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1. Objectives of the deliverable based on the Description of Action 
(DoA)  

The objective was to develop a federated clustering pipeline able to perform pre-processing and 
clustering of distributed datasets. Instead of aggregating all potentially sensitive data on one site, 
model training will be performed solely by exchanging model parameters. Unequal distribution and 
lack of data or clusters on specific sites are a particular problem in biomedical data and the stability 
of the algorithm in those situations will be analyzed. The cluster pipeline will be completed and 
validated based on cluster-validity indices able to access cluster results in a federated fashion. The 
software developed will be integrated into the FeatureCloud platform to ensure usability and also 
integration for potential integration into supervised downstream analysis.  
 
Task 1: Federated Clustering (SDU, TUM, MUG): 
We will implement an entire federated clustering pipeline. In order to perform the pre-processing of 
heterogeneous distributed datasets, SDU will develop data projection methods with spiked-in 
artificial data points to ensure the same alignment and normalization of all parts of the distributed 
datasets without the exchange of the actual data. For the clustering, SDU will develop model-based 
methods that require only the transfer of the model parameters to construct an overall model capable 
of clustering the dataset. A particular focus will be on dealing with incomplete or missing data, which 
is a common phenomenon in biomedical datasets. To complete the clustering pipeline and to fine-
tune the clustering, so-called cluster-validity indices are required. Here, SDU will also develop model-
based approaches enabling the quality assessment of the cluster results in a federated fashion and 
guide the user towards potential improvements of the cluster quality. All software developed here 
must be tightly integrated into the overall platform (WP7, TUM) and might also serve as input for 
supervised downstream analysis (WP4, MUG). Adequate coordination efforts will be carried out in 
order to ensure seamless integration. 
 
MS31 Implementation of federated pre-processing methods 
MS32 Implementation of federated clustering methods 
MS33 Implementation of federated cluster evaluation methods & completion of the clustering 
pipeline 
 

2. Executive Summary  
In recent years, the amount of data delivered by novel biomedical techniques, such as high 
throughput sequencing (HTS), has led to a constant increase in available data. At the same time, 
the definition of diseases is shifting towards more mechanistic (Baumbach and Schmidt, 2018) 
approaches. Unsupervised learning methods have been extensively used in order to reveal 
previously unknown structures within the data (e.g., groups of similar patients). Here, we present a 
federated pipeline covering all steps of an unsupervised analysis:  

1. Pre-Processing: Principal Component Analysis 
2. Clustering: k-means; Expectation Maximization (EM) 
3. Cluster-Validity:  Mean Square Error (MSE) 

 
For the principal component analysis (PCA), we illustrate its application in genome-wide association 
studies (GWAS), where it is utilized for patient stratification. Our implementation shares only the 
‘feature’ eigenvector (which only contains aggregated statistics), compared to other methods that 
exchange the full sample eigenvector with one entry per patient. Furthermore, we demonstrate the 
applicability of horizontally applied PCA on high-dimensional biomedical data. Here, we conclude 
that more extensive communication (and therefore a more precise algorithm) should be 
recommended in the medical sector. The second step in the pipeline is based on federated k-means 
and EM clustering. Here, we investigated a variety of existing k-means methods and their potential 
advancement in non-iid settings. Finally, we illustrate the advantages of our accurate EM clustering 
implementation compared to k-means concerning different cluster structures and distances. 

