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Abstract

In network and systems medicine, active module identification methods (AMIMs) are widely used for discovering candidate
molecular disease mechanisms. To this end, AMIMs combine network analysis algorithms with molecular profiling data,
most commonly, by projecting gene expression data onto generic protein–protein interaction (PPI) networks. Although active
module identification has led to various novel insights into complex diseases, there is increasing awareness in the field that
the combination of gene expression data and PPI network is problematic because up-to-date PPI networks have a very small
diameter and are subject to both technical and literature bias. In this paper, we report the results of an extensive study
where we analyzed for the first time whether widely used AMIMs really benefit from using PPI networks. Our results clearly
show that, except for the recently proposed AMIM DOMINO, the tested AMIMs do not produce biologically more meaningful
candidate disease modules on widely used PPI networks than on random networks with the same node degrees. AMIMs
hence mainly learn from the node degrees and mostly fail to exploit the biological knowledge encoded in the edges of the
PPI networks. This has far-reaching consequences for the field of active module identification. In particular, we suggest that
novel algorithms are needed which overcome the degree bias of most existing AMIMs and/or work with customized,
context-specific networks instead of generic PPI networks.
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Introduction
Because of massive advances in high-throughput technologies,
large amounts of gene expression data have become available
over the past decades. This has raised hopes to identify new
molecular mechanisms that might provide valuable insights
into cellular function and the pathobiology of diseases [1–3].
However, gene expression data tend to be overdetermined and
noisy and, as a result, the discovery of disease genes via purely
statistical means is often unstable, since the reported genes
are often just surrogates of the actual disease genes and hence
functionally not necessarily related to the disease of interest
[4, 5].
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To mitigate these problems, active module identifica-
tion methods (AMIMs) leverage additional biological knowl-
edge encoded in protein–protein interaction (PPI) networks
[6–9]. These methods project gene expression data onto PPI
networks and then use network algorithms to identify disease
modules consisting of small subnetworks. This dramatically
decreases the size of the search space and prioritizes disease
modules consisting of functionally related genes, which, in turn,
positively affects both stability and functional relevance of the
discovered modules [10]. AMIMs have been successfully used for
providing novel pathobiological insights into complex diseases
such as pulmonary arterial hypertension [11], coronary heart
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disease [12], diabetes mellitus [13], liver fibrosis [14], chronic
obstructive pulmonary disease and idiopathic pulmonary
fibrosis [15], as well as asthma [16].

Despite these impressive results, there is increasing aware-
ness in the field that the combination of gene expression data
and PPI networks is subject to technical and literature bias. PPI
networks suffer from technical bias [17] e. g. since the ‘bait’
proteins used for measuring new interactions often have signif-
icantly more interactions. Moreover, literature bias [18], where
research focuses on proteins with already known characteristics
(e. g. biological function), leads to a strong correlation between
the number of studies conducted on a protein and the protein’s
degree in the PPI network.

The node degree distribution of PPI networks typically fol-
lows a power law. As a consequence, perturbances of cellular
programs (e. g. via mutations or other mechanisms) typically
have a cascading effect when observed on the level of gene
expression. As a result, differential gene expression analysis
often reveals hundreds or thousands of genes to be disease-
associated. By projecting these noisy gene expression data on
PPI networks with a small diameter, disease-associated genes
can easily be combined into subnetworks or disease modules,
most of which may not contain a single disease-causative gene.
Although such network modules may be well suited as robust
biomarkers for a disease, they may be less suited to pinpoint a
disease mechanism.

To account for network-related biases, some recently pro-
posed methods such as Hierarchical HotNet [19] and NetCore [20]
integrate data and network randomization steps into their work-
flows. These permutation-based methods extract subnetworks
whose associations with the disease are significantly stronger in
the original PPI networks than in the randomized counterparts.
Levi et al. further reported that gene ontology enrichment of sev-
eral state-of-the-art AMIMs on randomly permuted input data
produced similar results, questioning the context-specificity of
existing AMIMs. To address this issue, Levi et al. [21] propose a
new method DOMINO.

Although the effect of random permutations of the input
omics data was systematically tested by Levi et al. [21], the
question if AMIMs also benefit from the biological knowledge
captured in PPI networks remains unanswered (cf. Figure 1).
In this study, we close this gap. For this, we developed a test
suite for AMIMs, which studies the effect of different types of
network randomization on the results. Our test suite, which is
openly available at https://github.com/dbblumenthal/amim-te
st-suite/, expects a network and expression data (or input that
can be derived from expression data) as input and produces
a set of candidate disease modules as output. These modules
are then evaluated using mutual information (MI) and gene
set enrichment analysis (GSEA) with known disease signatures
(see ‘Methods’ for details). Since further AMIMs can easily be
integrated by implementing a well-defined interface, our test
suite can be used not only to reproduce the results reported in
this paper, but also to objectively test novel AMIMs with respect
to their robustness against network randomization.

In a large-scale empirical evaluation on gene expression
data for five different diseases, we ran eight classical and two
permutation-based AMIMs on five different widely used PPI
networks as well as on randomized counterparts generated by
five different random network generators (more than 10 000
runs in total). The most striking result of our analysis is that all
except one of the tested AMIMs did not yield significantly more
meaningful subnetworks if run on the original PPI networks than
if run on random networks with matching node degrees. Most

AMIMs hence pick up on the number of interactions a protein
is involved in, but do not benefit from the biological knowledge
captured in the PPIs themselves.

The remainder of this paper is organized as follows: In the
‘Results’ section, we briefly describe the protocol implemented
by our test suite and present the results of our analyses. In the
‘Discussion’ section, we discuss the implications of our findings
for the field of active module identification. In the ‘Methods’ sec-
tion, we provide a more detailed description of our test protocol
and also elaborate on how developers of new AMIMs can use our
test suite to evaluate their methods.

