
Resource
https://doi.org/10.1038/s43588-021-00025-y

1Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark. 2Novo Nordisk Foundation Center for Basic 
Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. 3Chair of Experimental Bioinformatics, 
TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany. 4Chair of Computational Systems Biology, University 
of Hamburg, Hamburg, Germany. 5Division of Animal Physiology and Immunology, TUM School of Life Sciences Weihenstephan, Technical University of 
Munich, Freising, Germany. 6Department of Biostatistics and Epidemiology, University of Southern Denmark, Odense, Denmark. 7Division Data Science 
in Biomedicine, Peter L. Reichertz Institute for Medical Informatics of TU Braunschweig and Hannover Medical School, Brunswick, Germany. ✉e-mail: 
alexander.groenning@sund.ku.dk; jan.baumbach@uni-hamburg.de

Single-cell RNA sequencing (scRNA-seq) allows researchers to 
perform cellular developmental studies with a hitherto unseen 
fine granularity. Single-cell transcriptomes have paved the 

way for novel discoveries in various biomedical fields by improving 
the understanding of how transcriptional profiles relate to cell phe-
notypes. A range of algorithms have been invented for clustering 
of scRNA-seq data and for inferring differentiation trajectories1,2. 
Clustering assumes that single cells can be divided into distinct 
groups, whereas trajectory inference aims to arrange cells such 
that continuous phenotypes can be traced on a low-dimensional 
cell map3. Important examples of the latter include diffusion maps4 
and pseudotemporal ordering of single cells2,5. Both algorithms 
seek to position single cells such that their coordinates reflect their 
developmental statuses in relation to the other cells. Additionally, 
several software packages have been developed for the entire analy-
sis pipeline, from pre-processing to clustering and identification of 
differentially expressed genes. Scanpy6, Seurat7 and SINCERA8 are 
examples of such software packages. Although scRNA-seq data are 
still challenged by noise9, combinations of different tools and algo-
rithms have helped to unravel hidden intercellular mechanisms 
and shed light on unknown cellular paths of differentiation and 
disease progression10,11.

Typical computational analyses of single-cell gene expression 
data involve a pre-processing step, where, for example, cells with 
high levels of mitochondrial DNA and few expressed genes are 
removed. This is often followed by steps like normalization and 
dimensionality reduction of the data12,13, which are typically suc-
ceeded by clustering of the single cells’ transcriptional profiles and/
or inference of developmental trajectories12,14. Normally, the clusters 
or trajectory segments are validated and identified using the expres-
sion of marker genes9–12,15. A notable tool for this type of analysis is 
Switchde16, which can model differential expression over pseudotime 
and thereby identify relevant genes based on the pseudotemporal 

ordering of single cells. A way to examine development trajectories 
more mechanistically is by inferring gene regulatory networks from 
the scRNA-seq data in question9,12,17–19. Despite being useful in spe-
cific scenarios, such (pseudo) gene regulatory networks are limited 
in their power to describe the interactome beyond transcription fac-
tors. The mechanistic patterns they describe do not grant a view of 
the full picture of the complexity of cellular developments. In bulk 
RNA-seq data analysis, network enrichment technology (for exam-
ple, KeyPathwayMiner20, GiGa21 or ActiveModules22) is typically 
applied to find such mechanistic patterns. However, these methods 
have not been developed to consider the noise of scRNA-seq data 
and to work with the computationally inferred pseudotime relation-
ships of cells, making it difficult to obtain meaningful results when 
applying them to single-cell expression data. To meet some of these 
challenges, the tool scPPIN23 was recently proposed. This algorithm 
allows for the comparison of single-cell groups by combining dif-
ferentially expressed genes with a protein–protein interaction (PPI) 
network. By constructing a node-weighted network, the tool finds 
maximum-weight connected subgraphs containing genes that are 
differently expressed in the compared groups.

Even though the approaches to scRNA-seq analysis outlined 
above can help to deduce new insights from scRNA-seq, they can-
not identify mechanistic patterns that explain pseudotemporal cel-
lular developmental programs at an interactome level. Moreover, no 
tools exist that can use the pseudotemporal ordering of single cells 
to identify molecular subnetworks enriched with genes that are dif-
ferently expressed in two distinct differentiation trajectories. From a 
systems medicine point of view, as no tool for direct comparison of 
healthy differentiation trajectories and disease-associated develop-
ment trajectories exists, it remains impossible to locate genes that 
in synergy, as a mechanism, are responsible for disease progression.