https://paperpile.com/c/ji285a/5p9AR
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3. Introduction (Challenge) 
Clustering is an unsupervised machine learning (ML) approach aiming to find an optimal dataset 
partition concerning the chosen optimization criterion. A large proportion of existing clustering 
algorithms are designed to minimize (maximize) the distance (similarity) of the samples grouped 
while maximizing the distance between groups. Internal or external clustering validation measures 
can assess the quality of clustering. The former evaluate quality based on the optimization criterion, 
while external measures require a gold standard. As by definition of unsupervised ML, the labels and 
thereby the correct grouping is unknown, making internal quality measures particularly interesting 
but also challenging. Additional challenges for clustering are the curse of dimensionality (d >> n) 
since, especially for biomedical data, the number of features is always much larger than the number 
of available samples. In particular, Minkowski distances (such as the Euclidean distance) are 
rendered useless due to the concentration or compression effect in high dimensions, meaning all 
distances converge to one fixed distance (Jonathan et al., 1999). Different clustering approaches 
have been designed that are performing quite differently depending on the cluster form and structure. 
Although the intuition is clear in a two-dimensional space, the behavior might differ with increasing 
dimensions. Further challenges arise by the number of clusters k and the parameter choice, 
depending on the algorithm. For some methods, such as k-means (MacQueen and Others, 1967), 
the choice of starting points might have a significant influence on the outcome, leading to a variety 
of different clustering results. 
 
Federated Clustering 
 
We aim to apply and develop algorithms with a specific focus on biomedical datasets, and we are 
primarily interested in horizontal federated learning (Yang et al., 2019). Hereby, the computing 
parties share a common set of features while samples are distinct. Sample information is considered 
private, e.g., the information exchanged between sites may not reveal any information about a 
specific sample.  
The federated approach leads to additional challenges related to privacy: The computation of 
distance measures such as Euclidean or Manhattan distance for example, is highly challenging as 
they require a pairwise computation across samples. Other problems are connected to the 
distribution of samples across sites. In the most extreme case, clusters might be missing in one of 
the contributors’ datasets due to a lack of samples. Depending on the algorithm, this might lead to 
distortion when assigning samples to a specific cluster. Widely known issues when applying any 
machine learning method to biomedical data are batch effects. Non-biological factors, such as 
laboratory conditions, lead to an overall shift or rotation in the data and have a tremendous influence 
on the clustering results. 
 
 

4. Methodology 
As emphasized in the introduction, clustering and especially federated clustering comes with a 
variety of challenges. Additionally, the amount of methods available (distance measures, clustering 
methods, quality measures) is excessive. In this work, we aim to focus on the effects of the federation 
on clustering algorithms and aim to highlight federation-related problems and suggested solutions. 
Therefore, we focus on well-established and understood methods for the pre-processing and 
clustering in order to ensure accessible and interpretable results: 
 

1. Principal Component Analysis for pre processing 
2. k-means Clustering 
3. Expectation Maximization Clustering 

 
In the framework of this work package, other federated pre-processing methods like the quantile 
normalization have been developed, but since they can be computed exactly even when federated, 

https://paperpile.com/c/ji285a/mfuV
https://paperpile.com/c/ji285a/mfuV
https://paperpile.com/c/ji285a/mfuV
https://paperpile.com/c/ji285a/VAA7
https://paperpile.com/c/ji285a/gw7J
https://paperpile.com/c/ji285a/gw7J
https://paperpile.com/c/ji285a/gw7J
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the effects of the federation cannot be investigated. This section will shortly present the methodology 
applied in the three algorithms that we have implemented. 
The pipeline includes a reduction of the feature space based on the PCA, the possibility to remove 
outliers based on the PCA in a manual or automated fashion, clustering by k-means, which allows 
for spherical clusters, and a logical initial starting point for the EM clustering that allows for varying 
cluster shapes following arbitrary Gaussian distributions.  
 
Federated Computing and Distributed Data 
 
In federated learning, data can be distributed horizontally or vertically. Horizontal data distribution 
refers to the case where every hospital or data center has a subset of individuals but all variables for 
the patients. Vertical data distribution refers to the case where all patients are available at all 
hospitals, but only a subset of variables is available at each data center. This could, for instance, be 
the case if one hospital has a blood chart and another hospital has an MRI scan. 
 
