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ABSTRACT
Federated Learning has recently gained attraction as a means to
analyze datawithout having to centralize it from initially distributed
data sources. Generally, this is achieved by only exchanging and
aggregating the parameters of the locally learned models. This
enables better handling of sensitive data, e.g. of individuals, or
business related content. Applications can further benefit from
the distributed nature of the learning by using multiple computer
resources, and eliminating network communication overhead.

Adversarial Machine Learning in general deals with attacks on
the learning process, and backdoor attacks are one specific attack
that tries to break the integrity of a model by manipulating the
behavior on certain inputs. Recent work has shown that despite the
benefits of Federated Learning, the distributed setting also opens
up new attack vectors for adversaries. In this paper, we thus specif-
ically study this manipulation of the training process to embed a
backdoor on the example of a dataset for traffic sign classification.
Extending earlier work, we specifically include the setting of se-
quential learning, in additional to parallel averaging, and perform
a broad analysis on a number of different settings.

CCS CONCEPTS
• Security andprivacy→Distributed systems security; •Com-
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1 INTRODUCTION AND RELATEDWORK
Federated learning is the process of decentralizing the training of
machine learning models. Rather than centralizing all data on a
big endpoint, models are learned locally at endpoints. Federated
learning is appealing specifically in settings when the data is already
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distributed in various computing nodes, when it was gathered or
collected there. The reason for performing this type of learning
can be manifold, but frequently, reasons of data confidentiality are
a motivation – as data does not need to be exchanged, and the
information contained in the exchanged models is already highly
abstracted, it promises to solve several of the issues commonly
associated with individual or otherwise sensitive data. The medical
domain is e.g. a candidate for such settings, and studies have shown
that e.g. the federated analysis of medical image data is comparable
to centralized settings[7].

In federated settings, data can be partitioned either vertically,
where each node gathers different features for the same observa-
tions, or horizontally, where each node has different observations,
described by the same features[10]. In this work, we focus on the
latter setting. The global model is often obtained by two different
approaches. Parallel averaging[6] trains models at each node in
parallel, before aggregation by a central coordinator. In sequential
learning, sometimes called cyclic incremental learning, on the other
hand, the model is passed from one node to the other, and the sub-
sequent node continuous training from the state the previous node
has ended training in. This is performed in a number of cycles.

Adversarial Machine Learning has recently gained attention, as a
field concerned with the security of the machine learning process.
Attacks can often be categorized to address the confidentiality, in-
tegrity, or availability, and be either performed during the training
or prediction phase of the process[3]. Prominent attacks include e.g.
adversarial examples, which are a prediction-time evasion attack, or
poisoning attacks, which aim at creating a backdoor in that model
during the training time, e.g. in deep neural networks[5]. Both at-
tacks aim at influencing the integrity. Adversarial examples try to
create a minute perturbation of an original, legitimate input. This
is ideally not noticeable by a human observer, but tricks the classi-
fication model in assuming, with high confidence, a different class.
Poisoning attacks inject a number of carefully modified samples to
the training set. These samples contain a key that is a trigger for a
specific (wrong) class to be predicted. The goal of the attacker is
that the trained network memorizes these keys, and can thus be
activated on demand by embedding the key in a target sample. The
pattern may even be noticeable, but not suspicious – e.g. a sticker
on a traffic sign, a person wearing a specific type of glasses, etc.

Recent work has studied the vulnerabilities of Federated Learn-
ing against a number of these attacks, e.g. against the model confi-
dentiality, by trying to infer information about the samples used for
training the models[8]. Poisoning attacks have been investigated,
e.g. in [1]. As federated learning is a distributed system, infiltrating
a single computation node might be easier for an attacker than a
centralized system, especially if some of the participating nodes
are not well protected.
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Figure 1: Accuracy comparison of sequential and parallel
learning, with 20% malicious nodes

In this paper, we focus on poisoning attacks, and perform an
evaluation of the possibilities to create a backdoor in federated
learning settings. We utilize a dataset that has not yet been stud-
ied in adversarial, federated settings, specifically from the image
categorization domain, with the task to classify traffic signs.

We contribute to current research by analyzing and comparing
both parallel averaging as well as sequential federated learning.
While previous work has focused on parallel averaging, sequential
learning can be exploited in different ways by adversaries. Further,
we extend earlier work by an in-depth evaluation on a variety of
parameters that have not been considered previously.

2 DATASET AND EXPERIMENT SETUP
For our experiments, we utilize the European Traffic Signs dataset,
[4], which combines some existing benchmark sets with new ad-
ditions from other countries. The task is to correctly classify the
traffic sign depicted in the image. As our model we chose to a con-
volutional neural network, based on recommendations from [4].
The hyper-parameters were chosen by running the classification
task in a centralized setting, i.e. with all data in one node.