Results
Test protocol

Figure 2 visualizes our protocols for method evaluation (cf.
‘Methods’ section for details). We selected eight classical
AMIMs, also referred to as de novo network enrichment tools
in the literature [6] (ClustEx2 [22], COSINE [23], DIAMOnD [24],
DOMINO [21], GiGA [25], GXNA [26], KeyPathwayMiner [27–29]
and GrandForest [30]) and two permutation-based methods
(Hierarchical HotNet [19] and NetCore [20]). Although the
classical methods were run with the full protocol (Figure 2A),
we used a subset of the protocol for the two permutation-based
methods (Figure 2B) since their runtime prohibits large-scale
evaluation.

For the full protocol, we compared five widely used PPI net-
works (BioGRID [31], APID [32, 33], STRING [34], HPRD [35] and IID
[36]), as well as gene expression and case/control data for five
complex diseases: amyotrophic lateral sclerosis (ALS), non-small
cell lung cancer (LC), ulcerative colitis (UC), Chron’s disease (CD)
and Huntington’s disease (HD). For ALS and LC, we had access
to survival data that we used for an additional evaluation. More-
over, we used five different random network generators, which
produce randomized networks that preserve selected properties
of the original PPI networks. For each PPI network, we generated
10 randomized counterparts with each generator. We then ran
each classical AMIM on each of the 1275 network-disease pairs.

For each subnetwork produced for a network-disease pair, we
measured two dimensions of meaningfulness: Firstly, predictive
power quantified as mean MI [37] with (i) the phenotype and (ii)
the survival data. Secondly, functional relevance quantified via
(i) GSEA [38] w. r. t. Kyoto Encyclopedia of Genes and Genomes
(KEGG) [39] pathways associated with the disease of interest
and (ii) overlap coefficient w. r. t. disease-associated DisGeNET
[40] gene sets. Finally, we used the one-sided Mann–Whitney
U-test to assess whether the results obtained for the original
PPI networks were significantly better than the results obtained
for the randomized counterparts. Note that since AMIMs are
intended for discovering yet unknown disease modules, the four
meaningfulness scores employed in this paper should not be
viewed as direct measures of performance but rather as proxy
indicators for biological plausibility of the results.

For the slower permutation-based methods, we employed a
restricted protocol using only the smallest PPI network (HPRD),
the two smallest gene expression datasets (CD and HD) and
the degree preserving network generator REWIRED. We selected
this generator, because it produces the randomized networks
that are most similar to the original PPI networks. We ran both
permutation-based methods on each network-disease pair (in
total 22 runs per method) and used the one-sided one-sample
t-test to assess whether the subnetworks obtained for the orig-
inal PPI networks were significantly more meaningful than the
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Active module identification 3

Figure 1. The limitation of AMIMs motivating this study. Since PPI networks suffer from technical and study bias, they usually contain hub-nodes with very high node

degrees. In this study, we test the hypothesis whether AMIMs merely learn from the node degrees instead of exploiting the PPIs relevant to the disease of interest.

Figure 2. Test protocols employed in this study. (A) Large-scale protocol for classical methods. (B) Restricted protocol for slow permutation-based methods.
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Figure 3. Log-transformed P-values for all classical AMIMs and all random network generators computed with the one-sided Mann–Whitney U-test. For each AMIM

and each meaningfulness score, we computed a validity score (range from 0 to 1) as the fraction of the original network/condition pairs where the AMIM yielded a

score ≥ τ on the original PPI network. For the log-transformed GSEA P-values, we employed the cutoff τ = − log10 0.05; for all other scores, we used the cutoff τ = 0.2.

The larger the validity scores, the larger the corresponding semi-transparent shapes.

subnetworks obtained for the random networks with prescribed
node degrees.

Results for classical methods

Figure 3 visualizes the P-values obtained when comparing the
results on the original PPI network to those on randomly gen-
erated networks for eight classical AMIMs separately (cf. Sup-
plementary Figure 1 for visualizations of the distributions of the
meaningfulness scores).

For the two scores quantifying predictive power (i. e. mean MI
w. r. t. phenotype and survival times), we observe that, for most
AMIMs, the scores of the candidate disease modules obtained
on the original PPI networks are not significantly better than the
scores obtained when using random graphs generated by any of
the generators. This is the case even for the UNIFORM generator
that produces networks that are structurally very different from
the original PPI networks. For mean MI w. r. t. survival times
(Figure 3D), no AMIM reaches the significance threshold of 0.05.
For mean MI w. r. t. the disease phenotypes (Figure 3C), DIAMOnD
produces significant results compared with all random network
generators but its solution on the original PPI receives a validity
score of 0.0 (i. e. there was not a single original network-disease
pair for which DIAMOnD computed a candidate module whose
mean MI with the phenotype reached 0.2). Notably, DOMINO
produced significantly better solutions compared with all ran-
dom network generators but SHUFFLED. DOMINO results are
also slightly more meaningful, as they have a validity score >

0.0. Most of the tested classical AMIMs hence fail to exploit
the biological knowledge encoded in generic PPI networks for
mining disease modules with high predictive power. DOMINO
is the only tool to show potential w. r. t. the phenotype albeit
with very low predictive power where the validity score does
not exceed 0.1. All tools fail to produce disease modules that are
predictive of survival time.

The two scores quantifying functional relevance (GSEA
P-values w. r. t. disease-associated KEGG pathways and overlap
coefficients w. r. t. disease-associated DisGeNET gene sets)
present a different picture. Here, we observe that most

methods produce significantly more meaningful results on the
original network compared with the SHUFFLED, SCALE_FREE
and UNIFORM generators. However, when compared with
structurally similar networks generated by the REWIRED
and the EXPECTED_DEGREE generators, only DOMINO shows
good performance. For KEGG gene set enrichment (Figure 3A),
GrandForest and DOMINO reach the significance threshold,
whereas DIAMOnD and DOMINO do so for DisGeNET enrichment
(Figure 3B) when compared with the two degree-preserving
generators REWIRED and EXPECTED_DEGREE. Notably, DOMINO
is the only tool to produce very significant results on degree-
preserving random network generators. However, the valid-
ity scores are low in all cases and never exceed 0.3. Our
results hence indicate that although most AMIMs are guided
toward functionally relevant disease modules, the interactions
themselves seem to be largely irrelevant.