In the following report, we assume the data D to be distributed as distinct subsets D1, …, Ds, where 
Ds = ns x d distributed across s contributing computational parties (e.g., hospitals). Each site s is 
contributing with ns samples that are only present at one side, where all share the same set of d 
features. The algorithms implemented are based on the FeatureCloud platform that is based on a 
star-like architecture, where every contributor performs local computations on Ds and shares only 
aggregated parameters with the central server. This server (or aggregator) then computes the global 
aggregation and shares the results with all contributing parties.  
 
 

4.1 Principal Component Analysis  
 
A principal component analysis (Pearson, 1901) is aiming to orthogonally transform a set of 
observations of correlated variables into a set of linearly independent variables, called principal 
components. The first principal component (PC) captures the axis with the highest variance, and the 
nth PC is orthogonal to all n-1st. The eigenvalues code for the amount of variability explained by the 
respective PC. 
 

Mathematically, PCA is the eigendecomposition of the covariance matrix 𝑀 = 𝐴𝑇𝐴 into a set of 

mutually orthogonal vectors 𝑀 = 𝑈𝐸𝑈𝑇, where 𝑈is the eigenvector scaled to the unit norm and E is 
the matrix containing the eigenvalues on the diagonal and A is the dataset. The principal components 
are the projection of the data onto the leading eigenvectors.𝑃𝐶 = 𝐴𝑈. In the centralized case, this 
can either be done as described at the expense of calculating the covariance matrix. Alternatively, 
one can use singular value decomposition via power iteration, which avoids computing the 

covariance matrix and is as accurate and decomposes the matrix 𝐴 = 𝑈𝐸𝑉𝑇(Halko, Martinsson and 
Tropp, 2011). 
 

https://paperpile.com/c/ji285a/v50A
https://paperpile.com/c/ji285a/v50A
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Figure 1: Illustration of horizontal (A) and vertical (B) PCA  
 
 
As shown in Figure 1, a PCA can be applied to the sample by sample covariance matrix or the 
feature by feature covariance matrix. In the clinical case, we often assume a horizontal base case 
where the patients are distributed among the hospitals. However, as we will explain shortly, there 
are specific cases where there is a need for exact vertically distributed PCA. With the emergence of 
federated learning for clinical applications, people will likely adopt vertical PCA in practice. 
 

4.1.1 Vertical Principal Component Analysis  

A frequent use case for PCA in bioinformatics is population stratification in Genome-wide association 
studies (GWAS). The eigenvectors are used as covariates in the association test to account for 
cryptic population substructure and hidden relatedness. Although the distributed dimension is 
assumed to be the patient/individual dimension in federated GWAS, meaning several data centers 
have the same 𝑑 single nucleotide polymorphisms (SNPs) for a different subpopulation of 𝑛𝑠 
individuals, the principal component analysis in GWAS is performed on the 𝑛 𝑥 𝑛 covariance matrix. 
This means that in this specific case, the ‘features’ of the PCA are the samples, but the samples are 
distributed, meaning that the required PCA algorithm needs to work using distributed features. 
Specific challenges posed the fact that it is impossible to compute the covariance matrix directly due 
to the distributed nature of the features (=the patients) and unreasonable because the number of 
potential participants in a GWAS is increasing. Hence, the computational cost of computing the 
covariance matrix is increasing as well. 
 

4.1.2 Horizontal Principal Component Analysis  

Federated horizontal PCA has been extensively studied, albeit in the ‘moderate dimensionality’ case, 
where the number of variables is typically orders of magnitude smaller than the number of samples. 
Our studies investigated the suitability of horizontal PCA methods to apply high dimensional 
biological data, where the number of variables is orders of magnitude higher than the number of 
samples (for instance, gene expression data). Not all available algorithms are suitable for this setting 
due to the loss of accuracy in these cases. Notably, there are ‘one-shot’ methods that rely on 
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computing a local PCA, sharing the local PCA/eigenvectors with the aggregator, which computes a 
consensus solution. This often incurs high approximation error in our evaluated high-dimensional 
settings. The naive version of sharing the entire covariance matrix is possible without loss of 
accuracy. However, it requires computing and sharing the entire covariance matrix, which is routinely 
infeasible in practice. Another way of computing the PCA is by federated power iteration. While the 
loss of accuracy may be acceptable in many settings, we want to emphasize accuracy as a very 
important property of PCA in the medical scenario since the loadings of the PCs are often interpreted 
or even used for the generation of gene panels. Thus, we recommend federated power iteration or 
naively federated PCA for application in medical pipelines, despite the high transmission cost. 
 

