, a survival function is estimated for each category separately and subsequently 

compared pairwise using the logrank-test statistic to see if they significantly differ in their survival. 

 

https://paperpile.com/c/t1a7eF/SNMub
https://paperpile.com/c/t1a7eF/dwlig
https://paperpile.com/c/t1a7eF/kXh28
https://paperpile.com/c/t1a7eF/bXCYO
https://paperpile.com/c/t1a7eF/m7PDr
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The results will consist of a CSV table containing the survival function matrix, a plot showing the 

survival curves, and, if a category column was included, the p-values of the pairwise logrank-test 

statistic. 

 

Nelson-Aalen Estimator. The Nelson-Aalen estimator is a statistic to estimate the cumulative 

hazard function of time-to-event data 25. The Nelson-Aalen Estimator FeatureCloud app works in 

the same way as the Kaplan-Meier Estimator FeatureCloud app, with the only difference that it 

computes the cumulative hazard function instead of the survival function.  

 

Cox Proportional Hazard Model. The Cox proportional hazard model is a regression algorithm for 

time-to-event data used to find biomarkers significantly associated with the survival of patients 26,27. 

The Cox proportional hazard model expects a csv/tsv/sass-file as input, including a time ad event 

column. Furthermore, it expects at least one column containing the numerical values of a 

covariate, e.g. age, or blood oxygen level. 

 

The results will consist of a table including statistics such as the coefficient, hazard ratio, and p-

value of each covariate, a plot showing the log hazard ratio of each covariate together with its 95% 

confidence intervals, and the c-index of the model. 

5.2 Summary 

When comparing the conventional, centralized algorithms with their federated versions, their 

results can be identical or differ slightly. However, even when they differ, they generally still benefit 

from the greater amount of data that can be taken into account. From the algorithms that have 

been investigated so far, and this is confirmed by literature, it can be concluded that the federated 

approach taken in FeatureCloud is practically feasible and allows for better insights through 

incorporating more data. 

6 Discussion 

The FeatureCloud platform has been developed to an extent in which it can be applied to practical 

problems in the area of biomedicine and beyond. It is general enough to allow for a variety of ML 

algorithms yet offers pre-built solutions for common use cases, in the form of apps in the AI store 

or app templates for developers. The concept of arbitrarily composing apps in a workflow proves to 

be challenging due to the necessity of a common data format, which is not always available, or 

reduces flexibility. The same applies to the initial data, which needs to be provided in a form 

processable and understandable by the desired apps. 

 

Since it is necessary to understand which functionality and which types of data will be used 

precisely, which ML techniques prove to be most prevalent in federated settings, and which 

challenges arise when using the platform, few assumptions can be made in advance. The 

approach FeatureCloud takes is to keep the platform as flexible and extensible as possible and 

align new functionality closely to the demand of its users. 

 

The important question is what can be moved from the app developers shoulders to the 

FeatureCloud platform (e.g. pre-implemented cryptographic techniques, pre-implemented 

https://paperpile.com/c/t1a7eF/HEssG
https://paperpile.com/c/t1a7eF/anw5q+3sS5P
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communication modes) and what needs to remain in the domain of the apps themselves. This will 

be assessed and decided together with the FeatureCloud community, further strategic meetings 

within the FeatureCloud consortium and be based on further research outcomes in the area of 

privacy-preserving techniques in ML. 
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D) Table of Acronyms and Definitions  

AI Artificial intelligence 

API Application programming interface 

CLI Command line interface 

CI/CD Continuous integration / continuous deployment 

concentris concentris research management GmbH 

CSS Cascading style sheets 

CSV Comma-separated values 

DL Deep learning 

DP Differential privacy 

E/R Entity/relationship 

GDPR General Data Protection Regulation 

GND Gnome Design SRL 

GUI Graphical user interface 

HE Homomorphic encryption 

HTML Hypertext markup language 

HTTP Hypertext transfer protocol 

HTTPS Hypertext transfer protocol (secure) 

IP Internet protocol 

JSON JavaScript object notation 

JWT JSON web token 

ML Machine learning 

MR Merge request 

MS Milestone 

MUG Medizinische Universitaet Graz 

Patients In this deliverable, we use the term “patients” for all research subjects. In 
FeatureCloud, we will focus on patients, as this is already the most vulnerable 
case scenario and this is where most primary data is available to us. Admittedly, 
some research subjects participate in clinical trials but not as patients but as 
healthy individuals, usually on a voluntary basis and are therefore not dependent 
on the physicians who care for them. Thus to increase readability, we simply 
refer to them as “patients”.  

RF Random forest 

SDU Syddansk Universitet 

SMPC Secure multiparty computation 

SSH Secure shell 

SSL Secure sockets layer 

SVM Support vector machine 

TCP Transmission control protocol 

TUM Technische Universitaet Muenchen 

WP Work package 
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E) Other Supporting Documents, Figures and Tables 

1 Demo and Manual 

A running version of the FeatureCloud platform can be found here: 

https://staging.featurecloud.eu  

 

A user manual, largely in the form of tutorial and demo videos, can be found on this subpage: 

https://staging.featurecloud.eu/manual  

 

The staging area is a replica of the public production area which will be made public upon release 

of the platform. It offers the same functionality and is used for manual testing. 