To evaluate the effect of the five original PPI networks and
the gene expression datasets for the five diseases, we also split
the results along the PPI network dimension and along the
disease dimension (cf. Supplementary Figures 2 and 3 for
visualizations of the distributions of the meaningfulness scores).
Figures 4 and 5 visualize the obtained P-values. These results
suggest that HPRD is the best performing network in terms of
KEGG gene set enrichment and DisGeNET overlap. This finding
may be explained by the fact that HPRD is the smallest and least
frequently updated network and contains mostly well-studied
proteins that are more likely to overlap with KEGG pathways or
DisGeNET genes.

We also observe that, in terms of functional relevance (espe-
cially DisGeNET overlap), the results for the CD dataset were
much better than for the other datasets. This may be due to the
fact that inflammation is a well-understood process and the Dis-
GeNET disease gene annotation for CD is therefore better suited
compared with other diseases. Note that the same argument
does not apply to the UC dataset, since DisGeNET only reports
on the more general inflammatory bowel disease as a proxy (cf.
‘Methods’ for details).

The results reported above suggest that, except for DOMINO,
the tested AMIMs largely learn from the degree distributions
rather than exploiting the biological knowledge encoded in the

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/22/5/bbab066/6189770 by guest on 18 O

ctober 2021

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab066#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab066#supplementary-data


Active module identification 5

Figure 4. Log-transformed P-values for all PPI networks and all random network generators computed with the one-sided Mann–Whitney U-test.

Figure 5. Log-transformed P-values for all diseases and all random network generators computed with the one-sided Mann–Whitney U-test.

interactions themselves. Figure 6 shows the outcomes of further
analyses we carried out to find possible explanations for these
results. The first interesting finding is that the topologies of the
active modules DOMINO and COSINE computed on the original
PPI networks are different from the topologies of the other
AMIMs’ modules (Figure 6A): DOMINO and COSINE’s modules
tend to have larger maximum pairwise distances, i. e. they tend
to include fewer hub-nodes that would ensure a high connec-
tivity. This is reflected by the fact that the mean degrees of the
result sets and the two scores quantifying functional relevance
are less strongly correlated for DOMINO and COSINE than for
the other AMIMs (Figure 6E). These observations indicate that
DOMINO and COSINE are less influenced by the node degrees
than the other AMIMs. Although we expected this finding for
DOMINO, it is somewhat surprising for COSINE. One possible
explanation is that COSINE performed poorly even on the orig-
inal PPI networks and hence neither learned from the node
degrees nor from the interactions effectively.

We also observe several global trends in the results of the
full protocol, which indicate that when aggregating across
all tested AMIMs, the degrees on the genes contained in the

result sets are predictive of KEGG gene set enrichment P-
value and DisGeNET overlap: Firstly, the mean degrees drop
very significantly only for the SHUFFLED, the SCALE_FREE
and the UNIFORM generators (Figure 6B). This reflects the
results visualized in Figures 3–5, where significant drops
in performance compared with the original PPI networks
where observed mostly for these generators. Secondly, both
the negative log-transformed KEGG gene set enrichment P-
value and the DisGeNET overlap coefficient increase with
increasing mean degrees (Figure 6C and D). Thirdly, we observe
a very strong global correlation between the Mann–Whitney
U-test P-values for the mean degrees, on the one side, and for
two measures quantifying functional relevance, on the other
side (last column in heat map in Figure 6E).

Results for permutation-based methods

Figure 7 shows the results for the two permutation-based AMIMs
NetCore and Hierarchical HotNet (cf. Supplementary Figure 4 for
visualizations of the distributions of the meaningfulness scores).
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Figure 6. Detailed analyses explaining the results for the functional relevance scores. (A) Maximum pairwise distances of genes contained in result sets for original PPI

networks for each AMIM. (B) Mean degrees in original PPI networks of genes contained in result sets for each generator. (C) Linear trend of KEGG gene set enrichment

P-values versus mean degrees in original PPI networks aggregated across all generators and AMIMs. (D) Linear trend of DisGeNET overlap coefficient versus mean

degrees in original PPI networks aggregated across all generators and AMIMs. (E) AMIM-specific and global correlation coefficients between Mann–Whitney U-test

P-values for mean degrees in original PPI networks, on the one side, and the two functional relevance scores, on the other side (cf. ‘Methods’ for details).

Figure 7. Log-transformed P-values for permutation-based AMIMs computed with the one-sided one-sample t-test. Mean MI w. r. t. survival times is not reported,

because no survival data are available for the HD and CD datasets employed by the restricted protocol. The validity scores are binary here, because the restricted

protocol uses only one original PPI network and the P-values are computed separately for the two diseases.

Recall that, because of their high computational costs, these
methods were run with the restricted protocol visualized in
Figure 2B, which only uses one PPI network (HPRD), two diseases
(CD and HD), and one random network generator (REWIRED).
Surprisingly, the results for the permutation-based methods are
not better than the results for the classical AMIMs reported in
the previous subsection: Both NetCore and Hierarchical HotNet
clearly fail to reach the significance threshold of 0.05 for all three
meaningfulness scores.

Discussion
It is commonly believed that prior biological knowledge captured
in PPI networks can be leveraged for extracting functionally and
mechanistically interpretable disease modules by AMIMs. How-
ever, an open question in the field is what characteristic of a PPI
network makes these methods successful. Since PPI networks
are known to suffer from a considerably node degree bias, we
hypothesize here that AMIMs may use the node degree as prior

information rather than the connectivity of the network i. e. the
biological knowledge captured in the interactions themselves.
To test this hypothesis, we compared 10 state-of-the-art AMIMs
on original as well as randomly generated networks. Although
a few methods produced meaningful results w. r. t. functional
enrichment, none of the methods produced disease modules
with appreciable predictive power w. r. t. to both phenotype as
well as survival. This demonstrates that results of AMIMs are
not directly suited for such tasks without further refinement
through e. g. supervised machine learning as shown by Alcaraz
et al., where disease modules were used successfully as features
for disease subtyping in a random forest classifier [10].