4.2 k-means clustering 
 
The k-means (Lloyd, 1982) clustering algorithm aims to divide the data points into K disjunct clusters 
by assigning each point to the nearest cluster centroid, thereby minimizing the mean squared error 
(MSE). The result of the k-means algorithm is a hard partition, meaning every point belongs to exactly 
one cluster. In the centralized case, k-means consists of the following steps. 
 

1. Initialization of centroids (this may be done via random sampling of the feature space or more 
sophisticated methods such as furthest-first/k-means++ initialization, which selects points 
that span the feature space as well as possible). 
 

Then the following steps are performed until convergence:  
 

2. Assignment of all points to their respective nearest centroid.  
3. Computation of new centroids (average or weighted average). 
4. Convergence check; which may for instance be reached when the centroids do not change 

in two consecutive iterations) 
 
 
Federated Algorithms  
 
Several algorithms have been proposed to perform k-means in a federated setting. Here, we provide 
an overview of the identified main mechanisms. As this is partially preliminary work, not all algorithms 
have been published in the literature. 
 

1. One shot federated k-means methods (Dennis and Smith, 2020) require only one 
communication step between the client and the server. In a first step, each client computes 
a locally optimal clustering and sends the centroids (and number of points in some cases) to 
the aggregation server. There, the centroids are aggregated (different strategies available) 
and the aggregated centroids are sent back to the clients. The clients then assign their data 
points to the global centroids. 

2. The process described in 1. can either be terminated after one round, or if desired additional 
k-means rounds can be executed until convergence is reached. In this case the one-shot 
method is used as an initialization for the federated k-means iterations. 

3. The third possibility (Brandão, Mendes and Vilela, 2021) is to use federated avaging to 
compute the centroids at each iteration. In this case the clients assign their data points to the 
initial centroids and send the sum for each centroid to the aggregator which uses the number 
of points assigned to each global centroid to compute the exact global centroid. This process 
requires more iterations and an increased communication with the central aggregator. 

4. Federated mini-batch k-means. The mini-batch paradigm proposed by (Sculley, 2010) can 
be extended to the federated case. The centroids are sent to each client sequentially where 
they are updated. Mini-batch k-means achieves good results in the centralized case but relies 
on iid sampling of the data and a high number of points. 

https://paperpile.com/c/ji285a/lKpx
https://paperpile.com/c/ji285a/opqc
https://paperpile.com/c/ji285a/OkeE
https://paperpile.com/c/ji285a/TvjI
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Initial centroids 
k-means relies on a good initialization, which is a known problem in the centralized case and naturally 
persists in the federated case. We have investigated the following methods 
 

a) Daisy-chaining is a method based on the furthest first initialization in the centralized case. 
Initial centroids as successively added to a set until k initial centroids are reached. Every 
client contributes one initial centroid in the federated case until no more centroids need to be 
added. The following heuristic is applied. The point that has the highest distance to its nearest 
centroid is selected. This method has shown promise in practice. 

b) Schoolyard selection is a method where each client proposes a set of initial centroids. To 
match the centroids together, the party with the highest number of points can choose a 
centroid first and merge it with one of its own centroids. This method has shown unstable 
behavior in practice. 

c) Clustering of the centroids. In this method, every party proposes a set of initial centroids and 
sends it to the aggregator. The aggregator clusters the centroids and computes new initial 
centroids. 

