

Deliverable D7.2
“App store ready and extendible by developers”

WP7
“Integrated FeatureCloud health informatics platform

and app store”

Privacy preserving federated machine learning and
blockchaining for reduced cyber risks in a world of
distributed healthcare

This project has received funding from the
European Union’s Horizon 2020 research and
innovation programme under grant
agreement No 826078.

D7.2 “App store ready and extendible by developers”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 2 of 36

Disclaimer

Copyright message

Document information

Grant Agreement Number: 826078 Acronym: FeatureCloud

Full title
Privacy preserving federated machine learning and blockchaining for
reduced cyber risks in a world of distributed healthcare

Topic
Toolkit for assessing and reducing cyber risks in hospitals and care
centres to protect privacy/data/infrastructures

Funding scheme RIA - Research and Innovation action

Start Date 1 January 2019 Duration 60 months

Project URL https://featurecloud.eu/

EU Project Officer Reza RAZAVI (CNECT/H/03)

Project
Coordinator

Jan BAUMBACH, TECHNISCHE UNIVERSITAET MUENCHEN (TUM)

Deliverable D7.2 “App store ready and extendible by developers”

Work Package
WP7 “Integrated FeatureCloud health informatics platform
and app store

Date of Delivery Contractual 31/12/20 Actual 29/12/20

Nature REPORT
Dissemination
Level

PUBLIC

Lead Beneficiary 01 TUM

Responsible
Author(s)

Julian Matschinske (TUM), Julian Späth (TUM), Reza Nasirigerdeh (TUM),
Sándor Fejér (GND)

Nina Wenke, Jan Baumbach - TUM

Keywords Platform, AI Store, Federated Framework

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 826078. Any dissemination of results reflects
only the author's view and the European Commission is not responsible for any use that may be
made of the information it contains.

© FeatureCloud Consortium, 2020
This deliverable contains original unpublished work except where clearly indicated otherwise.
Acknowledgement of previously published material and of the work of others has been made
through appropriate citation, quotation or both. Reproduction is authorised provided the source
is acknowledged.

https://featurecloud.eu/

D7.2 “App store ready and extendible by developers”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 3 of 36

Table of Contents

A) Objectives of the Deliverable 5

B) Executive Summary 5

C) FeatureCloud Platform and AI Store 5

1 Introduction 5

2 Design Considerations 6

2.1 Methodology 6

2.1.1 Privacy-aware ML 6

2.1.2 Frameworks and Platforms 7

2.2 Federated ML in FeatureCloud 8

3 Platform and AI Store 9

3.1 App Development 9

3.1.1 Isolation of Apps 10

3.1.2 Data Loading and Sharing of Results 10

3.1.3 FeatureCloud Interface for Apps 10

3.1.4 Testing and Debugging 11

3.1.5 App Templates 11

3.2 AI Store 12

3.2.1 Pushing New Apps and App Updates 12

3.2.2 Publishing Apps in the AI Store 13

3.2.3 Using Apps and Providing Feedback 15

3.2.4 App Certification 15

3.3 Workflow Management and Execution 16

3.3.1 Workflow Composition and Invitation 16

3.3.2 Execution of a Workflow 17

4 Architecture and Implementation 19

4.1 System Architecture 19

4.2 Implementation 20

4.2.1 Local Controller 20

4.2.2 Relay Server 21

4.2.3 Global Backend 21

4.2.4 Frontend 23

4.2.5 AI Store Server 23

5 Results 24

5.1 FeatureCloud Apps 24

5.1.1 Linear and Logistic Regression 24

D7.2 “App store ready and extendible by developers”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 4 of 36

5.1.2 Time-to-Event Analysis 25

5.2 Summary 26

6 Discussion 26

7 References 27

D) Table of Acronyms and Definitions 29

E) Other Supporting Documents, Figures and Tables 30

1 Demo and Manual 30

2 Manual for App Developers 30

2.1 Introduction 30

2.2 FeatureCloud API 30

2.3 App templates 32

3 Workflow Sequence Diagram 34

4 Development Process 35

4.1 Requirements and SCRUM 35

4.2 Testing, Linting and CI/CD 36

D7.2 “App store ready and extendible by developers”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 5 of 36

A) Objectives of the Deliverable

Deliverable 7.2 “App store ready and extendible by developers” relates to task 1 “Programming

interfaces and platform” and task 2 “App store and workflow management” of work package 7 as

described in the Description of Action. It contains details on the software framework allowing for

integration of methods developed in WPs 4-6, the programming interfaces FeatureCloud provides,

how artificial intelligence (AI) applications can be contributed by external developers and how

workflows are managed by the FeatureCloud system. Hence this deliverable contains all progress

related to the FeatureCloud platform and AI store, including the overall system.

B) Executive Summary

FeatureCloud is a federated, privacy-preserving machine learning (ML) platform, aiming to simplify

the development and usage of ML algorithms in collaborative settings. The main challenge in

collaborative environments is that vast amounts of scattered data exist, particularly in medical

facilities but privacy restrictions prevent unleashing the full potential of rapidly emerging and

evolving ML algorithms. FeatureCloud overcomes this challenge by providing all software

components and libraries necessary to develop and execute federated ML applications. While

most existing federated ML frameworks focus on aiding during development and leave deployment

to the user, FeatureCloud comes with an AI store of ready-to-use federated ML applications. These

apps can be used out of the box or combined into a workflow, covering among other things pre-

processing, model training, and result visualization. The AI store can be extended by the apps of

external app developers, making it available for custom applications. Our experiments show that

federated ML yields similar and sometimes even identical results compared to central approaches

that have direct access to the entire dataset. The computational overhead is usually limited,

making it a viable solution for various scenarios.

C) FeatureCloud Platform and AI Store

1 Introduction

Driven by advances in machine learning (ML) and rising privacy concerns on sharing data,

techniques for collaborative machine learning have received more and more attention. Particularly

in biomedicine, where vast amounts of data exist and could aid in diagnostics, understanding

disease mechanisms or assessing risk factors, privacy concerns hinder even faster advances and

sometimes render usage of ML impossible. Various cryptographic and algorithmic techniques such

as homomorphic encryption (HE) or secure multiparty computation (SMPC) have been suggested

and successfully employed to address these concerns. However, these techniques are

computationally expensive and often require profound changes to the original ML algorithm. In

contrast, federated ML is a comparably simple and efficient approach and therefore suited for most

ML algorithms yielding comparable or even identical results while still maintaining a sufficient level

of privacy. In most cases, an ML model, such as a neural network, a support vector machine

(SVM) or a random forest, is trained locally at the data holders’ site and sent afterward to a central

instance where the local models are combined into a global model. The general assumption is that

these models do no longer contain sensitive information. In some cases where this is not

necessarily true, such a naive federation can be enhanced with techniques such as differential

D7.2 “App store ready and extendible by developers”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 6 of 36

privacy (DP) to establish the required level of privacy, usually at the expense of the global model’s

quality.

2 Design Considerations

This section contains fundamental considerations for the FeatureCloud platform. It is divided into a

methodology section laying out current approaches and available solutions in the area of federated

machine learning, and a section about design choices made in FeatureCloud.

2.1 Methodology

Privacy-aware machine learning has received much attention due to the ever growing amounts of

biomedical data. Different techniques and approaches exist, which are described in subsection 2.1.1,

and several frameworks and platforms implementing these approaches have emerged, which are

described and compared in section 2.1.2.

2.1.1 Privacy-aware ML

In recent decades, machine learning techniques have been successfully applied to various fields,

including healthcare. However, studies have shown that ML models trained without any privacy

consideration are vulnerable to potential privacy attacks, such as membership inference attacks.

Besides individual concerns about sensitive data in healthcare, also privacy regulations, such as

the European GDPR, request a higher awareness of privacy considerations in machine learning.

The efforts in making ML models privacy-preserving can be categorized into four groups based on

the method they employ: (1) federated learning (FL), (2) cryptographic techniques (including HE

and SMPC), (3) differential privacy (DP) and (4) hybrid approaches. Each of these categories has

its strengths and weaknesses in terms of computational and communication efficiency, utility and

privacy guarantee. For example, FL suffers from high communication cost compared to HE and

SMPC. However, as FL is based on the “moving computation to data” methodology rather than

“moving data to computation”, it is computationally more efficient than HE and SMPC. As another

example, an FL model does not provide a privacy guarantee while a differentially private ML model

does so (namely epsilon and delta). On the other hand, FL is a more utility-aware technique than

DP as it does not inject any noise perturbation to the data or the training process 5.