To investigate which network properties are exploited by
AMIMs, we compared the results against different types of ran-
dom network generators. Our results clearly show that most
methods do not yield more meaningful candidate disease mod-
ules on randomized networks if these are constructed such that
the (expected) node degrees match the node degrees of the
original networks. Unexpectedly, permutation-based methods
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Active module identification 7

that include steps to correct for PPI network characteristics in
their workflow did not produce more meaningful results on the
original PPIs.

Only one tested tool benefits from the PPI networks

The only tool to produce more meaningful results on the original
network was the recently proposed method DOMINO [21]. Inter-
estingly, DOMINO’s development was motivated by the observa-
tions that existing methods are not sensitive to permutations
of the input data. Our finding that most existing methods are
also not sensitive to network randomization suggests that these
two issues are related. Considering the small diameter of a PPI
network, AMIMs sensitive to high-degree nodes are likely to
produce subnetworks that are enriched for similar biological
functions. Given this, we see several possibilities to advance the
field, namely (i) further algorithmic improvements to overcome
PPI network biases, (ii) the integrative use of complementary
omics data that increase the signal to noise ratio, which is inher-
ently low in gene expression data and (iii) the use of more fine-
grained tissue-specific, condition-specific or even personalized
networks.

Further algorithmic improvements are needed

The encouraging results of DOMINO indicate that algorithmic
improvements to overcome the node bias of PPI networks
are possible. From an algorithmic point of view, DOMINO
differs from all other tested AMIMs in that it discards some
of the disease-associated genes in a partially unsupervised
manner. We hypothesize that this is the key to DOMINO’s
success, because it makes hub-genes other AMIMs include
into their modules to connect the disease-associated genes
less attractive for DOMINO (cf. Figure 6A). Consequently, we
expect algorithmically improved AMIMs to be either partially
unsupervised such as DOMINO or even fully unsupervised [41].
Importantly, newly developed AMIMs need to be tested with
respect to their sensitivity to network randomization. One way
to do this systematically is to evaluate them with the test suite
presented in this paper.

Different types of omics data and context-specific
networks should be considered

For this study, we evaluated the performances of AMIMs
when run on gene expression data and PPI networks, which
is currently the most common use case. Consequently, our
findings are restricted to this use and cannot be generalized
to other types of omics data and biological networks. In fact,
we expect that using different types of omics data and context-
specific networks introduces new opportunities for AMIM users
and developers. For instance, promising directions for future
research include using microbiome data in combination with
metabolic networks, using DNA methylation data with gene
regulatory networks [42], or inferring condition- or tissue-
specific gene regulatory networks from expression data [43].
Next-generation AMIMs might even integrate the inference
of context-specific networks with disease module mining.
Although all of these strategies come with their own challenges
and limitations, we believe that they could help to overcome
some of the biases of PPI networks (especially, the literature
bias).

Quantitative measures of functional relevance need to
be used carefully

The most widely used method for quantitatively assessing the
functional relevance of candidate disease modules is to compare
them against known disease-associated genes. In fact, we also
follow this strategy in our test suite (recall that we use KEGG
GSEA P-value and DisGeNET overlap as our measures of func-
tional relevance). However, this approach is severely limited and
biased by our current knowledge. In particular in the light of
the results shown here, it must hence always be kept in mind
that such quantitative measures are at best proxy indicators for
functional relevance. Alternatively, the simulation of synthetic
gold standard datasets could be considered, but this approach is
limited by our understanding and assumptions on network and
disease module characteristics [6].

Cross-disciplinary research is key to success

Since quantitative measures of functional relevance are biased,
it is unlikely that simply reporting on disease modules will yield
novel insights into complex diseases. Interestingly, studies that
report successful applications of active module identification are
usually co-authored by cross-disciplinary teams of researchers
that include not only bioinformaticians but also domain experts
for the disease of interest [11–16]. We argue that this is no
coincidence and promote cross-disciplinary research. To this
end, AMIM developers should follow best practices for devel-
oping usable software [44], allowing domain experts without a
background in computer science to run the tools on their data
and to leverage their domain knowledge in the interpretation
of the results. Ideally, such interfaces should follow the expert-
in-the-loop paradigm and provide functionality for all three
steps of active module identification (data integration, network
construction, disease module mining). To the best of our knowl-
edge, such an integrated active module identification platform
is available only for COVID-19 [45].

Conclusions
A plethora of tools for identifying disease modules via the inte-
gration of gene expression data and PPI networks have been
developed over the years. Here, we could show conclusively that
most AMIMs do not produce more meaningful results on the
original compared with randomized PPI networks in which the
(expected) node degrees do not change. Our results indicate that
classical but also supposedly bias-aware AMIMs extract disease
modules based on the node degree rather than benefiting from
the interactions of the nodes. Only a single recently proposed
method, DOMINO, showed significantly better results on the
original PPI network, suggesting that the development of better
algorithmic approaches as well as less biased, context-specific
networks are urgently needed to provide the biomedical com-
munity with the necessary tools to deliver on the promises that
the field of active (disease) module identification and de novo
network enrichment made almost two decades ago.

Methods
PPI networks and random network generators

We ran our test protocol on five widely used PPI networks:
BioGRID [31], APID [32, 33], STRING [34] with high confidence
interactions only (score ≥ 0.7), HPRD [35] and IID [36] with
experimentally validated interactions only. Key properties of the
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8 Lazareva et al.

PPI networks are summarized in Supplementary Table 1. All
networks have one giant largest connected component with a
very small diameter. Note that although BioGRID, APID, STRING
and IID are continuously updated, HPRD is no longer maintained
and has not been updated since 2010. However, HPRD is still
useful for our study, because it is smaller and focuses on well-
studied interactions. Moreover, some of the tested AMIMs were
designed with HPRD in mind, which was the largest network
available at the time of implementation.