 
 

4.3 Gaussian Mixture Models & Expectation Maximization 
  
A Gaussian Mixture Model (GMM) (Amendola, Faugere and Sturmfels, 2016) is a probabilistic model 
where we assume that every existing datapoint (sample) stems from one of K different (multivariate) 
Gaussian distributions. As an extension of the k-means algorithm, the model can incorporate the 
covariance structure of the data, and it can therefore capture elliptical cluster structures. In contrast 
to k-means, a GMM will assign each data point to a cluster with a certain probability instead of 
performing a hard cluster assignment (also called fuzzy-clustering). 
As mentioned previously, we assume that our data are distributed across s contributors, where each 
site has 𝑛𝑠 samples and the same feature space of size 𝑑. In a multivariate Gaussian distribution 
𝑁𝑑(𝜇, 𝛴), we have two parameters that need to be estimated for each Gaussian K, namely the d-

dimensional mean vector 𝜇and the covariance matrix 𝛴 (𝑑 𝑥 𝑑).   
 
Expectation maximization (EM) (Dempster, Laird and Rubin, 1977) is an iterative method able to 
compute the maximum likelihood estimates of the parameters of our Gaussian distribution. It consists 
of two steps performed iteratively until convergence, namely E-Step and M-Step. In the former, each 
observation is assigned the probability for each cluster based on the corresponding Gaussian 
distribution. Samples close to the cluster center will lead to probabilities close to 1, while samples 
between two clusters will divide their probability accordingly. Afterward, in the M-Step, the means 
and covariances of every cluster K will be updated according to those probabilities. To perform the 
first step of the iterative procedure, the parameters for the distribution have to be chosen. The EM 
algorithm usually delivers a locally optimal result and is consequently sensitive to different starting 
points. Therefore, in our pipeline, we recommend using k-means clustering to find an appropriate 
starting point. 
 
 

4.3.1 Federated Expectation Maximization 
Given the initial mean and covariances, we can perform the E-Step and thereby compute 𝛾𝑠, which 
is defined as follows: 
 

γs =
𝜋𝑘𝑁(𝑥𝑛|𝜇𝑘 , 𝛴𝑘)

∑ 𝜋𝑗𝑁(𝑥𝑛|𝜇𝑗 , 𝛴𝑗)𝐾
𝑗=1

 

https://paperpile.com/c/ji285a/u3Tg
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This results in a 𝑛𝑠 𝑥 𝑘 matrix computed and stored locally on each contributing site and never 
exchanged with the central server. The nominator represents the probability that a sample belongs 
to a cluster K given the parameters for the multivariate Gaussian distribution. The denominator 
scales the probabilities to be in the interval [0,1]. 
The local results are consequently utilized to perform the M-Step, which computes the new 
distribution parameters for each Gaussian K:  
 
 

μ𝑘 =
1

𝑁𝑘
∑ 𝛾𝑛𝑘𝑥𝑛

𝑁

𝑛=1

 

 
 

π = 
∑ 𝛾𝑛𝑘

N
n=1

𝑁
 

 

∑  

 

𝑘

=  
1

𝑁𝑘
∑  

𝑁

𝑛=1

𝛾𝑛𝑘(𝑥𝑛 −  𝜇𝑘)(𝑥𝑛 − 𝜇𝑘)𝑇 

 
Generally, in the m-step we compute intermediate local results in each client based on the samples 
present and then aggregate them in the central server. The m-step computes the mean 𝜇, the 
weights 𝜋, and the covariance matrix 𝛴 for each Gaussian 𝐾. For the mean, the client s computes 

the sum over all samples 𝑛𝑠as well as 𝑁𝑘 and sends them to the server. Afterward, the result vector 
from each client can be added elementwise and normalized. The weights and the covariance matrix 
will be updated in the same manner, and the updated parameters are shared with the clients. E- and 
M-step are iteratively executed for 200 iterations, and at the end, each client knows the distribution 
parameters for all K clusters. 
 