2 Manual for App Developers 

2.1 Introduction 

To be executable on the FeatureCloud platform, a federated app must implement the 

FeatureCloud API. The API is designed in a generic way, it puts minimal constraints on the actual 

implementation of the app, so any kind algorithm can be implemented. The app must be able to act 

both as coordinator or participant. This is needed because the same app is downloaded by the 

platform to all participant sites, and the app's role (coordinator or participant) is provided by the 

platform at setup. 

2.2 FeatureCloud API 

A federated app should act as a web server polled by the FeatureCloud platform, so implementing 

the FeatureCloud API basically means implementing a web server that handles the following 

requests. 

 

POST /setup 
 

When the participants are ready to start the federated execution (they are connected and prepared 

the input data) the platform will send the setup request. This is the starting point of the federated 

execution, the app can use it as a trigger to start the computation based on it's local data. 

 

The request body contains the following information: 

● id (string): the app instance identifier, determined by the platform 

● master (boolean): this value specifies the role of the app instance: true for coordinator, false 

for participant 

● clients (array of string): contains the identifiers of all participants 

 

Example of setup data for a coordinator, when there are 3 participants in total: 

{ 

 id: "0" 

 master: true 

https://staging.featurecloud.eu/
https://staging.featurecloud.eu/manual
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 clients: ["0", "1", "2"] 

} 

 

GET /status 
 

With the response to this request the federated app reports its current status. The app indicates if 

there is data to be transferred to the coordinator or if the execution of the app is finished. 

The response should contain the following information: 

● available (boolean): true if there is data to be transferred, otherwise false. 

● finished (boolean): true if the app execution finished, otherwise false. 

● size (int, optional): This value can be used to indicate the size of the data that will be 

transferred. 

Example: 

{ 

 available: true 

 finished: false 

 size: 16 

} 

 
GET /data 
 

Using this API call apps can transfer data to the platform. 

The response body should contain the data to be transferred. If size was specified in the /status 

response, the platform will check if the content length matches the size value. 

The platform reads the data and redirects in the following way, depending on the sender:  

- if the data is coming from a participant, it will be redirected to the coordinator 

- if the data is coming from a coordinator, it will be broadcast to all other participants. 

 

POST /data 
 

Using this API call the platform transfers data to the app. The request body should contain the data 

to be transferred. The app should handle/consider the received data in the following way, 

depending on their role: 

● If the receiver is a coordinator, the data is a packet from a participant (the ID of the sender 

is provided as a GET parameter ‘client’, e.g. /data?client=1) 

● If the receiver is a participant, the data is a broadcast message from the coordinator 

Besides implementing the above defined API, a federated optionally can have its own GUI, which 

is displayed by the FeatureCloud platform. The GUI is served by the app’s web server, but it’s 

implementation is fully up to the app developer. 
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2.3 App templates 

In general, you can develop FeatureCloud apps in any programming language and framework you 

want, as long as the API is addressed correctly. However, to make it as easy as possible, we 

already provide templates shipped with the essential features to efficiently develop an app. 

 

Example: Python Template 

 

Our Python template includes a Flask web server. The main directory contains the following files 

that might need changes: 

 

● .gitignore: Add files and folders that should not be uploaded to the git repository 

● README.md: Describe your app 

● build.sh: Used to build your docker image. Here you can decide how your image shall be 

named 

● requirements.txt: Used to install all python packages that are needed for your app. Add all 

requirements here. 

When your app is ready to get tested, run the build.sh to create a docker image that subsequently 

can be tested in the Feature Cloud Testing Environment. The actual app development happens in 

the fc_app, more precisely in the api.py and web.py file. We recommend outsourcing the logic of 

your algorithm into a separate file, e.g., algorithm_name.py. 

 
api.py 
 
In the api.py file, the basic API methods (status, data, setup and retrieve_setup_parameters) for 
Feature Cloud are implemented and can be extended to fulfill your algorithm's requirements. All 
crucial variables should be stored in Redis to be used between the api.py and web.py files. They 
can be set using the redis_set() method and read using the redis_get() method. Important, 
predefined variables are: 

● available: true if data is available for sharing with the coordinator, else false 

● is_coordinator: true if the client is the coordinator of the analysis., else false 

● finished: true if the computation is done, else false. After set to true, the server will end the 

analysis. 

● nr_clients: Number of clients participating in the analysis. 

STEPS should be defined to structure the process of your app. Especially after the setup, different 

kinds of data need to be exchanged during the analysis. By defining different steps, you can 

distinguish what data will be exchanged in the data call. You can set the current step using the 

set_step() method. The get_step() method will give you the current step. 