We used five different random network generators, which
were chosen to produce randomized networks that preserve
selected properties of the original PPI networks:

REWIRED: degree preserving generator. Repeatedly swaps pairs of
edges and non-edges to produce random networks whose degree
sequences are identical to the degree sequences of the original
PPI networks [46, 47]. Preserves the individual node degrees and
hence the hub-genes.

EXPECTED_DEGREE: expected degree preserving generator. Creates
networks with randomly sampled edges where the sampling
probabilities are chosen such that the expected node degrees
correspond to the node degrees in the original PPI networks
[48, 49]. Preserves individual node degrees and hub-genes in
expectation.

SHUFFLED: topology preserving generator. Shuffles the gene IDs.
Preserves the degree sequence and the topology but not the
individual node degrees and the hub-genes.

SCALE_FREE: scale-free generator. Produces scale-free networks
using the Barabási–Albert model [50]. The parameters are cho-
sen such that the numbers of nodes and edges in the random
networks match the numbers of nodes and edges in the original
PPI network. Preserves neither the topology nor the individual
node degrees or the hub-genes, but produces networks that
are structurally similar to the original PPI networks, since PPI
networks are usually scale-free [51, 52].

UNIFORM: uniform generator. Produces random graphs using the
Erdős–Rényi model [53]. The parameters are chosen such that the
numbers of nodes and edges in the random networks matches
the numbers of nodes and edges in the original PPI network.
The produced networks are very different from the original
PPI networks. In particular, their degrees are binomially dis-
tributed, whereas PPI networks tend to have power law degree
distributions [51, 52].

Expression, phenotype and survival data

For testing we considered gene expression datasets for five
different diseases: ALS, non-small cell LC, UC, CD and HD. For all
datasets, case/control phenotype data are available, whereas for
ALS, LC and HD, survival data are also reported. Gene probes were
mapped to Entrez gene IDs, and if multiple probes corresponded
to a single gene, the median value was used. Key properties of the
expression datasets are summarized in Supplementary Table 3.

In the LC dataset, we only considered non-small cell LC
patients due to their significant biological difference from small
cell LC and the larger number of available samples. For the HD
dataset, we preselected samples such that the most distinct
gene expression difference is present. To achieve this, we only
used samples from caudate nucleus, since this region has been
reported to have the largest change in gene expression [54].
As a case group, only patients with Vonsattel grades 2–4 were

considered, whereas samples with Vonsattel grade 0–1 were
discarded.

AMIMs and method-specific preprocessing

In the past years, various AMIMs have been presented (cf. Batra
et al. [6] for a benchmarking paper and Lazareva et al. [9] for a sys-
tematic review). Here, we selected 10 tools, namely ClustEx2 [22],
COSINE [23], DIAMOnD [24], DOMINO [21], GiGA [25], GXNA [26],
KeyPathwayMiner [27–29], GrandForest [30], Hierarchical HotNet
[19] and NetCore [20] (cf. Supplementary Table 4 for details).
These tools were selected for three reasons:

• They require expression data and phenotypes or input for-
mats that can be derived from these data.

• They return a gene set representing a candidate disease
module.

• They are available online and sufficiently bug-free and doc-
umented to allow integration in our test suite.

Hierarchical HotNet and NetCore are permutation-based
methods, i. e. they include data or network randomization steps
in their workflows to correct for typical PPI network biases.
All other tools use the PPI networks without applying any
corrections.

To set the hyper-parameters of the AMIMs, we used default
values whenever available. For parameters where no default
values are provided in the implementations, we used the values
chosen in the tutorials, READMEs, or original publications.
For tools that return several candidate disease modules, we
always used the union of all reported subnetworks. We hence
did not carry out hyper-parameter tuning. The reason for this
is 3-fold: Firstly, hyper-parameter tuning would have been
computationally infeasible, since already without our protocol
required more than 10 000 AMIM runs. Secondly, our aim is
not to obtain the optimal results but to test if equally good
results can be obtained using a random network. Thirdly,
because of the large number of AMIM runs, small changes in
the results for a specific AMIM have little effect on the overall
conclusions. Note, however, that since we did not optimize the
tools, our findings should not be interpreted as a benchmark
but rather as an evaluation of the effect of network biases on
AMIMs.

Although COSINE, GXNA and GrandForest can be run directly
on the normalized expression data, the other tools require dif-
ferent input formats. More specifically, ClustEx2, DIAMOnD and
DOMINO expect a list of disease-associated seed genes, Hierar-
chical HotNet and NetCore expect gene scores, GiGA expects a
sorted list of genes, and KeyPathwayMiner expects an indicator
matrix of genes that are differentially expressed in the case
samples.

For each gene g, let x1
g and x0

g be the vectors of expression
values for all case and control samples, and xg,s be the expression
value for sample s. Furthermore, let n be the number of genes
contained in the expression dataset and m be the number of
case samples. To derive gene scores, seed genes and sorted
gene lists from the expression data, we evaluated the two-
sided Mann–Whitney U-test on x1

g and x0
g to obtain P-values

Pg of differential expression for all genes g. We then defined
gene scores as − log10(Pg), used all genes g with Pg < 0.001/n
as seed genes, and obtained sorted lists of genes by sorting
the genes in non-decreasing order of pg. The indicator matrix
M = (mg,s) ∈ {0, 1}n×m required by KeyPathwayMiner was defined
as mg,s = [|xg,s − mean(x0

g)| > 1.5 · std(x0
g)], where s is a case

sample, [·] is the Iverson bracket (i. e. [true] = 1 and [false] = 0),
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and the operators mean(·) and std(·) denote mean and standard
deviation, respectively.

Evaluation metrics

Quantitative measures are needed to evaluate how well AMIMs
perform on the original and on the randomized PPI networks.
That is, we need to quantify the meaningfulness of the gene
sets S returned by the tools. For this, we distinguish two dimen-
sions of meaningfulness: predictive power w. r. t. the phenotype
and survival time, and functional relevance for the disease of
interest.