Considering the advantage and disadvantages of the privacy-aware ML models as well as the

curse of dimensionality and importance of achieving high utility in healthcare settings, FL and the

hybrid approaches that are based on FL (FL + HE 1,2,FL + DP 3–7 and FL + DP + HE 8–10) seem to

be the most promising and practical privacy-aware ML methods for healthcare applications. By

using FL the health institutions (or the clients in general) can collaborate in training a common ML

model while ensuring that the individuals’ private data will not move out of their local sites (even in

encrypted form). Moreover, if there is a case in which enhanced privacy is required, they can also

privatize the FL model parameters using DP or other types of obfuscating techniques.

https://paperpile.com/c/t1a7eF/1uHF+1OVr
https://paperpile.com/c/t1a7eF/WlSv+gssX+K9xc+miAA+lCrX
https://paperpile.com/c/t1a7eF/blC2+O2Lh+iKOs

D7.2 “App store ready and extendible by developers”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 7 of 36

2.1.2 Frameworks and Platforms

Several frameworks for FL have been developed in recent years (Table 1). We identified two

different approaches: backend-only and all-in-one approaches. On the one hand, backend

frameworks, such as Tensorflow Federated and PySyft, mostly focus on deep learning algorithms

and provide developers with methods to simplify the implementation of federated and privacy-

aware machine learning analysis.

On the other hand, all-in-one frameworks try to bring privacy-aware analyses to users without

developer knowledge. Additionally to a backend framework, they also provide a frontend, enabling

non-developer users to perform federated and privacy-aware analyses. Most of these frameworks

are tailored for specific areas: NVIDIA Clara is a federated learning framework for imaging and

genomics, focusing on an easy deployment in medical infrastructures. COINSTAC 11 is a platform

for decentralized brain imaging analyses that is available for all major platforms. Melloddy aims to

connect the decentralized data of 10 pharmaceutical companies and enable privacy-preserving

analyses for drug discovery.

Furthermore, few platforms such as Owkin or Acuratio enable federated learning on non-specific

datasets. Acuratio offers various horizontal and vertical federated learning algorithms that can be

executed on the platform. Owkin has a strong medical focus and connects data by therapeutic

area. For now, with around 70 models (December 18, 2020), the Owkin platform seems to be the

largest federated learning platform in medical environments. In contrast to federated approaches,

decentralized approaches do not contain a central aggregation instance. As an example, the

Personal Health Train 12 (PHT) connects different data centers and allows scientists to create value

from the data of different sources. A “train” (model) goes from one “station” (data source) to

another and trains with the respective data until the training has finished. It has already

successfully learned a distributed model on more than 20.000 lung cancer patients 11,13.

As a matter of fact, each of the frameworks brings its benefits and can be useful in specific

scenarios. However, most of them are not suited for application in clinical environments. Deep

learning (DL) models have already been useful in healthcare and clinics 14 but are usually not

interpretable. The interpretability of models is a massive concern in clinical research to justify

medical decisions, and therefore, a focus only on DL models is not applicable in a clinical context.

Backend-only approaches in clinical environments are limited to users with a developer

background and coding experience. This background can usually not be expected by clinical

experts without a statistics department and, therefore, restricts usability massively.

All-in-one platforms either have a strong focus on one specific field (COINSTAC for brain imaging,

Melloddy for drug development) or still require a lot of technical knowledge and developers for the

set up (NVIDIA Clara, PHT). Unfortunately, the demos of the federated frameworks DiscreetAI and

Fed-BioMed 15 could not be executed and also the sign up did not work. This shows that some

platforms are still at a very early stage or do not focus on robustness or convenient development.

For now, the probably most significant player of the all-in-one platforms in the medical sector is

Owkin. While it offers many models and connects therapeutic areas, it is not open-source, and

therefore, its algorithms remain a black box for the users. Also, it is not instantly and freely

available which makes it difficult if not impossible to use for certain scientific target groups.

https://paperpile.com/c/t1a7eF/sSJR
https://paperpile.com/c/t1a7eF/KIkQ
https://paperpile.com/c/t1a7eF/sSJR+N7Aa
https://paperpile.com/c/t1a7eF/xc2o
https://paperpile.com/c/t1a7eF/VK9K

D7.2 “App store ready and extendible by developers”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 8 of 36

Reviewing the players in federated learning frameworks and platforms, it is striking that there is no

convenient open-source solution yet that combines two crucial tasks in bringing federated learning

to a medical environment: model training and model development. While some platforms certainly

try to ease the training of federated learning models for the end-user, models are either not

collected to be shared within the framework or the API is not open to developers and end-users

can only use predefined models. This restriction is a huge disadvantage in the area of AI, which is

rapidly evolving and algorithms get published or enhanced very frequently.

Name Framework Type Open Source Algorithms Privacy Technique

Tensorflow Federated Backend yes DL FL

PySyft Backend yes DL FL, DP, MPC, HE

Flower Backend yes DL FL

PaddleFL Backend yes DL FL, MPC, DP

CrypTen Backend yes DL MPC

XayNet Backend yes DL FL, HE

FATE Backend yes Various HE, MPC, FL

NVIDIA Clara All-in-one yes Various FL

DiscreetAI All-in-one yes Various FL

Fed-BioMed All-in-one yes Various FL

PHT All-in-one yes Various FL

Owkin All-in-one no Various FL, DP

COINSTAC All-in-one yes Various FL, DP

Melloddy All-in-one yes Various FL

Acuratio All-in-one no Various FL, DP

FeatureCloud All-in-one planned Various FL

Table 1. Privacy-Preserving Machine Learning Frameworks and Platforms.

2.2 Federated ML in FeatureCloud

Federated ML broadly involves two general operations, possibly alternating in multiple iterations:

local optimization and global aggregation. In FeatureCloud, all running instances of a federated

application (app) take one of two roles: participant and coordinator, performing the respective

federated operation. FeatureCloud expects precisely one coordinator and an arbitrary number of

participants, leading to a star-based architecture (see fig. 1).

D7.2 “App store ready and extendible by developers”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 9 of 36

Figure 1. Four stages of federated execution in FeatureCloud. The four main stages are 1)

local data loading, 2) broadcasting a global model, 3) gathering local models, 4) compiling results.

Stage 2 and 3 can be repeated depending on the executed algorithm. ‘C’ and ‘P’ stand for

coordinator and participant, respectively. The yellow stars in stage 1 and 4 represent local training

data and global parameters, respectively.

After a local optimization operation has been completed by a participant, it sends the local

parameters to the coordinator. The coordinator collects these parameters and aggregates them

into a common (global) model, which is shared with the participants. Depending on the type of ML

algorithm, these two operations can alternate a couple of times, e.g. until convergence or a pre-

defined number of iteration has been reached. For some algorithms (e.g. random forest, linear

regression), only one iteration is necessary. However, this strict separation between optimization

and aggregation is not actively enforced by FeatureCloud. In many cases, aggregation can already

start after the first parameters have been received, thereby increasing efficiency through

parallelization of the computation. Figure 1 shows the logical roles of coordinator and participant,

however in practice the coordinator usually has local data as well. Therefore, FeatureCloud also

allows the coordinator to additionally assume the logical role of a participant.

3 Platform and AI Store

FeatureCloud’s primary goal is to simplify the development and usage of federated ML algorithms.

This involves three major challenges: development of apps, distribution of apps, and usage of

apps. Each of these challenges is tackled by FeatureCloud and described in the following

subsections.

3.1 App Development

Since FeatureCloud does not impose restrictions on the kinds of algorithms it supports, the running

environment of the federated apps is kept very general. It allows for implementing any type of ML

algorithm and an optional custom graphical user interface (GUI) for user interaction, also referred

to as app frontend.

From a technical point of view, a FeatureCloud app acts as a web server (see section 4.2.1),

responding to requests sent from the FeatureCloud system or the app frontend. No direct Internet

D7.2 “App store ready and extendible by developers”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 10 of 36

access is granted to apps, which would pose a security risk (see fig. 2). A complete overview of the

architecture can be found in section 4.2.

3.1.1 Isolation of Apps

System access of apps should be as limited as possible to rule out attack vectors, such as leakage

of sensitive data or access of data, which should not be included in an ML algorithm (e.g. due to

lack of consent). FeatureCloud uses Docker as a virtualization technique. Docker has been widely

adopted in the developer community, particularly in the area of web development. It is available for

all major operating systems (Linux, Microsoft Windows, macOS), making FeatureCloud nearly

platform-independent. Docker also offers the necessary level of isolation, preventing Internet and

file access if not explicitly granted, and sandboxing to limit the usage of compute and memory

resources if necessary. These isolated running environments (containers) are created from pre-

defined images, which are the federated apps in our case.