To fill this gap, we have developed Scellnetor, which stands for 
‘Single-cell Network Profiler for Extraction of Systems Biology 
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Patterns from scRNA-seq Trajectories’. Scellentor is the first 
pseudotemporal scRNA-seq network enrichment technique 
that can unravel connected subnetworks of genes crucial for 
explaining the progression of single-cell development trajecto-
ries. The method allows users to compare single-cell trajectories 
selected on low-dimensional cell maps. The selected cell sets are 
pseudotime-sorted and clustered using a hierarchical cluster-
ing algorithm that is constrained by the PPI network from the 
BioGRID24 (or a user-chosen network). Scellnetor identifies gene 
modules (connected subnetworks of genes) that are either differ-
ently or similarly expressed in two selected sets of cells (Fig. 1). The 
tool is therefore able to extract mechanisms that are fundamental 
cellular driver programs for differentiating between distinct devel-
opment courses.

To clarify terminology, throughout this paper we will refer to 
subnetworks of connected genes as ‘modules’, which can be repre-
sented by a set of genes and a set of edges. By contrast, we refer to 
a set of cells as a ‘cluster’ or a ‘group’ if the cells have been picked 
without any ordering (for example, representing a cell type) or we 

refer to them as a ‘trajectory’ if a set of cells are ordered, for example 
by pseudotime. Scellnetor now identifies ‘modules’ (subnetworks of 
genes in a given interaction network) by comparing two ‘clusters’, 
two ‘groups’ or two ‘trajectories’ of user-selected cells.

Results
Overview of the Scellnetor method. Scellnetor allows for com-
parisons of user-chosen single-cell sets and to unravel network 
modules driving cell differentiation or disease progression on 
a system-biological level over pseudotime. Scellnetor requires 
Scanpy-generated ANNDATA6 objects in H5AD file format as raw 
data input and Scanpy-generated plots as template plots. The tem-
plate plots are cell maps contained within the uploaded ANNDATA 
object that the user wishes to apply for data representation in the 
downstream analysis pathway (Fig. 1a and Supplementary Fig. 1). 
The coordinates of the single cells on the template plots are con-
verted into points on a canvas plot, on which the user can inter-
actively select cell clusters or trajectories to be analysed (Fig. 1b 
and Supplementary Fig. 1). In Fig. 1b, a user has selected two sets 
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Fig. 1 | Workflow of Scellnetor. a, The user chooses the desired template plot. b, The user selects cells on the canvas plot that represent differentiation 
trajectories. c, Scellnetor performs a constrained agglomerative hierarchical clustering based on expression data from the selected cells. d, The user can 
inspect and download the results. Scellnetor outputs connected subnetworks of genes (modules) and mean gene expression together with the 95% 
confidence intervals.

Nature ComPutational Science | VOL 1 | February 2021 | 153–163 | www.nature.com/natcomputsci154

http://www.nature.com/natcomputsci


ResourceNATURe CompUTATIonAl ScIence

of single cells by creating two paths through the canvas plot. See 
Methods for a detailed explanation of the algorithms underlying 
the single-cell selection on the canvas plot. The selected cells are 
extracted and converted into expression matrices in which the cells 
are sorted in ascending order based on a user-chosen sorting key. 
We recommend using pseudotime as sorting key, as it provides 
information about the intercellular differentiation status over time5, 
which further enhances Scellnetor’s ability to identify interaction 
network modules important for the analysed development trajecto-
ries. Scellnetor computes a hyper-similarity matrix when comparing 
two single-cell sets (like in Fig. 1). The hyper-similarity matrix con-
tains information on how the genes are expressed compared to one 
another in the individual single-cell sets and compared to the genes 
in the single-cell set against which they are compared (Methods and 
Fig. 2). Scellnetor clusters the data of the hyper-similarity matrix 
using a constrained agglomerative hierarchical clustering algorithm 
for extracting gene modules. The clustering is constrained by the 
interactions of biological networks, by default extracted from the 
BioGRID24 database (Methods).

Scellnetor outputs (1) network modules enriched with genes that 
are differently expressed in the two compared cell sets, (2) plots that 
show mean expressions and 95% confidence intervals of the genes 
in the modules and (3) TSV files with statistically significant Gene 
Ontology (GO) terms of the modules’ genes (Methods).