For quantifying predictive power, we employed MI, which is
widely used for selecting features with high predictive power.
More precisely, let y be the vector of case/control disease pheno-
types and xg be the vector of expression values of all samples for
a gene g ∈ S. We computed the mean MI w. r. t. the phenotype
∑

g∈S MI(xg, y)/|S| between y and xg across all genes g ∈ S. Anal-
ogously, the mean MI w. r. t. the survival times was computed
as

∑
g∈S MI(xg, t)/|S|, where t denotes the vector of survival times.

The larger the mean MI, the stronger the association between the
expression data for the genes contained in S and, respectively,
the disease phenotypes and the survival times.

To quantify functional relevance, we computed the mean
negative log-transformed GSEA P-values between the result sets
S and the KEGG [39] pathways related to the disease of interest.
The disease-to-pathway mappings are shown in the Supplemen-
tary Table 2. Moreover, we computed the overlap coefficients
|S ∩ D|/ min{|S|, |D|} between the results sets S and the disease-
associated DisGeNET [40] gene sets D. These gene sets were
obtained by taking all genes connected to the condition of inter-
est in DisGeNET. Only for the UC dataset there was no exact
match. Therefore, we used genes associated with inflammatory
bowel disease of which UC is a subtype. The full DisGeNET
diseases IDs mapping to the conditions is shown in the Supple-
mentary Table 2. Note that, for all four meaningfulness scores,
larger means better.

Let O be a batch of meaningfulness scores obtained for one
of the original PPI networks and R be a batch of scores obtained
for randomized counterparts generated by one of the random
network generators described above. In the large-scale protocol
used for the classical AMIMs (Figure 2A), we used the one-sided
Mann–Whitney U-test to assess whether the scores contained
in O are significantly larger than the scores contained in R. In
the restricted protocol used for the permutation-based methods
(Figure 2B), the Mann–Whitney U-test is not applicable, because
we have |O| ≤ 4 for each partitioning of the results (there are only
four runs on the original PPI networks). Consequently, we parti-
tioned the results along the methods and disease dimensions to
ensure |O| = 1 and instead used the one-sided one-sample t-test.

Although the P-values from the one-sided Mann–Whitney
U-test and the one-sided one-sample t-test tell us whether the
candidate disease modules computed for the original PPI net-
works are significantly more meaningful than those obtained
for the randomized counterparts, they are oblivious to the ques-
tion if the candidate disease modules for the original PPI net-
works are sufficiently meaningful in absolute terms. Assume,
for instance, that O and R contain negative log-transformed
GSEA P-values, that the values contained in O fall into the range
[0.5, 1] and that the values contained in R fall into the range
[0.2, 0.5]. Then the one-sided Mann–Whitney U-test will return
a significant P-value, which, however, should be treated with
extreme caution because the scores in O are themselves not
significant. To account for this fact, we computed a validity score

|{o ∈ O | o ≥ τ }|/|O| for each P-value computed by the one-sided
Mann–Whitney U-test and the one-sided one-sample t-test. For
the negative log-transformed GSEA P-values, the threshold was
set to τ = − log10 0.05; for all other scores, we used τ = 0.2. In
Figures 3 and 7 and Supplementary Figures 1 and 2, the validity
scores are visualized as the sizes of the shapes corresponding to
the P-values.

Let O be a batch of result sets obtained for one of the original
PPI networks, R be a batch of result sets obtained for randomized
counterparts, and avdeg(S) denote the mean degree of a gene set
S, computed w. r. t. the original PPI network. For further analyzing
the results of the full protocol, we used the one-sided Mann–
Whitney U-test to asses whether the mean degrees {avdeg(S) |
S ∈ O} of the gene sets for the original networks are significantly
larger than the mean degrees {avdeg(S) | S ∈ R} obtained for the
randomized counterparts (cf. Figure 6B and E). By splitting along
the AMIM dimension, we obtain an array of P-values for each
AMIM with entries for each network generator. The correlation
coefficients of these arrays with the arrays of AMIM-specific
P-values obtained for the meaningfulness scores visualized in
Figure 3 indicate to which extent the AMIMs merely learn from
the degree distributions of the PPI networks. The larger the
correlation coefficient, the stronger the impact of the degrees
of the genes contained in the result sets on the meaningfulness
scores (cf. Figure 6E).

Implementation

The overall architecture of our test suite is implemented in
Python 3 and schematically visualized in Supplementary Fig-
ure 5. Each tested AMIM is wrapped into an implementation
of an abstract AlgorithmWrapper interface. The wrappers run
the AMIMs via system calls to the original executables. Graph
operations and random network generators are implemented
with NetworkX [55] and graph-tools [56]. GSEA is carried out via
the GSEApy interface of the Enrichr API [57], and statistical tests
are implemented with SciPy [58].

To reproduce the results reported in this paper, it suffices
to execute the top-level Python script run_tests.py, which is
shipped with our test suite. If developers of new AMIMs would
like to use our test suite for evaluating their methods, they
can provide a custom implementation of the AlgorithmWrapper
interface. Our test suite can hence be used to easily benchmark
new AMIMs against the 10 pre-implemented existing methods.
Our test suite is available at https://github.com/dbblumentha
l/amim-test-suite/, along with a detailed README and all data
needed to reproduce the experiments.

Key Points
• Most AMIMs only learn from the node degrees but not

from the biological knowledge encoded in the edges of
PPI networks.

• Only the recently presented AMIM DOMINO yields
significantly more meaningful disease modules if run
on original PPI networks rather than on randomized
counterparts with preserved node degrees.