3.1.2 Data Loading and Sharing of Results

ML apps need access to training data to optimize their models. As depicted in fig. 2, apps cannot

access sensitive data directly. Instead, the app user needs to provide the data to the FeatureCloud

system, making it available to an app. From an app perspective, the data can be expected to

reside inside a dedicated input directory mounted to the app container. Analogously, all results

generated by an app must be put inside an output directory, which is provided by FeatureCloud as

well, whose contents can be downloaded via the FeatureCloud user interface.

This output data can also be picked up by another app that is executed successively and finds the

output data of the previously ran app inside its input folder. Chaining these apps is a feature that

allows the composition of multiple apps into a workflow, a concept that is further described in

section 3.3.

3.1.3 FeatureCloud Interface for Apps

The FeatureCloud controller (fig. 2) regularly asks a running app whether it has new model

parameters to share with the other members of the federation. If this is the case, it loads them from

the app and hands it over to the other apps, depending on whether it is a participant or a

coordinator, as described in section 2. If the global model parameters need to be shared with the

app, the controller actively sends them to the app.

D7.2 “App store ready and extendible by developers”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 11 of 36

Figure 2: Execution environment for FeatureCloud apps. App users decide what data to load

into the system. FeatureCloud apps cannot directly access the file system or the internet.

The API is based on the TCP/IP-based HTTP protocol, which is asynchronous by its nature. In web

terms, the FeatureCloud app acts as a web server and the FeatureCloud controller acts as a web

client. The full specification of the API is included in the supplement, section 2.3.

An app can also provide its custom user interface to allow for monitoring the computation or for

interaction with the user. To this end, additional endpoints need to be defined, which can then be

accessed from the app user’s browser. Web technologies are used for GUI design, i.e.

HTML/CSS/JavaScript. Custom endpoints cannot be accessed directly due to technical and

security reasons. In a typical scenario, the FeatureCloud controller runs on a central server inside

a data holder’s local network and users access the frontend from a different machine inside the

network. To make this possible, the FeatureCloud controller listens on only one port, which can

e.g. be accessed through an SSH tunnel, redirecting all app-targeted traffic to the correct

container.

3.1.4 Testing and Debugging

The development of algorithms involves intensive testing and debugging. For rapid development, it

is crucial that these testing and debugging cycles are as quick as possible. Therefore,

FeatureCloud comes with a local test framework that enables app developers to instantly run their

application on their machine without deploying it first. When using this functionality, one has to

specify the number of participants, i.e. app instances to simulate, and a data directory for each

instance containing the respective input data. When started, the FeatureCloud controller creates

one container for each instance and connects them logically identically on the developer’s machine

to a truly federated setup on different machines.

3.1.5 App Templates

The API has deliberately been designed in an algorithm and usage agnostic way. This leads to

high flexibility but requires the app developer to implement all algorithm-specific functionality by

themselves. To quickly introduce developers to the API and provide a convenient starting point for

D7.2 “App store ready and extendible by developers”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 12 of 36

app development, FeatureCloud comes with a collection of easily extendable templates. This

collection includes a minimal template with a demo Python/Flask implementation, stubs for all API

calls and a blank demo frontend, and a federated mean app. In section 6, we describe how to

extend the API in the future so that less functionality needs to be implemented inside the apps and

more functionality is provided by the FeatureCloud system itself.

3.2 AI Store

FeatureCloud presents all implemented apps in an easily searchable AI store to make federated

ML available for as many users as possible. Conversely, app developers need a simple way to

share their apps and attach important information, such as the required input data format, the

format of the produced output, usage instructions, and privacy considerations.

Figure 3: FeatureCloud AI store. Users can select from a variety of ready-to-use apps.

3.2.1 Pushing New Apps and App Updates

As described in section 3.1.1, all apps are stored as Docker images. Conventionally, docker

images are shared using a Docker registry, to which new or updated images can be pushed and

existing images can be pulled. FeatureCloud uses a standard Docker registry and controls its

access through a proxy server (see fig. 4).

D7.2 “App store ready and extendible by developers”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 13 of 36

Figure 4: Users and developers access the Docker registry through an AI Store Server. App

users can only pull, app developers can also push new images.

Sharing the app after implementation on the FeatureCloud AI store involves the FeatureCloud

website and usage of the Docker CLI (see supplement, section 2). When a new image is pushed to

the registry, the AI Store Server assures that the developer has the required permissions to push

the respective image by connecting to the Auth Server (see fig. 4). If it is successfully

authenticated, the image is uploaded to the FeatureCloud Docker registry and becomes available

to other users.

Pulling the images is done automatically when the workflow starts running (see section 3.3.2 and

supplement, section 3). The only technical requirement is a Docker installation on the user end. All

the other steps are performed without user interaction.

3.2.2 Publishing Apps in the AI Store

After the app image is available in the FeatureCloud App Registry, developers can publish their

app in the AI Store. As a first step, a FeatureCloud account needs to be created and verified by a

confirmation link sent to the corresponding email address. As soon as the user activates the

developer mode in the profile settings, the AI store (see fig. 5) provides an additional tab

“Developed” which will list all of the user’s developed apps. Furthermore, a developer sidebar,

including a “Create App” button, becomes visible.

D7.2 “App store ready and extendible by developers”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 14 of 36

Figure 5: AI Store for developers. Developers can see the apps they already published in the

“Developed” tab.

Clicking the “Create App” button forwards the user to an input form (see fig. 6) that is used to

describe the information about the app. An app consists of a name, short and large description, an

icon, and one or multiple labels that can be used as search tags. Furthermore, an app type needs

to be selected that is either “Preprocessing”, “Analysis”, or “Visualization”. The privacy technique

defines what methods are used in the app to preserve privacy. For now, this can be “Federated

Learning”, “Differential Privacy”, “Secure Multi-Party Computation”, “Homomorphic Encryption”, or

combinations of them. Finally, the image name needs to be defined to connect it to the

corresponding app in the FeatureCloud App Registry. The app information can always be updated

by the app author at a later point.

D7.2 “App store ready and extendible by developers”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 15 of 36

Figure 6: Publishing an app. Developers can publish an app by defining the app information and

link it to a Docker image in the FeatureCloud App Registry.

3.2.3 Using Apps and Providing Feedback

Users can search the AI store using full-text search or by choosing an app category or tag (see fig.

5). Apps that have been reviewed by FeatureCloud are marked as such and shown by default.

Other apps are only shown if the user explicitly accepts unsafe apps. Before using an app, users

need to add it to their personal library of apps. This serves as bookmarking and allows for adding

an extra licensing step in the future. Once added to their library, users can include an app in their

workflow and provide the developer with feedback, i.e. a star-based rating and a clarifying

comment.

3.2.4 App Certification

Allowing third-party developers to quickly and easily push apps to the app store and use them for

collaborative studies is one of FeatureCloud’s selling points. However, it is difficult to automatically

ensure privacy awareness of such apps (see deliverable 2.2, KPI ‘Privacy Requirements’).

Therefore, FeatureCloud distinguishes between two types of apps: 1) certified ones and 2)

uncertified ones. By default, the app store only displays apps that have been certified by a privacy

expert of the FeatureCloud consortium. The user needs to actively choose to display uncertified

apps and is warned and informed about the risks. In general, users are advised to only use

uncertified apps from a source they trust, e.g. a collaboration partner they already work together

with.

D7.2 “App store ready and extendible by developers”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 16 of 36

If developers want their apps to be certified, the source code needs to be completely accessible to

the responsible FeatureCloud member. After the code has been reviewed and deemed secure, the

Docker image is built by the consortium member and pushed to the app store via the Docker CLI.

The FeatureCloud system recognizes the author of the image as a trusted party and marks the

corresponding image version, identified by its SHA256 digest, as certified. After a successful

certification, third-party developers can still push new uncertified versions to update the app or fix

bugs. However, each update of the app, and respectively each new version, needs to be certified

again to make sure that the update does not raise any privacy issues. In the meantime, all users

who added a particular version of an app from the app store to their personal library of apps will

automatically keep this version in their library. At this point, if a user wants to update their app to a

new (certified) version, they need to remove it and add it again. This process will be simplified in

future AI store releases and replaced with a convenient update functionality as it is already

established for mobile phone app updates.

3.3 Workflow Management and Execution

Figure 7: Workflow has finished successfully. A workflow which has successfully completed

offers its results as download in the FeatureCloud frontend. Logs can also be downloaded for

debugging purposes.

To run a study with other collaborators, a project needs to be created in the FeatureCloud frontend

first. Projects consist of a name and a brief description to provide information for invited

collaborators. Additionally, they contain a workflow, defining which apps will be executed in which

order. The creation of a project is only possible for FeatureCloud users assigned to a data holder

site (see section 4.2.3, fig. 12). When they create a project, they act on behalf of their site. In

practice, users typically are medical doctors or academic researchers who administer a

FeatureCloud project, and sites are medical facilities or academic institutions.