Requesting data. The data() method is probably the most crucial in your app development. With 

the POST request, clients can pull global data from the coordinator, or the coordinator can pull 

data from the clients.  With the GET request, clients can send data to the coordinator, or the 

coordinator can broadcast data to the clients. Depending on the step, different data can be 

exchanged between clients and the coordinator. 
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Reading the input. Input files are always located at the directory "/mnt/input/". You can either 

directly use the files from there (e.g., if there is only one possibility for a file) or implement a file 

selector in the frontend (web.py). 

Writing the output. All result files need to be saved in the "/mnt/output" directory before the 

coordinator's finished flag is set. The storage of the results in this directory is essential for the user 

to download the results or continue with them in the next workflow step. You can also store 

intermediate results that might be interesting for the users to have. 

Finishing the analysis. As soon as the coordinator has computed the final global result, the 

analysis can be finished. Therefore, the coordinator's finished flag needs to be set 

(redis_set('finished', true)). 

web.py 

In contrast to the api.py file, the web.py should contain no app logic itself. It is responsible for the 

app frontend and has access to all Redis variables set in api.py. It should know about the app's 

STEPS and show the corresponding frontend for each step. You are entirely free in what you offer 

in the frontend. Sometimes no frontend is needed at all, but in other cases, a loading screen or 

even a whole frontend with user input is necessary. 

Showing different frontend pages. To show different frontend pages, use if-else in the root() 

method to distinguish between the various steps and return the corresponding HTML page stored 

in the templates folder with return render_template('test.html'). 

Example mean app. We also provide an extensive example of a Feature Cloud Mean App 

(https://github.com/FeatureCloud/mean_template). 

https://github.com/FeatureCloud/mean_template
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3 Workflow Sequence Diagram 
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Figure S.1: Sequence diagram of the workflow execution. Purple arrows represent binary data 

traffic, blue arrows HTTP traffic and black arrows are trigger events. 

 

Traffic involving the relay server generally contains model parameters that might be harmless for 

single workflow runs. However, if put together and collected over multiple workflows, one might be 

able to infer information about the local data. Therefore, it is split from the global backend which is 

centralized to allow for project management involving all FeatureCloud users and data holders. 

The global backend however only contains meta information which is unrelated to the sensitive 

data stored at the data holder sites (see also E/R diagram in fig. 12). 

4 Development Process 

As described in section 2.1.2, FeatureCloud focuses on robustness and convenience for 

developers and plays a major role in the whole development process. This affects requirements 

management and integration of requirements into the development process as well as maintaining 

a high level of code quality and robustness of the system. We use SCRUM as a development 

process framework with sprints of 2 weeks. 

4.1 Requirements and SCRUM 

Requirements are collected from all stakeholders of the FeatureCloud project, of which we 

identified the following: 

● App developers 

● Hospital IT personnel 

● Patients 

● Medical doctors/researchers 

● Platform developers 

Up until now, due to the set of features required for the first stage, we mainly considered app 

developers, researchers and platform developers as stakeholders. Patient consent management 

and frontends for patients are due at a later stage. 

 

All requirements, parts of which have been reported in deliverable 7.1, revised version (as of now 

not officially accepted yet), are tracked as GitLab issues, marked with a ‘user story’ label to 

distinguish them from lower-level, development-related tasks. These high-level user stories are 

regularly discussed in biweekly review meetings, where all developers and users of the platform 

can take part, currently mainly within the consortium. 

 

User stories are broken down into tasks and discussed during the sprint planning meetings, which 

take place at the beginning of each sprint. However, fixes for bugs that are reported can be 

injected into the sprint at any time. During the sprint, the platform developers (currently 4 from TUM 

and 2 from GND) meet 3 times per week to discuss the latest progress and coordinate 

development. A figure illustrating the development process also has been reported in Fig. 1 of 

deliverable 7.1 mentioned above. 
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4.2 Testing, Linting and CI/CD 

Maintaining a high level of code quality first and foremost requires a high level of discipline by the 

developers. The following process, which is usual for agile development, is maintained in 

FeatureCloud: 

● Every change to the code is made in a separate branch 

● When done, the branch is turned into a merge request and needs to be reviewed by 

another developer 

Both of these requirements can be enforced in GitLab. 

 

On top of that, a series of automated measures are taken to detect bugs early and ensure that 

important functions of the system are working: 

● Automated builds 

● Automated tests (unit tests, end-to-end tests) 

 

To make sure that the software is tested can be enforced automatically. Therefore, a test coverage 

of over 90% needs to be met. 

 

To increase code quality, linting is used for both frontend and backend: 

● Frontend: tslint with strict ruleset enabled (including enforced typing, e.g. no any type) 

● Backend: flake8 and pycodestyle 

 

Figure S.2 shows the frontend pipeline containing all the above mentioned steps. It needs to run 

through without errors (except for the ‘Deploy’ stage) before a merge request can be merged. 

 

 
 

Figure S.2. Frontend pipeline. The production deployment step needs to be triggered manually, 

staging is being deployed automatically after a MR has been merged into the master branch. 

 

When a merge request (MR) has been merged into master, a Docker container is built 

automatically from the code and pushed to a private registry. The staging deployment detects a 

new version of the frontend image, pulls it and restarts the container without further user 

interaction. This way continuous deployment is achieved. 