Differences between neutrophil and erythrocyte development 
trajectories. To validate the Scellnetor methodology, we used 
scRNA-seq data from ref. 15. In their article, Paul et al. analysed gene 
expression patterns of mouse haematopoietic cells while they dif-
ferentiated to progenies from a pool of progenitor cells: common 
myeloid progenitors (CMPs), granulocyte-macrophage progeni-
tors (GMPs) and megakaryocyte-erythrocyte progenitors (MEPs). 
Using an expectation maximization-based clustering approach, 
Paul et al. divided the single cells into 19 different groups. Finally, 
they constructed a detailed map of the dynamic transcriptional 
states within the myeloid progenitor populations. Using the single 
cells from the 19 groups and their scRNA-seq gene expression data-
set (GSE72857), we constructed an ANNDATA object, created cell 
maps and computed pseudotime. Our ANNDATA object contained 
2,730 single cells that expressed 3,451 genes (Methods). Our pseu-
dotime calculation was based on the progenitor groups defined by 
Paul et al. (groups 7–11 in Supplementary Fig. 2a) and coordinates 
from a cell map (used as the template plot) based on principles of 
force-directed graph drawing25, which showed clear branching of 
the differentiated cells. Also, the plot showed clear co-localization 
of the Paul et al. groups that were highly similar. The ‘start cell’ 
for the pseudotime computation5 was the cell closest to the aver-
age position of all relevant progenitor groups (groups 7–10 in 
Supplementary Fig. 2a and Fig. 2b; see Supplementary Information 
for the proposed rationales behind finding a ‘start cell’). Group 11 
was omitted, as it was dislocated from the remainder of the cells on 
the plot (Supplementary Fig. 2a). The connected area where Paul et 
al. groups 7–10 are co-localized will be referred to as the ‘stem cell 
area’ (Supplementary Fig. 2a and Fig. 3b).

We ran our Scellnetor algorithms to extract comparative 
systems-biology profiles between the trajectory from stem cells 
towards differentiated neutrophils versus the trajectory from stem 
cells towards differentiated erythrocytes (Fig. 3a). The drawn paths 
go through several of the Paul et al. defined groups. Outside the 
stem cell area, the neutrophil path goes through groups 15–17, 
where 16–17 are the neutrophil-specific groups. The erythrocyte 
path goes through cells in the stem cell area and groups 1–6, which 
all are erythrocyte-specific groups (Fig. 3a and Supplementary Fig. 
2a). Using Scellnetor, we identified seven gene modules with a mini-
mum size of five genes using pseudotime as the sorting key. The 
distance metric was Euclidean, the linkage type was complete and 

the size of the moving average was 20 (information about the hyper-
parameter settings is provided in the Methods).

In Fig. 3, we demonstrate three of the modules. Figure 3b,d,f 
presents plots of the means and 95% confidence intervals of the 
smoothed average expression in each of the three modules. One 
can see how the gene expression in the modules differs over pseu-
dotime between the neutrophil and erythrocyte trajectories. Using 
the Wilcoxon signed-rank test, we show that the average expres-
sion over time of the genes of the modules from the two distinct 
paths are statistically significantly different (q value of 2.52 × 10−59 
for all modules).

Consistency in gene expression. In Fig. 3a, the neutrophil path 
passes through stem cells and cells from Paul et al. groups 15–17, 
whereas the erythrocyte path goes through stem cells and cells 
from Paul et al. groups 1–6 . The paths contain subsets of these 
groups, so it was of interest to check if the differences in expression 
between the paths were consistent with the differences in expression 
between the corresponding groups (for example, groups 15–17 ver-
sus groups 1–6, according to ref. 15). We extracted all genes from the 
Scellnetor modules (Fig. 3 and Supplementary Fig. 3) and created 
two cell sets, one containing all cells from Paul et al. groups 15–17 
and one containing all cells from Paul et al. groups 1–6. Based on 
the two sets, we used our initial count matrix (Methods) to com-
pute the average expression of the genes in the Scellnetor modules. 
We plotted the averaged gene expression values and compared 
the resulting distributions using the Wilcoxon signed-rank test 
(Supplementary Fig. 4a–g). The same was done for the subsets of 
the above Paul et al. groups that were included in the paths shown in 
Fig. 3a (Supplementary Fig. 4h–n). For these calculations, we used 
the pre-processed expression matrix from our ANNDATA object 
(Methods). We found that the cells in the Scellnetor paths (Fig. 3a)  
expressed genes in a manner that was consistent with the gene 
expression of the cells in the relevant Paul et al. groups.