The following two subsections describe how a workflow can be composed from a user

(coordinator) perspective and how the consecutive execution is performed from a technical

perspective.

3.3.1 Workflow Composition and Invitation

All apps that should be part of the workflow need to be added from the user’s library of apps (see

fig. 5). However, it is not required that all participants later have the apps in their library. After all

apps have been added, the project is finalized and becomes immutable. To invite other

D7.2 “App store ready and extendible by developers”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 17 of 36

collaborators, tokens (i.e. large random strings) need to be shared with them. Tokens are uniquely

linked to a project and allow for joining the project. They can only be used once for security

reasons and need to be entered in the FeatureCloud frontend. Once all participants have joined,

the coordinator can take a final look and start the project. From that moment on, no one can join

anymore and the execution begins.

Figure 8: Process of composing a project, inviting participants and starting a project. Green

symbolizes human interaction, blue symbolizes automatic behaviour.

3.3.2 Execution of a Workflow

Once the coordinator has triggered the execution, the FeatureCloud controller creates the input

volume for the first app in the workflow at each participating site. This volume needs to be provided

with the actual data relevant to the study, which is processed by the workflow. The users need to

select the data via the FeatureCloud frontend, which is then sent to their local controller,

importantly not leaving the data holder’s domain. As described in section 3.1.2, each app has an

input and output directory, which serves as a file-based data interface to FeatureCloud.

D7.2 “App store ready and extendible by developers”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 18 of 36

Figure 9: Workflow execution managed by the FeatureCloud system. Green symbolizes

human interaction, blue symbolizes automatic behaviour.

After each participant has selected their input data, the first app is started as a docker container.

The current progress of the workflow can be monitored in the frontend, showing the currently

executed step (i.e. app) and providing its container logs if required (see fig. 7). In general, no user

interaction is necessary from this point on unless an app in the workflow actively requires so

through its custom frontend. The app frontends can be accessed from the workflow page as well,

usually to monitor app-specific events or view visualizations provided by the app. When the

computation of a step has been completed, indicated by the coordinator app instance, all

containers of this step are shut down and the contents of the output directory are placed inside the

input directory of the next app in the workflow. These intermediate results can also be downloaded

from the frontend for later investigation or detecting potential errors in the analysis. All debugging

output produced by apps is stored in a directory on the controller machine, to investigate errors

that might occur during execution.

A workflow can thus be regarded as a processing pipeline, composed of apps provided by

FeatureCloud, enabling an additional level of customizability. For a selection of the currently

available apps, see section 5. For a complete workflow sequence diagram, see supplement,

section 3.

D7.2 “App store ready and extendible by developers”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 19 of 36

4 Architecture and Implementation

In this section, the technical details of the FeatureCloud system are described. It is split into an

overview of the system architecture, i.e. the high-level constellation of the system components and

their tasks, and the respective software architectures and details on behaviour and applied

technologies of these components.

4.1 System Architecture

The FeatureCloud architecture consists of the following system components (see fig. 10): local

Controller, relay server, global backend, frontend, and AI store server.

Figure 10: Interactions between the FeatureCloud system components. Frontend and local

controller are at the data holder’s site, AI store server and global backend run on FeatureCloud

servers.

On the data holder’s site, the controller and frontend web application are running. On the

FeatureCloud servers, the AI store server, including a Docker registry, and the global backend, are

running. Optionally, a global relay server is provided by FeatureCloud as well, in case setting up a

custom relay server is not required or not possible.

The controller orchestrates app execution by instructing the Docker engine to create or shut down

app containers, create and mount input and output volumes, and expose the required ports for the

FeatureCloud API. It also serves as a proxy between the frontend and the app containers to

decouple containers from the frontend.

The frontend is used to access the controller and manage the FeatureCloud account, federated

apps, and projects, which involves the global backend.

The relay server acts as a communication hub for all participants of a workflow. Since it relays

model parameters and has access to this data, users might want to use their own relay server

instead of using the one provided by FeatureCloud.

D7.2 “App store ready and extendible by developers”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 20 of 36

The AI store server is used to host app images and is described in section 4.2.5 in more detail.

The global backend stores all user information, information about data holders, apps, projects and

workflows, and is involved during workflow execution by saving the current step and progress.

However, it never has access to any raw data or traffic between apps participating in a workflow,

which is one of the crucial properties of FeatureCloud.

4.2 Implementation

This section contains information about technology, software architecture and implementation

details for each of the integral FeatureCloud system components.

4.2.1 Local Controller

The local controller needs to be able to handle large amounts of data and asynchronous tasks as

well as keep up multiple socket connections and support HTTP-based and raw byte traffic. For this

reason, this component has been implemented in Go (aka Golang), a native programming

language developed for server applications. It allows for lightweight co-routines to monitor app

containers and regularly query for updates from the global backend.

D7.2 “App store ready and extendible by developers”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 21 of 36

Figure 11: Software architecture of the local controller. It uses a layered architecture preventing

arbitrary access across layers by enforcing a partially ordered access hierarchy.

The software architecture has a layered structure, with a decreasing level of abstraction from top to

bottom (see fig. 11).

The platform application layer is the main entrypoint responsible for reading configuration values

(e.g. local database credentials, address of the global backend) and starting an HTTP server and

polling routines. The HTTP server provides endpoints for the frontend to control workflow-related

tasks, such as loading data into the first input volume, show container logs. It also relays traffic to

the app-specific frontends. The workflow layer offers abstract functions for the HTTP server and

takes care of workflow management, such as setting up and attaching volumes, starting

containers, shutting them down, reacting to updates from the global backend (by using the data

layer through the core layer). The core layer provides an abstraction of the core business logic,

especially app container management and functions for testing apps during development. The link

layer handles communication between app containers and the relay server, translating raw byte-

traffic from the relay server to HTTP-based traffic for the containers and vice versa. The controller

acts as an HTTP client in this case, and the app containers as HTTP servers. This way, active

access by the app containers to the Internet can be avoided. The virtualization layer is a direct

abstraction of Docker, which allows for replacing the virtualization technique in the future if needed

for security or compatibility reasons.

4.2.2 Relay Server

The relay server implements basic relay functionality for star-based federations of clients. It knows

the role of each client (i.e. participant or coordinator) and treats their traffic accordingly. If data is

received from a participant, it relays it to the coordinator. If it is received from the coordinator, it is

broadcast to all clients. A relay server can handle multiple workflows at once. For that, it uses

workflow-specific credentials chosen by the coordinator and automatically distributed to the

participants by the global API. Like the controller, it is written in Go since it needs to efficiently

handle large amounts of binary data, which Go is capable of.

4.2.3 Global Backend

The global backend mainly offers an HTTP API for controllers and the frontends. It is responsible

for managing all necessary data related to projects, apps, users and data holders (sites). It is

implemented in Django, a Python web framework that offers the functionality for this kind of task,

particularly database abstraction, URL routing and web-related utilities (e.g. JSON serialization,

HTTP abstraction).

D7.2 “App store ready and extendible by developers”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 22 of 36

Figure 12: E/R diagram of the data model in the backend. Grey boxes represent entities, blue

diamonds represent relationships.

The E/R diagram of the data model is shown in figure 12. The global backend allows controlled

access to instances of these entities.

User. Users have an email address and a hashed and salted password allowing them to log in to

the FeatureCloud frontend, which then queries the global backend. In practice, a user is either a

developer who has apps linked to them through the ‘develops’ relation, or an end user. Both,

developers and end users, can add apps to their library (relation ‘has in library’) and manage a site

(relation ‘manages’).

Site. Sites have necessary contact information and represent a data holder location, e.g. a hospital

or academic research institution. Each site needs to run a controller instance (see section 4.2.1) to

participate in projects (relation ‘is part of’). When a site is part of a project, it can either assume the

role of the coordinator or a participant.

Project. Projects encompass a workflow, descriptive information and a set of tokens allowing for

joining a project (see section 3.3.1). Tokens are not modeled explicitly. Instead, the ‘is part of’ table

is used, which can have entries with a token string and where the related site is NULL. Once a site

joins a project, this entry is linked accordingly and can no longer be used by anyone else.

App. Apps are AI applications which appear in the app store. They contain an image name, which

needs to be used when pushing new versions of the app, an icon, a short and long description,

tags, a category and link to the source code. They are linked to a developer through the ‘develops’

relation and workflows they are part of through the ‘is in workflow’ relation.

App Version. New versions of apps are tracked automatically when pushing a new version via

Docker by the developer and are linked to the respective app through the ‘has’ relation.