For the federated learning, we test several different settings: the
merge strategy (parallel or sequential averaging), the number of
nodes (from two to 20), and the batch size (in steps of 8, 32, 64) .

Regarding the attack, we vary the proportion of adversarial
nodes, as well as, if applicable, the sequence when they are con-
tributing to the learning (at the beginning or the end of one cycle).
Further, two different strategies are utilized for influencing the final
model – a basic strategy, which just returns the model learned by
the malicious node, and a model replacement strategy[2], which
aims at boosting the influence of the backdoor nodes by increasing
their weights, to achieve a larger influence in the final model.

3 EVALUATION
In Figure 1, the basic strategy for model learning is used both on
sequential training and federated averaging. The x-axis corresponds
to the number of epoch, and the y-axis corresponds to the accuracy
on the test-set. The accuracy on the benign test-set reaches high
results in both cases (the difference in how fast that is achieved
might be a result of a bigger learning rate on federated averaging).

Figure 2: Effectiveness at different fractions of malicious
nodes (p)

However, the more interesting observation is that when feder-
ated (parallel) averaging is used, the backdoor is not successfully
implemented: the accuracy does not increase in this case, and is
below 10% for all number of epochs. The loss on the benign set
correctly decreases during training in both sequential training and
federated averaging, while the loss of the malicious test-set using
federated learning even increases. This inability to introduce a back-
door into the combined model on federated averaging using the
basic attack strategy also corresponds to the observations made by
[1]. When applying the model replacement strategy, the backdoor
is more successfully embedded into the model.

For centralized learning, one parameter is the percentage of
poisoned images used to install the backdoor (p%). With a still
rather small percentage, a high effectiveness of the backdoor can
already be achieved – up to 95% effectiveness of the backdoor with
10-20% poisoned samples[9]. We further vary the percentage of
malicious nodes in the federation, with p between 5% and 20% (cf.
Figure 2). All settings lead to a high accuracy of over 99% on test-
data containing backdoor images, while also achieving an accuracy
of over 95% on the benign test data, after 100 training epochs.

Extending the setting above, we keep the number of benign and
malicious clients constant, but only change the proportion of benign
and malicious samples in each malicious client. Bagdasaryan et.
al. [1] do not test the influence of this relation, but keep this ratio
constant (at 44 benign samples and 20 malicious samples in each
batch of the malicious clients). The results are depicted in Figure 3.
We can observe that while a larger setting of poisoned data delays
the convergence on the benign data set, the backdoor can be very
effective already with a lower number of backdoored samples.

While literature often follows an approach to first train a net-
work with the benign samples, and then to install the backdoor
by training with the poisoned samples (e.g.[5, 9]), we identify that
for the sequential training, the order of the malicious nodes in the
training sequence is of importance. The later in the training process,
the fewer non-adversarial nodes have the ability to decrease the
effectiveness of the backdoor by overwriting the model towards one
focusing on benign images. We thus evaluate this setting, depicted
in Figure 4, showing the extreme cases of being either first or last
in the training process. While the adversary coming last results



(a) Performance on benign test data (b) Backdoor performance on poisoned data

Figure 3: Effect of different ratio of benign and p% poisoned data (with a total of four benign and one malicious node)

Figure 4: Performance of benign and malicious test set with
different order of training on the poisoned data

in the backdoor being immediately effective, and the accuracy of
the benign test set slowly increasing, until it reaches approx. 95%
accuracy. For the other case, the adversary training first, the benign
test set is very quickly reaching high accuracy level, but the back-
door takes a longer time to become at effective at all. Eventually,
after a long enough training time, both scenarios converge to a
similar state. The reason for this behavior is the training process,
where especially in the first iterations of the training, when the
network is far from a converged state, the most recent adaptions of
the weights of the neurons have the highest influence, and lead to
either the backdoor being very prominent, or mostly overwritten
by the benign data.

4 CONCLUSIONS AND FUTUREWORK
In this paper, we evaluated the effectiveness of poisoning attacks
in a federated learning setting, on a image categorization task. We
distinguish two scenarios of federation: parallel averaging, and
sequential (incremental) learning. We are able to confirm that feder-
ated settings are vulnerable to adversaries, and that it is possible to
install backdoors in federated learning of a traffic sign classification.
We observed differences in the effectiveness of federated averaging

and sequential learning, and analyzed the effect of the order in the
sequence an attacker is contributing to the learning.

It should be noted that in general, the required level of effective-
ness of the backdoor depends on the attack scenario – to break a
face authentication system, the attack should work with a high ac-
curacy. In other settings, also a lower effectiveness might eventually
lead to the attackers goal.

Future work will focus on confirming our results in different
domains, detecting poisoning attacks in the federated setting, as
well as designing mitigation and defense strategies.
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