4.3.2 Privacy 
The data exchanged throughout the iterations are considered private, as they are always an 
aggregation of the n samples present at client s. This assumption will only hold when there are more 
than two samples present at each client. Similarly, we ensure more samples than clusters present, 

and that 𝛾𝑛𝑘 > 0 for at least two samples, as we otherwise exchange raw data for one sample. 
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5. Results 
 

5.1 Principal Component Analysis 

5.1.1 Vertically partitioned principal component analysis 

We developed an efficient version of federated PCA for vertically distributed features based on prior 
work by (Guo et al., 2012) and show the convergence to the centralized ‘oracle’ solution empirically 
and theoretically. The proposed algorithm uses federated orthonormalization to avoid sharing the 
sample eigenvectors to the other parties and is hence more private than previous versions. 
Furthermore, we showed that in the vertical case, it is possible to compute partial eigenvectors such 
that every site only gains access to the part of the eigenvector relevant to their data, while 
maintaining full accuracy. This is relevant because (Nasirigerdeh et al., 2021) showed that the 
eigenvectors could determine clinical covariates if paired with a downstream test. For more detailed 
results, the proofs, and the empirical evaluation, we refer the reader to our publication entitled: 
Federated Principal Component Analysis for Genome-Wide Association Studies. (submitted) 

 

5.1.2 Horizontal PCA 

We evaluated the feasibility, challenges, and limitations of federated horizontal PCA in the medical 
domain based on transcriptome data. The performance of different algorithmic versions has been 
assessed on non-iid medical data. We were able to show that outlier detection and removal only 
based on the eigenvectors is possible and necessary to reduce potential privacy risks. 
For real-world biomedical data (view samples, many features), only power iteration and the naive 
aggregation of the covariance matrix achieved acceptable accuracy.  We favor a high accuracy over 
the risk of privacy loss that comes with increased communication between the participants.  For 
further details, we kindly refer to our publication entitled: Federated principal component analysis for 
high dimensional biomedical data under limited sample availability (submitted) 
(https://gitlab.com/roettgerlab/federatedPCA). 
 
 

5.2 k-means clustering 
We have results for k-means in a federated setting. Most of our work investigated how to evaluate 
clustering in a federated case in general, as this is not a trivial and currently researched problem. 
We suggest the following strategy to evaluate federated clustering to represent many possible use 
cases: the algorithm must be tested using independently and identically distributed (iid) data and 
non-iid data. 
Non-iid can have several meanings. Here, we consider how the points are distributed among the 
participants regarding numbers and cluster assignments. Naturally, there can be other biases, such 
as batch effects in high-throughput biological experiments, but these are hard to represent in a 
general way. It is helpful to imagine an oracle clustering that has been computed on the hypothetical 
centralized data as a reference for how the data is distributed. All points belonging to the same 
centroid are referred to as a cluster. We suggest evaluating the following scenarios: 

- iid data: The data is distributed iid over the participants. This means every participant has 
points belonging to each of the clusters and in approximately equal numbers. 

- point-centric non-iid: every participant obtains points for each of the clusters, but not in equal 
number 

- Cluster-centric non-iid: Not every client has points from every cluster. The most severe case 
is when the clusters are entirely disjoint, meaning every cluster is only available to one client. 

 
It is possible to implement k-means in such a way that it exactly reflects the centralized solution, 
however, these algorithms come at a very high communication cost. Therefore heuristic approaches 
need to be evaluated. In the unrealistic case where the number of global clusters and the number of 
local clusters is available at each client, preliminary research using artificial data shows good 
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performance of the proposed investigated methods. However, with increasing non-iidness of the 
data, the performance of a few of the methods degrades (See Figure 2 for preliminary results). 
 