D7.2 “App store ready and extendible by developers”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 23 of 36

4.2.4 Frontend

The frontend serves as a graphical user interface (GUI) for FeatureCloud users and developers. It

is the only component FeatureCloud users directly interact with. It then calls the API of the

controller or the global backend on behalf of the user, depending on the nature of the task (see

sections 4.2.1 and 4.2.3). Since the frontend needs to be platform-independent, it has been

implemented as a web application running inside a browser. This enforces a clear separation

between GUI-related concerns and backend-related tasks by employing an HTTP-based API, as

described earlier. Angular has been chosen as a web framework due to its high popularity, long-

term support and extensive functionality.

Figure 13: FeatureCloud Frontend. The frontend serves as a GUI for the users and allows

intuitive project management, workflow execution, presentation of apps in the AI store, and many

more.

The GUI is structured into the following sections (accessible through the menu): 1) Account

management, 2) Site management, 3) App management, 4) Project management and 5) App

testing, each divided into subsections again. For more details and walkthroughs, see supplement,

section 1.

4.2.5 AI Store Server

As described in section 3.2.1, the AI store server is connected to the global backend that serves as

an auth server and a Docker registry (see fig. 4). It performs two main tasks: relay queries from the

local Docker engines using the Docker registry API1 and protecting images from unpermitted

access, in particular restricting pushing of images to the respective app developers. For that, the AI

store server provides endpoints to request a JWT token which is then attached automatically by

1 https://docs.docker.com/registry/spec/api/

https://docs.docker.com/registry/spec/api/

D7.2 “App store ready and extendible by developers”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 24 of 36

the Docker CLI to authenticate consecutive actions. App developers need to be FeatureCloud

users and use their FeatureCloud credentials to login. That way, the global backend acting as an

auth server can check whether the user pushing an image is the corresponding app owner.

Like the controller and relay server it is written in Go for performance reasons. App images can be

several GB large and pulling images is a task performed each time before a workflow step is

executed, making performance a critical consideration.

5 Results

This section describes different apps already implemented to show the generic nature of

FeatureCloud and demonstrate its operability.

5.1 FeatureCloud Apps

5.1.1 Linear and Logistic Regression

Linear and logistic regression algorithms are very popular in many fields of science including

bioinformatics and biomedicine due to their simplicity and interpretability 16. The aim of regression

models is to estimate (predict) the relationship between a dependent variable (label or output) and

one or more independent variables (features or predictors). The data is represented as a table in

which rows are the samples and columns are the values of the variables. We use S, X, and Y to

indicate the sample space, feature space, and label space, respectively. Linear regression is used

for quantitative label values, whereas logistic regression predicts the binary (0/1) label values.

Federated linear and logistic regression apps in FeatureCloud are based on their corresponding

implementations in sPLINK 17. The apps implement a horizontal federated learning approach 18–20,

where the sample space is different among the datasets distributed across the clients, but the

datasets share the same feature and label spaces. The federated logistic and linear regression

apps implement the privacy-preserving versions of the Newton-Raphson method for logistic

regression and the ordinary least square method for linear regression. The former algorithm is an

iterative one, while the latter is a single-step algorithm.

In the federated linear regression app, each client i computes two local model parameters from its

local dataset and shares them with the server (coordinator): P1
i=Xi

TXi and P2
i=Xi

TYi, where T is the

transpose matrix operation. The server adds up the local parameters from all clients to compute

global parameters P1
G and P2

G and compute the coefficients (weights) of the model using Beta =

(P1
G)-1 (P2

G), where -1 indicates inverse matrix operation17. The important assumption here is that

the number of features is less than the number of samples, so that the server cannot reconstruct

the data from the model parameters.

In the federated logistic regression, each client i calculates local gradient and Hessian matrices as

well as the log-likelihood value as the local parameters using the following 17:

https://paperpile.com/c/t1a7eF/BJF3M
https://paperpile.com/c/t1a7eF/SNMub
https://paperpile.com/c/t1a7eF/5Vwrz+sflP2+mStgu
https://paperpile.com/c/t1a7eF/SNMub
https://paperpile.com/c/t1a7eF/SNMub

D7.2 “App store ready and extendible by developers”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 25 of 36

The server adds up the local parameter values to compute the corresponding global values. Next, it

updates the coefficient using Betanew = Betaold + H−1∇, where Betaold is the beta values from the

previous iteration, and H and ∇ are the global hessian and gradient matrices, respectively.

It has been proved mathematically and shown empirically that the federated linear and logistic

regression algorithms provide the same results as those from the corresponding centralized

versions 17. Therefore, the regression apps are robust from the accuracy perspective, i.e. they

incur no accuracy loss regardless of the data distribution across the clients (homogeneous or

heterogeneous).

5.1.2 Time-to-Event Analysis

Time-to-event analysis, sometimes called survival analysis, describes a particular type of algorithm

developed to analyse so-called time-to-event data 21. This data includes information about the time

until a certain event happens, e.g. death, and comes with the difficulty that the event often has not

occurred for all samples in the dataset (right-censored samples) during observation time 22. As this

kind of data is often collected in clinical trials 23, an implementation of the most common algorithms

as FeatureCloud apps can help bring together data from different sites, enlarge sample size, and

enhance the quality of the models.

Comparing our results with the implementations of the state-of-the-art survival analysis package

Lifelines, we could show that the results of the federated Kaplan-Meier Estimator and federated

Nelson-Aalen Estimator are equal to the centralized algorithms. Also, the federated logrank test

produces highly similar results and only differs in the seventh decimal place. As the federated

implementation of the Cox proportional hazard model varies slightly from the lifelines

implementation, results are similar to the third decimal place but model quality measured using the

concordance index is still comparable. All algorithms keep the results even with an increasing

number of participants or if the samples are unequally distributed between the clients. A

publication proofing these results will follow next year.

Kaplan-Meier Estimator. The Kaplan-Meier estimator is a statistic to estimate the survival function

of time-to-event data 24. The FeatureCloud Kaplan-Meier Estimator app expects a csv/tsv/sass-file

as input, including a time and an event column (1 event occurred, 0 censored). Optionally, a

category column can be included, which e.g. defines the different treatment arms of a study. If this

is the case, a survival function is estimated for each category separately and subsequently

compared pairwise using the logrank-test statistic to see if they significantly differ in their survival.

https://paperpile.com/c/t1a7eF/SNMub
https://paperpile.com/c/t1a7eF/dwlig
https://paperpile.com/c/t1a7eF/kXh28
https://paperpile.com/c/t1a7eF/bXCYO
https://paperpile.com/c/t1a7eF/m7PDr

D7.2 “App store ready and extendible by developers”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 26 of 36

The results will consist of a CSV table containing the survival function matrix, a plot showing the

survival curves, and, if a category column was included, the p-values of the pairwise logrank-test

statistic.

Nelson-Aalen Estimator. The Nelson-Aalen estimator is a statistic to estimate the cumulative

hazard function of time-to-event data 25. The Nelson-Aalen Estimator FeatureCloud app works in

the same way as the Kaplan-Meier Estimator FeatureCloud app, with the only difference that it

computes the cumulative hazard function instead of the survival function.

Cox Proportional Hazard Model. The Cox proportional hazard model is a regression algorithm for

time-to-event data used to find biomarkers significantly associated with the survival of patients 26,27.

The Cox proportional hazard model expects a csv/tsv/sass-file as input, including a time ad event

column. Furthermore, it expects at least one column containing the numerical values of a

covariate, e.g. age, or blood oxygen level.

The results will consist of a table including statistics such as the coefficient, hazard ratio, and p-

value of each covariate, a plot showing the log hazard ratio of each covariate together with its 95%

confidence intervals, and the c-index of the model.

5.2 Summary

When comparing the conventional, centralized algorithms with their federated versions, their

results can be identical or differ slightly. However, even when they differ, they generally still benefit

from the greater amount of data that can be taken into account. From the algorithms that have

been investigated so far, and this is confirmed by literature, it can be concluded that the federated

approach taken in FeatureCloud is practically feasible and allows for better insights through

incorporating more data.

6 Discussion

The FeatureCloud platform has been developed to an extent in which it can be applied to practical

problems in the area of biomedicine and beyond. It is general enough to allow for a variety of ML

algorithms yet offers pre-built solutions for common use cases, in the form of apps in the AI store

or app templates for developers. The concept of arbitrarily composing apps in a workflow proves to

be challenging due to the necessity of a common data format, which is not always available, or

reduces flexibility. The same applies to the initial data, which needs to be provided in a form

processable and understandable by the desired apps.

Since it is necessary to understand which functionality and which types of data will be used

precisely, which ML techniques prove to be most prevalent in federated settings, and which

challenges arise when using the platform, few assumptions can be made in advance. The

approach FeatureCloud takes is to keep the platform as flexible and extensible as possible and

align new functionality closely to the demand of its users.