• Better algorithmic approaches and less biased,
context-specific networks are urgently needed in
the field of active module identification and de novo
network enrichment.
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Availability
The KEGG pathways were obtained from KEGG: https://www.ge
nome.jp/kegg/disease/. BioGRID (v3.2.149), APID (v1.0), STRING
(version 11.0) and HPRD (release 9) as well as DisGeNET (v7.0)
were obtained using nDEx [59–61]. The IID network (v2018-11)
was downloaded from http://iid.ophid.utoronto.ca/. All gene
expression datasets and corresponding metadata were retrieved
from Gene Expression Omnibus [62], using the GEO2R R interface
(https://www.ncbi.nlm.nih.gov/geo/geo2r/). The associated GEO
accession codes are shown in Supplementary Table 2. The entire
test-suite (Python environment, tool executables, PPI networks,
expression datasets) is available at https://github.com/dbblume
nthal/amim-test-suite/.

Supplementary data
Supplementary data are available online at Briefings in
Bioinformatics.

Funding

J.B. received funding from the European Research Council
under the European Union’s Horizon 2020 research and inno-
vation program (grant no. 777111 and grant no. 826078).
This publication reflects only the authors’ view and the
European Commission is not responsible for any use that
may be made of the information it contains. J.B. and M.L.
were supported by the German Federal Ministry of Edu-
cation and Research (BMBF) within the e:Med framework
(grant no. 01ZX1908A). J.B. was supported by the German
Federal Ministry of Education and Research (BMBF) within
the e:Med framework (grant no. 01ZX1910D) and within the
CLINSPECT-M framework (grant no. 031L0214A). Contribu-
tions by O.L. are funded by the Bavarian State Ministry of
Science and the Arts within the framework coordinated by
the Bavarian Research Institute for Digital Transformation
(bidt, Doctoral Fellow). Figures 1 and 2 were created with Bio
Render.com.

References
1. Perou CM, Srlie T, Eisen MB, et al. Molecular portraits of

human breast tumours. Nature 2000; 406(6797): 747–52.
2. Collisson EA, Campbell JD, Brooks AN, et al. Comprehensive

molecular profiling of lung adenocarcinoma. Nature 2014;
511(7511): 543–50.

3. Guinney J, Dienstmann R, Wang X, et al. The consensus
molecular subtypes of colorectal cancer. Nat Med 2015;
21(11): 1350–6.

4. van Vliet MH, Reyal F, Horlings HM, et al. Pooling breast
cancer datasets has a synergetic effect on classification
performance and improves signature stability. BMC Genomics
2008; 9:375.

5. Venet D, Dumont JE, Detours V. Most random gene expres-
sion signatures are significantly associated with breast can-
cer outcome. PLoS Comput Biol 2011; 7(10):e1002240.

6. Batra R, Alcaraz N, Gitzhofer K, et al. On the performance of
de novo pathway enrichment. NPJ Syst Biol Appl 2017; 3:6.

7. Silverman EK, Schmidt HHHW, Anastasiadou E, et al. Molec-
ular networks in network medicine: development and appli-
cations. Wiley Interdiscip Rev Syst Biol Med 2020; 12(6):e1489.

8. Maron BA, Altucci L, Balligand J-L, et al. A global network for
network medicine. NPJ Syst. Biol. Appl. 2020; 6(1): 29.

9. Lazareva O, Lautizi M, Fenn A, et al. Multi-omics analysis in a
network context. In Olaf Wolkenhauer. In: Systems Medicine.
Oxford: Academic Press, 2021, 224–33.

10. Alcaraz N, List M, Batra R, et al. De novo pathway-based
biomarker identification. Nucleic Acids Res 2017; 45(16): e151.

11. Samokhin AO, Stephens T, Wertheim BM, et al. NEDD9 tar-
gets COL3A1 to promote endothelial fibrosis and pulmonary
arterial hypertension. Sci Transl Med 2018; 10(445):eaap7294.

12. Wang R-S, Loscalzo J. Network-based disease module discov-
ery by a novel seed connector algorithm with pathobiologi-
cal implications. J Mol Biol 2018; 430(18, Part A): 2939–50.

13. Amitabh Sharma, Arda Halu, Julius L Decano, et al. Con-
trollability in an islet specific regulatory network identifies
the transcriptional factor NFATC4, which regulates type 2
diabetes associated genes. NPJ Syst Biol Appl, 4:25, 2018.

14. AbdulHameed MDM, Tawa GJ, Kumar K, et al. Systems level
analysis and identification of pathways and networks asso-
ciated with liver fibrosis. PLoS One 2014; 9(11):e112193.

15. Halu A, Liu S, Baek SH, et al. Exploring the cross-phenotype
network region of disease modules reveals concordant
and discordant pathways between chronic obstructive pul-
monary disease and idiopathic pulmonary fibrosis. Hum Mol
Genet 2019; 28(14): 2352–64.

16. Sharma A, Menche J, Chris Huang C, et al. A disease mod-
ule in the interactome explains disease heterogeneity, drug
response and captures novel pathways and genes in asthma.
Hum Mol Genet 2015; 24(11): 3005–20.

17. Stibius KB, Sneppen K. Modeling the two-hybrid detector:
experimental bias on protein interaction networks. Biophys J
2007; 93(7): 2562–2.

18. Schaefer MH, Serrano L, Andrade-Navarro MA. Correcting for
the study bias associated with protein-protein interaction
measurements reveals differences between protein degree
distributions from different cancer types. Front Genet 2015;
6:260.

19. Reyna MA, Leiserson MDM, Raphael BJ. Hierarchical HotNet:
identifying hierarchies of altered subnetworks. Bioinformatics
2018; 34(17): i972–80.

20. Barel G, Herwig R. NetCore: a network propagation approach
using node coreness. Nucleic Acids Res 2020; 48(17): e98.

21. Levi H, Elkon R, Shamir R. DOMINO: a network-based active
module identification algorithm with reduced rate of false
calls. Mol Syst Biol 2021; 17(1): e9593.

22. Ding Z, Guo W, Gu J. ClustEx2: gene module identification
using density-based network hierarchical clustering. In CAC
2018; 2018:2407–12.

23. Ma H, Schadt EE, Kaplan LM, et al. COSINE: COndition-
specific sub-NEtwork identification using a global optimiza-
tion method. Bioinformatics 2011; 27(9): 1290–8.