 
Figure 2: Boxplots show the performance of different federated k-means methods using different 
configurations for artificial data with 15 clusters. The variance parameter determines the variance of 
the data around the centroids and hence the cluster separation. The higher the variance the worse 
the cluster separation. The top left panel has one cluster missing at one site, the bottom right panel 
has 15 clusters missing at 4 sites each. The performance is measured as F1 Score with respect to 
the oracle solution. Abbreviations: BL - Baseline (centralized), FF - Fully federated (equivalent to 
centralized) I - Clustering initialization with centroid clustering + direct labelling (one shot), IFF - 
Clustering initialization with centroid clustering + Fully federated, LFF - Local-global with furthest first 
+ Fully federated Clustering, IFF - Local-global with furthest first + direct labelling (one shot), MB - 
Federated Minibatch 
 
 

5.3 EM-Clustering 
In order to test our implementation, we utilized a generated dataset with three clusters in a two-
dimensional space. Figure 3 shows the gold standard of the dataset in the upper-left plot, where all 
clusters stem from different multivariate Gaussian distributions. In the upper right corner, we see the 
result of a k-means clustering that cannot identify the correct cluster. e perform both aggregated 
(bottom left) and federated (bottom-right) EM-clustering based on those initial coordinates. First, we 
can see the advantage of the EM approach compared to k-means, but we also illustrate no difference 
between aggregated and federated computation. Our algorithm performs mathematically the same 
computation and ends up with the same results (apart from minor rounding issues) as the aggregated 
approach. Therefore, we are independent of sample and cluster distributions across clients, although 
we are more restricted due to privacy reasons (see section open issues). 
A central aspect of federated algorithms is, of course, the amount of data that needs to be 
exchanged. For the EM-algorithm, the majority of network traffic arises from iterative computations. 
In each iteration i, the central aggregator receives the mean, weights, and variance for each 
Gaussian distribution from each client. Those parameters depend only on the number of components 
K and the number of features d. The amount of data exchanged will grow exponentially with the 
number of features involved due to the covariance matrix. However, since density-based clustering 
methods are generally unsuited for high-dimensional datasets, we can assume that the number of 
features and network traffic will stay within an acceptable range.  
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Figure 3: Comparison of EM-Clustering with k-means on an artificial dataset.  
 
 

6. Open issues 
 

● The choice of an initial centroid has not yet been exhaustively evaluated. We currently 
investigate the best method to choose initial centroids for Expectation Maximisation as well 
as k-means. 

● An open problem in federated clustering is choosing an appropriate number of clusters (k in 
k-means, but the problem is relevant for other clustering methods). We intend to propose a 
federated, efficient version of the gap statistics as this is a frequently used and helpful method 
to select k.  

● Privacy considerations in horizontal PCA: Privacy considerations arise in the use of federated 
PCA. Notably, the question is how much information the covariance matrix and eigenvectors 
contain and if sharing them is acceptable. In horizontal PCA, every participant must acquire 
the full eigenvectors as they are in the intended result. Therefore, the eigenvectors cannot 
be hidden from the participants. The different ways of computing the eigenvectors might lead 
to different privacy losses, such as for instance information leakage in iterative PCA or the 
traceability of exact methods. Therefore, future work will include investigating the privacy of 
the proposed methods. 
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● Privacy consideration in EM algorithm: The amount of information leaked throughout iterative 
computation, especially for unbalanced distributions. We are planning to investigate this 
further.  

● Communication efficiency: Iterative methods require many communication steps between the 
aggregation server and the clients. In preliminary tests, the number of communication steps 
in the PCA was one of the main limiting factors, rather than the volume of transmitted data. 
Therefore, future work will include making the proposed methods more communication 
efficient. 