The important question is what can be moved from the app developers shoulders to the

FeatureCloud platform (e.g. pre-implemented cryptographic techniques, pre-implemented

https://paperpile.com/c/t1a7eF/HEssG
https://paperpile.com/c/t1a7eF/anw5q+3sS5P

D7.2 “App store ready and extendible by developers”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 27 of 36

communication modes) and what needs to remain in the domain of the apps themselves. This will

be assessed and decided together with the FeatureCloud community, further strategic meetings

within the FeatureCloud consortium and be based on further research outcomes in the area of

privacy-preserving techniques in ML.

7 References

1. Sadat, M. N. et al. SAFETY: Secure gwAs in Federated Environment through a hYbrid

Solution. IEEE/ACM Transactions on Computational Biology and Bioinformatics vol. 16 93–

102 (2019).

2. Hardy, S. et al. Private federated learning on vertically partitioned data via entity resolution

and additively homomorphic encryption. (2017).

3. Li, W. et al. Privacy-Preserving Federated Brain Tumour Segmentation. Machine Learning in

Medical Imaging 133–141 (2019) doi:10.1007/978-3-030-32692-0_16.

4. Li, X. et al. Multi-site fMRI analysis using privacy-preserving federated learning and domain

adaptation: ABIDE results. Medical Image Analysis vol. 65 101765 (2020).

5. Geyer, R. C., Klein, T. & Nabi, M. Differentially Private Federated Learning: A Client Level

Perspective. (2017).

6. Truex, S. et al. A Hybrid Approach to Privacy-Preserving Federated Learning. Proceedings of

the 12th ACM Workshop on Artificial Intelligence and Security - AISec’19 (2019)

doi:10.1145/3338501.3357370.

7. Wei, K. et al. Federated Learning With Differential Privacy: Algorithms and Performance

Analysis. IEEE Transactions on Information Forensics and Security vol. 15 3454–3469 (2020).

8. Raisaro, J. L. et al. MedCo: Enabling Secure and Privacy-Preserving Exploration of Distributed

Clinical and Genomic Data. IEEE/ACM Transactions on Computational Biology and

Bioinformatics vol. 16 1328–1341 (2019).

9. Kim, M., Lee, J., Ohno-Machado, L. & Jiang, X. Secure and Differentially Private Logistic

Regression for Horizontally Distributed Data. IEEE Transactions on Information Forensics and

Security vol. 15 695–710 (2020).

10. Froelicher, D. et al. UnLynx: A Decentralized System for Privacy-Conscious Data Sharing.

Proceedings on Privacy Enhancing Technologies vol. 2017 232–250 (2017).

11. Gazula, H. et al. COINSTAC: Collaborative Informatics and Neuroimaging Suite Toolkit for

Anonymous Computation. Journal of Open Source Software vol. 5 2166 (2020).

12. Beyan, O. et al. Distributed Analytics on Sensitive Medical Data: The Personal Health Train.

Data Intelligence vol. 2 96–107 (2020).

13. Deist, T. M. et al. Distributed learning on 20 000+ lung cancer patients - The Personal Health

Train. Radiother. Oncol. 144, 189–200 (2020).

14. Mittal, S. & Hasija, Y. Applications of Deep Learning in Healthcare and Biomedicine. Studies in

Big Data 57–77 (2020) doi:10.1007/978-3-030-33966-1_4.

15. Silva, S., Altmann, A., Gutman, B. & Lorenzi, M. Fed-BioMed: A General Open-Source

Frontend Framework for Federated Learning in Healthcare. Domain Adaptation and

Representation Transfer, and Distributed and Collaborative Learning 201–210 (2020)

doi:10.1007/978-3-030-60548-3_20.

16. Ren, X., Mi, Z. & Georgopoulos, P. G. Comparison of Machine Learning and Land Use

Regression for fine scale spatiotemporal estimation of ambient air pollution: Modeling ozone

concentrations across the contiguous United States. Environ. Int. 142, 105827 (2020).

http://paperpile.com/b/t1a7eF/1uHF
http://paperpile.com/b/t1a7eF/1uHF
http://paperpile.com/b/t1a7eF/1uHF
http://paperpile.com/b/t1a7eF/1uHF
http://paperpile.com/b/t1a7eF/1uHF
http://paperpile.com/b/t1a7eF/1uHF
http://paperpile.com/b/t1a7eF/1uHF
http://paperpile.com/b/t1a7eF/1OVr
http://paperpile.com/b/t1a7eF/1OVr
http://paperpile.com/b/t1a7eF/1OVr
http://paperpile.com/b/t1a7eF/1OVr
http://paperpile.com/b/t1a7eF/WlSv
http://paperpile.com/b/t1a7eF/WlSv
http://paperpile.com/b/t1a7eF/WlSv
http://paperpile.com/b/t1a7eF/WlSv
http://paperpile.com/b/t1a7eF/WlSv
http://paperpile.com/b/t1a7eF/WlSv
http://dx.doi.org/10.1007/978-3-030-32692-0_16
http://paperpile.com/b/t1a7eF/WlSv
http://paperpile.com/b/t1a7eF/gssX
http://paperpile.com/b/t1a7eF/gssX
http://paperpile.com/b/t1a7eF/gssX
http://paperpile.com/b/t1a7eF/gssX
http://paperpile.com/b/t1a7eF/gssX
http://paperpile.com/b/t1a7eF/gssX
http://paperpile.com/b/t1a7eF/K9xc
http://paperpile.com/b/t1a7eF/K9xc
http://paperpile.com/b/t1a7eF/miAA
http://paperpile.com/b/t1a7eF/miAA
http://paperpile.com/b/t1a7eF/miAA
http://paperpile.com/b/t1a7eF/miAA
http://paperpile.com/b/t1a7eF/miAA
http://paperpile.com/b/t1a7eF/miAA
http://paperpile.com/b/t1a7eF/miAA
http://dx.doi.org/10.1145/3338501.3357370
http://paperpile.com/b/t1a7eF/miAA
http://paperpile.com/b/t1a7eF/lCrX
http://paperpile.com/b/t1a7eF/lCrX
http://paperpile.com/b/t1a7eF/lCrX
http://paperpile.com/b/t1a7eF/lCrX
http://paperpile.com/b/t1a7eF/lCrX
http://paperpile.com/b/t1a7eF/lCrX
http://paperpile.com/b/t1a7eF/blC2
http://paperpile.com/b/t1a7eF/blC2
http://paperpile.com/b/t1a7eF/blC2
http://paperpile.com/b/t1a7eF/blC2
http://paperpile.com/b/t1a7eF/blC2
http://paperpile.com/b/t1a7eF/blC2
http://paperpile.com/b/t1a7eF/blC2
http://paperpile.com/b/t1a7eF/O2Lh
http://paperpile.com/b/t1a7eF/O2Lh
http://paperpile.com/b/t1a7eF/O2Lh
http://paperpile.com/b/t1a7eF/O2Lh
http://paperpile.com/b/t1a7eF/O2Lh
http://paperpile.com/b/t1a7eF/iKOs
http://paperpile.com/b/t1a7eF/iKOs
http://paperpile.com/b/t1a7eF/iKOs
http://paperpile.com/b/t1a7eF/iKOs
http://paperpile.com/b/t1a7eF/iKOs
http://paperpile.com/b/t1a7eF/iKOs
http://paperpile.com/b/t1a7eF/sSJR
http://paperpile.com/b/t1a7eF/sSJR
http://paperpile.com/b/t1a7eF/sSJR
http://paperpile.com/b/t1a7eF/sSJR
http://paperpile.com/b/t1a7eF/sSJR
http://paperpile.com/b/t1a7eF/sSJR
http://paperpile.com/b/t1a7eF/KIkQ
http://paperpile.com/b/t1a7eF/KIkQ
http://paperpile.com/b/t1a7eF/KIkQ
http://paperpile.com/b/t1a7eF/KIkQ
http://paperpile.com/b/t1a7eF/KIkQ
http://paperpile.com/b/t1a7eF/KIkQ
http://paperpile.com/b/t1a7eF/N7Aa
http://paperpile.com/b/t1a7eF/N7Aa
http://paperpile.com/b/t1a7eF/N7Aa
http://paperpile.com/b/t1a7eF/N7Aa
http://paperpile.com/b/t1a7eF/N7Aa
http://paperpile.com/b/t1a7eF/N7Aa
http://paperpile.com/b/t1a7eF/N7Aa
http://paperpile.com/b/t1a7eF/N7Aa
http://paperpile.com/b/t1a7eF/xc2o
http://paperpile.com/b/t1a7eF/xc2o
http://paperpile.com/b/t1a7eF/xc2o
http://paperpile.com/b/t1a7eF/xc2o
http://dx.doi.org/10.1007/978-3-030-33966-1_4
http://paperpile.com/b/t1a7eF/xc2o
http://paperpile.com/b/t1a7eF/VK9K
http://paperpile.com/b/t1a7eF/VK9K
http://paperpile.com/b/t1a7eF/VK9K
http://paperpile.com/b/t1a7eF/VK9K
http://paperpile.com/b/t1a7eF/VK9K
http://paperpile.com/b/t1a7eF/VK9K
http://dx.doi.org/10.1007/978-3-030-60548-3_20
http://paperpile.com/b/t1a7eF/VK9K
http://paperpile.com/b/t1a7eF/BJF3M
http://paperpile.com/b/t1a7eF/BJF3M
http://paperpile.com/b/t1a7eF/BJF3M
http://paperpile.com/b/t1a7eF/BJF3M
http://paperpile.com/b/t1a7eF/BJF3M
http://paperpile.com/b/t1a7eF/BJF3M
http://paperpile.com/b/t1a7eF/BJF3M

D7.2 “App store ready and extendible by developers”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 28 of 36

17. Nasirigerdeh, R. et al. sPLINK: A Federated, Privacy-Preserving Tool as a Robust Alternative

to Meta-Analysis in Genome-Wide Association Studies. doi:10.1101/2020.06.05.136382.