24. Ghiassian SD, Menche J, Barabási A-L. A DIseAse MOdule
detection (DIAMOnD) algorithm derived from a systematic
analysis of connectivity patterns of disease proteins in the
human interactome. PLoS Comput Biol 2015; 11(4).

25. Breitling R, Amtmann A, Herzyk P. Graph-based iterative
group analysis enhances microarray interpretation. BMC
Bioinform 2004; 5:100.

26. Nacu S, Critchley-Thorne R, Lee P, et al. Gene expression
network analysis and applications to immunology. Bioinfor-
matics 2007; 23(7): 850–8.

27. Nicolas Alcaraz, Hande Kücük, Jochen Weile, et al. KeyPath-
wayMiner: detecting case-specific biological pathways using
expression data. Internet Mathematics, 7(4): 299–313, 2011.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/22/5/bbab066/6189770 by guest on 18 O

ctober 2021

https://www.genome.jp/kegg/disease/
https://www.genome.jp/kegg/disease/
http://iid.ophid.utoronto.ca/
https://www.ncbi.nlm.nih.gov/geo/geo2r/
https://github.com/dbblumenthal/amim-test-suite/
https://github.com/dbblumenthal/amim-test-suite/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab066#supplementary-data
BioRender.com
BioRender.com


Active module identification 11

28. Alcaraz N, Pauling J, Batra R, et al. KeyPathwayMiner 4.0:
condition-specific pathway analysis by combining multiple
omics studies and networks with cytoscape. BMC Syst Biol
2014; 8(99).

29. List M, Alcaraz N, Dissing-Hansen M, et al. KeyPathwayMiner-
Web: online multi-omics network enrichment. Nucleic Acids
Res 2016; 44(Webserver-Issue): W98–104.

30. Larsen SJ, Schmidt HHHW, Baumbach J. De novo and super-
vised endophenotyping using network-guided ensemble
learning. Systems Medicine 2020; 3(1): 8–21.

31. Oughtred R, Stark C, Breitkreutz B-J, et al. The BioGRID inter-
action database: 2019 update. Nucleic Acids Res 2019; 47(D1):
D529–41.

32. Alonso-Lpez D, Gutirrez MA, Lopes KP, et al. APID interac-
tomes: providing proteome-based interactomes with con-
trolled quality for multiple species and derived networks.
Nucleic Acids Res 2016; 44(W1): W529–35.

33. Alonso-Lpez D, Campos-Laborie FJ, Gutirrez MA, et al. APID
database: redefining protein-protein interaction experimen-
tal evidences and binary interactomes. Database 2019; 2019.

34. Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: protein-
protein association networks with increased coverage, sup-
porting functional discovery in genome-wide experimental
datasets. Nucleic Acids Res 2019; 47(D1): D607–13.

35. Keshava Prasad TS, Goel R, Kandasamy K, et al. Human
protein reference database–2009 update. Nucleic Acids Res
2009; 37(Database issue): D767–72.

36. Kotlyar M, Pastrello C, Malik Z, et al. IID 2018 update: context-
specific physical protein-protein interactions in human,
model organisms and domesticated species. Nucleic Acids Res
2019; 47(D1): D581–9.

37. Ross BC. Mutual information between discrete and continu-
ous data sets. PLoS ONE 2014; 9(2):e87357.

38. Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrich-
ment analysis: a knowledge-based approach for interpreting
genome-wide expression profiles. Proc Natl Acad Sci U S A
2005; 102(43): 15545–50.

39. Kanehisa M, Sato Y, Kawashima M, et al. KEGG as a reference
resource for gene and protein annotation. Nucleic Acids Res
2016; 44(D1): D457–62.

40. Piero J, Ram-rez-Anguita JM, Sach-Pitarch J, et al. The Dis-
GeNET knowledge platform for disease genomics: 2019
update. Nucleic Acids Res 2020; 48(D1): D845–55.

41. Lazareva O, Canzar S, Yuan K, et al. BiCoN: network-
constrained biclustering of patients and omics data. Bioin-
formatics 2020.

42. Wu J, Gu Y, Xiao Y, et al. Characterization of DNA methylation
associated gene regulatory networks during stomach cancer
progression. Front Genet 2018; 9:711.

43. Selber-Hnatiw S, Sultana T, Tse W, et al. Metabolic networks
of the human gut microbiota. Microbiology 2020; 166(2):
96–119.

44. List M, Ebert P, Albrecht F. Ten simple rules for developing
usable software in computational biology. PLoS Comput Biol
2017; 13(1):e1005265.

45. Sadegh S, Matschinske J, Blumenthal DB, et al. Exploring the
SARS-CoV-2 virus-host-drug interactome for drug repurpos-
ing. Nat Commun 2020; 11(1): 3518.

46. Gkantsidis C, Mihail M, Zegura EW. The markov chain simu-
lation method for generating connected power law random
graphs. In: Ladner RE (ed). ALENEX 2003. SIAM, 2003, 16–25.

47. Viger F, Latapy M. Efficient and simple generation of random
simple connected graphs with prescribed degree sequence.
J Complex Networks 2016; 4(1): 15–37.

48. Chung F, Lu L. Connected components in random graphs
with given expected degree sequences. Ann Combinatorics
2002; 6(2): 125–45.

49. Joel C. Miller and Aric A. Hagberg. Efficient generation of
networks with given expected degrees. In Alan M. Frieze,
Paul Horn, and Pawel Pralat, editors, WAW 2011, volume 6732
of LNCS, pages 115–26, Berlin, Heidelberg, 2011. Springer.

50. Barabsi A-L, Albert R. Emergence of scaling in random net-
works. Science 1999; 286(5439): 509–12.

51. Jeong H, Mason SP, Barabsi AL, et al. Lethality and centrality
in protein networks. Nature 2001; 411(6833): 41–2.

52. Barabsi A-L, Oltvai ZN. Network biology: understanding
the cell’s functional organization. Nat. Rev Genet 2004; 5(2):
101–13.
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