 
 

7. Conclusion 
Unsupervised clustering approaches are indispensable in order to be able to analyze complex 
biomedical datasets. In this deliverable, we presented a pipeline that covers the entire unsupervised 
pipeline, from pre-processing over clustering to the evaluation of results. At first, we showed an 
extensive evaluation of principal component analysis in both horizontal and vertical fashion. PCA is 
a powerful unsupervised approach allowing for dimensionality reduction and outlier detection. In the 
second step, we have shown that k-means is a suitable candidate for unsupervised clustering. We 
are currently still evaluating the variety of existing and potential methods to assess the quality and 
stability of clustering results, especially for non-IID-distributed data. The majority of existing 
approaches claim to show superior performance with unequal cluster/sample distribution. However, 
we showed that testing federated approaches on non-iid-distributed data has not been done 
properly. Finally, we have developed a federated expectation maximization algorithm for fuzzy 
clustering of data following a gaussian distribution. The algorithm implemented here is exact, 
meaning that the computations that we perform are mathematically the same compared to the 
aggregated analysis. 
 
In the FeatureCloud project, we aim to develop algorithms that follow a privacy-by-design approach 
(Gan et al., 2017). The algorithms presented in this deliverable are based on this approach and 
exchange only aggregated model parameters or intermediate results that do not allow any 
conclusions about a single patient. As stated in section 6, we are still critically evaluating the 
inevitable loss of privacy that comes with exchanging any data. Especially, iterative methods 
introduce a high level of complexity, and we are therefore currently also investigating the applicability 
of differential privacy (Dwork, 2006) and secure multi-party computation (Yao, 1986) to increase 
privacy. 
 
Existing approaches for federated k-means have shown a high inconsistency between claimed 
performance (often based on artificial datasets) and actual performance on real-world data. In the 
future, we will therefore focus on extending our pipeline to allow for extensive testing of 
heterogeneous, noisy, and non-iid distributed biomedical data. Similarly, we want to investigate 
further the choice of initial parameters (such as centroids), which is already a challenge in 
aggregated analysis but becomes even more crucial for federated clustering approaches.  
In the proposal, the usage of artificial spike-in (SI) points was suggested. The performance of the 
presented methods was convincing enough and rendered the utilization of spike-in points 
unnecessary. The usage of these SI points is considered for an implementation of a federated 
pairwise similarity matrix. Thereby, we will extend our pipeline to cover the wide variety of methods 
based on pairwise similarity.  
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9. Table of acronyms and definitions  
 

concentris concentris research management GmbH 

EM Expectation Maximization 

EM Expectation Maximization 

FC FeatureCloud controller 

GMM Gaussian Mixture Model 

GND Gnome Design SRL 

GWAS Genome-Wide Association Study 

HTS High throughput sequencing 

iid Independent and identically distributed 

ML Machine Learning 

MS Milestone 

MSE Mean Squared Error 

MUG Medizinische Universitaet Graz 

Patients In this deliverable, we use the term “patients” for all research subjects. In 
FeatureCloud, we will focus on patients, as this is already the most vulnerable 
case scenario and this is where most primary data is available to us. Admittedly, 
some research subjects participate in clinical trials but not as patients but as 
healthy individuals, usually on a voluntary basis and are therefore not dependent 
on the physicians who care for them. Thus to increase readability, we simply 
refer to them as “patients”.  

PC Principal Component 

PCA Principal Component Analysis 

RI Research Institute AG & Co. KG 

SBA SBA Research Gemeinnützige GmbH 

SDU Syddansk Universitet 

SI spike-in 

SNPs Single Nucleotide Polymorphisms 

TUM Technische Universitaet Muenchen 

UM Universiteit Maastricht 

UMR Philipps Universitaet Marburg 

WP Work package 

 
 

10. Other supporting documents / figures / tables (if applicable) 
 

● Federated principal component analysis for high dimensional biomedical data under limited 
sample availability, Anne Hartebrodt & Richard Röttger, (Submitted) 

● Federated Principal Component Analysis for Genome-Wide Association Studies, Anne 
Hartebrodt, Reza Nasirigerdeh, David B. Blumenthal, Richard Röttger, (Submitted) 
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