18. Konečný, J. et al. Federated Learning: Strategies for Improving Communication Efficiency.

(2016).

19. Yang, Q., Liu, Y., Chen, T. & Tong, Y. Federated Machine Learning. ACM Transactions on

Intelligent Systems and Technology vol. 10 1–19 (2019).

20. Torkzadehmahani, R. et al. Privacy-preserving Artificial Intelligence Techniques in

Biomedicine. (2020).

21. Altman, D. G. & Bland, J. M. Time to event (survival) data. BMJ 317, 468–469 (1998).

22. Prinja, S., Gupta, N. & Verma, R. Censoring in clinical trials: review of survival analysis

techniques. Indian J. Community Med. 35, 217–221 (2010).

23. Singh, R. & Mukhopadhyay, K. Survival analysis in clinical trials: Basics and must know areas.

Perspect. Clin. Res. 2, 145–148 (2011).

24. Kaplan, E. L. & Meier, P. Nonparametric Estimation from Incomplete Observations. Springer

Series in Statistics 319–337 (1992) doi:10.1007/978-1-4612-4380-9_25.

25. Aalen, O. Nonparametric Inference for a Family of Counting Processes. The Annals of

Statistics vol. 6 701–726 (1978).

26. Cox, D. R. Regression Models and Life-Tables. Journal of the Royal Statistical Society: Series

B (Methodological) vol. 34 187–202 (1972).

27. Tibshirani, R. THE LASSO METHOD FOR VARIABLE SELECTION IN THE COX MODEL.

Statistics in Medicine vol. 16 385–395 (1997).

http://paperpile.com/b/t1a7eF/SNMub
http://paperpile.com/b/t1a7eF/SNMub
http://paperpile.com/b/t1a7eF/SNMub
http://paperpile.com/b/t1a7eF/SNMub
http://dx.doi.org/10.1101/2020.06.05.136382
http://paperpile.com/b/t1a7eF/SNMub
http://paperpile.com/b/t1a7eF/5Vwrz
http://paperpile.com/b/t1a7eF/5Vwrz
http://paperpile.com/b/t1a7eF/5Vwrz
http://paperpile.com/b/t1a7eF/5Vwrz
http://paperpile.com/b/t1a7eF/sflP2
http://paperpile.com/b/t1a7eF/sflP2
http://paperpile.com/b/t1a7eF/sflP2
http://paperpile.com/b/t1a7eF/sflP2
http://paperpile.com/b/t1a7eF/mStgu
http://paperpile.com/b/t1a7eF/mStgu
http://paperpile.com/b/t1a7eF/mStgu
http://paperpile.com/b/t1a7eF/mStgu
http://paperpile.com/b/t1a7eF/dwlig
http://paperpile.com/b/t1a7eF/dwlig
http://paperpile.com/b/t1a7eF/dwlig
http://paperpile.com/b/t1a7eF/dwlig
http://paperpile.com/b/t1a7eF/dwlig
http://paperpile.com/b/t1a7eF/kXh28
http://paperpile.com/b/t1a7eF/kXh28
http://paperpile.com/b/t1a7eF/kXh28
http://paperpile.com/b/t1a7eF/kXh28
http://paperpile.com/b/t1a7eF/kXh28
http://paperpile.com/b/t1a7eF/kXh28
http://paperpile.com/b/t1a7eF/bXCYO
http://paperpile.com/b/t1a7eF/bXCYO
http://paperpile.com/b/t1a7eF/bXCYO
http://paperpile.com/b/t1a7eF/bXCYO
http://paperpile.com/b/t1a7eF/bXCYO
http://paperpile.com/b/t1a7eF/bXCYO
http://paperpile.com/b/t1a7eF/m7PDr
http://paperpile.com/b/t1a7eF/m7PDr
http://paperpile.com/b/t1a7eF/m7PDr
http://paperpile.com/b/t1a7eF/m7PDr
http://dx.doi.org/10.1007/978-1-4612-4380-9_25
http://paperpile.com/b/t1a7eF/m7PDr
http://paperpile.com/b/t1a7eF/HEssG
http://paperpile.com/b/t1a7eF/HEssG
http://paperpile.com/b/t1a7eF/HEssG
http://paperpile.com/b/t1a7eF/HEssG
http://paperpile.com/b/t1a7eF/anw5q
http://paperpile.com/b/t1a7eF/anw5q
http://paperpile.com/b/t1a7eF/anw5q
http://paperpile.com/b/t1a7eF/anw5q
http://paperpile.com/b/t1a7eF/3sS5P
http://paperpile.com/b/t1a7eF/3sS5P
http://paperpile.com/b/t1a7eF/3sS5P
http://paperpile.com/b/t1a7eF/3sS5P

D7.2 “App store ready and extendible by developers”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 29 of 36

D) Table of Acronyms and Definitions

AI Artificial intelligence

API Application programming interface

CLI Command line interface

CI/CD Continuous integration / continuous deployment

concentris concentris research management GmbH

CSS Cascading style sheets

CSV Comma-separated values

DL Deep learning

DP Differential privacy

E/R Entity/relationship

GDPR General Data Protection Regulation

GND Gnome Design SRL

GUI Graphical user interface

HE Homomorphic encryption

HTML Hypertext markup language

HTTP Hypertext transfer protocol

HTTPS Hypertext transfer protocol (secure)

IP Internet protocol

JSON JavaScript object notation

JWT JSON web token

ML Machine learning

MR Merge request

MS Milestone

MUG Medizinische Universitaet Graz

Patients In this deliverable, we use the term “patients” for all research subjects. In
FeatureCloud, we will focus on patients, as this is already the most vulnerable
case scenario and this is where most primary data is available to us. Admittedly,
some research subjects participate in clinical trials but not as patients but as
healthy individuals, usually on a voluntary basis and are therefore not dependent
on the physicians who care for them. Thus to increase readability, we simply
refer to them as “patients”.

RF Random forest

SDU Syddansk Universitet

SMPC Secure multiparty computation

SSH Secure shell

SSL Secure sockets layer

SVM Support vector machine

TCP Transmission control protocol

TUM Technische Universitaet Muenchen

WP Work package

D7.2 “App store ready and extendible by developers”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 30 of 36

E) Other Supporting Documents, Figures and Tables

1 Demo and Manual

A running version of the FeatureCloud platform can be found here:

https://staging.featurecloud.eu

A user manual, largely in the form of tutorial and demo videos, can be found on this subpage:

https://staging.featurecloud.eu/manual

The staging area is a replica of the public production area which will be made public upon release

of the platform. It offers the same functionality and is used for manual testing.

2 Manual for App Developers

2.1 Introduction

To be executable on the FeatureCloud platform, a federated app must implement the

FeatureCloud API. The API is designed in a generic way, it puts minimal constraints on the actual

implementation of the app, so any kind algorithm can be implemented. The app must be able to act

both as coordinator or participant. This is needed because the same app is downloaded by the

platform to all participant sites, and the app's role (coordinator or participant) is provided by the

platform at setup.

2.2 FeatureCloud API

A federated app should act as a web server polled by the FeatureCloud platform, so implementing

the FeatureCloud API basically means implementing a web server that handles the following

requests.

POST /setup

When the participants are ready to start the federated execution (they are connected and prepared

the input data) the platform will send the setup request. This is the starting point of the federated

execution, the app can use it as a trigger to start the computation based on it's local data.

The request body contains the following information:

● id (string): the app instance identifier, determined by the platform

● master (boolean): this value specifies the role of the app instance: true for coordinator, false

for participant

● clients (array of string): contains the identifiers of all participants

Example of setup data for a coordinator, when there are 3 participants in total:

{

 id: "0"

 master: true

https://staging.featurecloud.eu/
https://staging.featurecloud.eu/manual

D7.2 “App store ready and extendible by developers”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 31 of 36

 clients: ["0", "1", "2"]

}

GET /status

With the response to this request the federated app reports its current status. The app indicates if

there is data to be transferred to the coordinator or if the execution of the app is finished.

The response should contain the following information:

● available (boolean): true if there is data to be transferred, otherwise false.

● finished (boolean): true if the app execution finished, otherwise false.

● size (int, optional): This value can be used to indicate the size of the data that will be

transferred.

Example:

{

 available: true

 finished: false

 size: 16

}

GET /data

Using this API call apps can transfer data to the platform.

The response body should contain the data to be transferred. If size was specified in the /status

response, the platform will check if the content length matches the size value.

The platform reads the data and redirects in the following way, depending on the sender:

- if the data is coming from a participant, it will be redirected to the coordinator

- if the data is coming from a coordinator, it will be broadcast to all other participants.

POST /data

Using this API call the platform transfers data to the app. The request body should contain the data

to be transferred. The app should handle/consider the received data in the following way,

depending on their role:

● If the receiver is a coordinator, the data is a packet from a participant (the ID of the sender

is provided as a GET parameter ‘client’, e.g. /data?client=1)

● If the receiver is a participant, the data is a broadcast message from the coordinator

Besides implementing the above defined API, a federated optionally can have its own GUI, which

is displayed by the FeatureCloud platform. The GUI is served by the app’s web server, but it’s

implementation is fully up to the app developer.

D7.2 “App store ready and extendible by developers”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 32 of 36

2.3 App templates

In general, you can develop FeatureCloud apps in any programming language and framework you

want, as long as the API is addressed correctly. However, to make it as easy as possible, we

already provide templates shipped with the essential features to efficiently develop an app.

Example: Python Template

Our Python template includes a Flask web server. The main directory contains the following files

that might need changes:

● .gitignore: Add files and folders that should not be uploaded to the git repository

● README.md: Describe your app

● build.sh: Used to build your docker image. Here you can decide how your image shall be

named

● requirements.txt: Used to install all python packages that are needed for your app. Add all

requirements here.

When your app is ready to get tested, run the build.sh to create a docker image that subsequently

can be tested in the Feature Cloud Testing Environment. The actual app development happens in

the fc_app, more precisely in the api.py and web.py file. We recommend outsourcing the logic of

your algorithm into a separate file, e.g., algorithm_name.py.

api.py

In the api.py file, the basic API methods (status, data, setup and retrieve_setup_parameters) for
Feature Cloud are implemented and can be extended to fulfill your algorithm's requirements. All
crucial variables should be stored in Redis to be used between the api.py and web.py files. They
can be set using the redis_set() method and read using the redis_get() method. Important,
predefined variables are:

● available: true if data is available for sharing with the coordinator, else false

● is_coordinator: true if the client is the coordinator of the analysis., else false

● finished: true if the computation is done, else false. After set to true, the server will end the

analysis.

● nr_clients: Number of clients participating in the analysis.

STEPS should be defined to structure the process of your app. Especially after the setup, different

kinds of data need to be exchanged during the analysis. By defining different steps, you can

distinguish what data will be exchanged in the data call. You can set the current step using the

set_step() method. The get_step() method will give you the current step.

Requesting data. The data() method is probably the most crucial in your app development. With

the POST request, clients can pull global data from the coordinator, or the coordinator can pull

data from the clients. With the GET request, clients can send data to the coordinator, or the

coordinator can broadcast data to the clients. Depending on the step, different data can be

exchanged between clients and the coordinator.

D7.2 “App store ready and extendible by developers”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 33 of 36

Reading the input. Input files are always located at the directory "/mnt/input/". You can either

directly use the files from there (e.g., if there is only one possibility for a file) or implement a file

selector in the frontend (web.py).

Writing the output. All result files need to be saved in the "/mnt/output" directory before the

coordinator's finished flag is set. The storage of the results in this directory is essential for the user

to download the results or continue with them in the next workflow step. You can also store

intermediate results that might be interesting for the users to have.

Finishing the analysis. As soon as the coordinator has computed the final global result, the

analysis can be finished. Therefore, the coordinator's finished flag needs to be set

(redis_set('finished', true)).

web.py

In contrast to the api.py file, the web.py should contain no app logic itself. It is responsible for the

app frontend and has access to all Redis variables set in api.py. It should know about the app's

STEPS and show the corresponding frontend for each step. You are entirely free in what you offer

in the frontend. Sometimes no frontend is needed at all, but in other cases, a loading screen or

even a whole frontend with user input is necessary.

Showing different frontend pages. To show different frontend pages, use if-else in the root()

method to distinguish between the various steps and return the corresponding HTML page stored

in the templates folder with return render_template('test.html').

Example mean app. We also provide an extensive example of a Feature Cloud Mean App

(https://github.com/FeatureCloud/mean_template).

https://github.com/FeatureCloud/mean_template

D7.2 “App store ready and extendible by developers”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 34 of 36

3 Workflow Sequence Diagram

D7.2 “App store ready and extendible by developers”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 35 of 36

Figure S.1: Sequence diagram of the workflow execution. Purple arrows represent binary data

traffic, blue arrows HTTP traffic and black arrows are trigger events.

Traffic involving the relay server generally contains model parameters that might be harmless for

single workflow runs. However, if put together and collected over multiple workflows, one might be

able to infer information about the local data. Therefore, it is split from the global backend which is

centralized to allow for project management involving all FeatureCloud users and data holders.

The global backend however only contains meta information which is unrelated to the sensitive

data stored at the data holder sites (see also E/R diagram in fig. 12).

4 Development Process

As described in section 2.1.2, FeatureCloud focuses on robustness and convenience for

developers and plays a major role in the whole development process. This affects requirements

management and integration of requirements into the development process as well as maintaining

a high level of code quality and robustness of the system. We use SCRUM as a development

process framework with sprints of 2 weeks.

4.1 Requirements and SCRUM

Requirements are collected from all stakeholders of the FeatureCloud project, of which we

identified the following:

● App developers

● Hospital IT personnel

● Patients

● Medical doctors/researchers

● Platform developers

Up until now, due to the set of features required for the first stage, we mainly considered app

developers, researchers and platform developers as stakeholders. Patient consent management

and frontends for patients are due at a later stage.

All requirements, parts of which have been reported in deliverable 7.1, revised version (as of now

not officially accepted yet), are tracked as GitLab issues, marked with a ‘user story’ label to

distinguish them from lower-level, development-related tasks. These high-level user stories are

regularly discussed in biweekly review meetings, where all developers and users of the platform

can take part, currently mainly within the consortium.

User stories are broken down into tasks and discussed during the sprint planning meetings, which

take place at the beginning of each sprint. However, fixes for bugs that are reported can be

injected into the sprint at any time. During the sprint, the platform developers (currently 4 from TUM

and 2 from GND) meet 3 times per week to discuss the latest progress and coordinate

development. A figure illustrating the development process also has been reported in Fig. 1 of

deliverable 7.1 mentioned above.

D7.2 “App store ready and extendible by developers”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 36 of 36

4.2 Testing, Linting and CI/CD

Maintaining a high level of code quality first and foremost requires a high level of discipline by the

developers. The following process, which is usual for agile development, is maintained in

FeatureCloud:

● Every change to the code is made in a separate branch

● When done, the branch is turned into a merge request and needs to be reviewed by

another developer

Both of these requirements can be enforced in GitLab.

On top of that, a series of automated measures are taken to detect bugs early and ensure that

important functions of the system are working:

● Automated builds

● Automated tests (unit tests, end-to-end tests)

To make sure that the software is tested can be enforced automatically. Therefore, a test coverage

of over 90% needs to be met.

To increase code quality, linting is used for both frontend and backend:

● Frontend: tslint with strict ruleset enabled (including enforced typing, e.g. no any type)

● Backend: flake8 and pycodestyle

Figure S.2 shows the frontend pipeline containing all the above mentioned steps. It needs to run

through without errors (except for the ‘Deploy’ stage) before a merge request can be merged.

Figure S.2. Frontend pipeline. The production deployment step needs to be triggered manually,

staging is being deployed automatically after a MR has been merged into the master branch.

When a merge request (MR) has been merged into master, a Docker container is built

automatically from the code and pushed to a private registry. The staging deployment detects a

new version of the frontend image, pulls it and restarts the container without further user

interaction. This way continuous deployment is achieved.