Unravelling of marker genes. The clustered genes as gene mod-
ules are shown in Fig. 3c,e,g. The q values next to each module are 
based on Mann–Whitney U tests and indicate that these modules 
are statistically significantly different from the entire distribution of 
hyper-similarities (the q values for modules 1, 2 and 3 are 4.29 × 10−9, 
1.25 × 10−5 and 2.58 × 10−50, respectively). In other words, a low q 
value (and P value) indicates that it is unlikely that the connections 
of the module are similar to connections randomly sampled from 
the entire distribution of hyper-similarities, and thus are similar to 
a randomly generated module. The genes P4HB, CALR and HSPA5 
in module 1 (Fig. 3c) produce surface markers that are expressed at 
high levels in neutrophils. The genes GATA1, ZFPM1 and GTF2F1 
in module 3 (Fig. 3g) code for transcription factors that are upreg-
ulated in erythrocyte differentiating cells. The genes NCL, HBA2, 
C1QBP and ATP5IF1 are all known marker genes associated with 
the erythrocyte lineage (Fig. 3g). Additional transcription factors 
upregulated in erythropoiesis are GFI1B, LMO2 and CBFA2T315, 
which were found in Scellentor module 7 (Supplementary Fig. 3h). 
The genes in the Scellnetor module 3 (Fig. 3g) are more highly 
expressed on average in the cells located in the erythrocyte trajec-
tory. This is corroborated by higher expression of HBA2, which 
codes for a subunit of haemoglobin26, and ATP5IF1, which codes 
for a mitochondrial ATPase inhibitor that is involved in the synthe-
sis of haemoglobin27.

Gene set enrichment analysis results. Scellnetor automatically 
conducts gene set enrichment analysis when gene modules have 
been identified. To demonstrate this functionality, the tables in Fig. 
3b,d,f display four biologically meaningful statistically significant 
biological-process GO terms associated with each module. The GO 
terms associated with the modules are all provided in Supplementary 

Nature ComPutational Science | VOL 1 | February 2021 | 153–163 | www.nature.com/natcomputsci 155

https://www.ncbi.nlm.nih.gov/gds/?term=GSE72857
http://www.nature.com/natcomputsci


Resource NATURe CompUTATIonAl ScIence

File 1. Genes involved in the ‘ATF6-mediated unfolded protein 
response’, ‘protein folding in endoplasmic reticulum’ and ‘sequester-
ing of calcium ion’ have been found highly expressed in module 1 
(Fig. 3b). The first two GO terms describe events that are related 
to protein folding and endoplasmic reticulum (ER) stress. It has 
been shown that ER stress is decreased during neutrophil differen-
tiation28. Scellnetor showed that CALR is highly expressed in the 

neutrophil trajectory compared to the erythrocyte trajectory. CALR 
codes for a multi-functional protein called calreticulin, which coun-
teracts ER stress and is involved in the correct maintenance of cal-
cium ions in the ER29. The gene P4HB (Fig. 3e) has also been found 
to downregulate ER stress30. Eleven of 13 genes in module 1 (Fig. 
3b; except for B4GALT4 and RPS6KA1) are associated with the GO 
term ‘extracellular exosome’. Releasing exosomes is an important 
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part of neutrophil signalling31. The GO terms ‘respiratory burst’, ‘cell 
redox homeostasis’ and ‘superoxide metabolic process’ from module 
2 (Fig. 3d) all relate to well-known neutrophilic cellular processes. 
A distinctive feature of the inflammatory actions of neutrophils is 
the respiratory or oxidative burst, where large amounts of oxygen 
are consumed to produce superoxide32. Recent studies revealed that 

neutrophils might play a key role in angiogenesis, as they can store 
and synthesize molecules with known angiogenic activity (fourth 
GO term, Fig. 3d)33–35. Module 2 does not contain any genes that 
were highlighted by ref. 15 as noteworthy for the neutrophilic dif-
ferentiation course. However, it has been described that neutrophil 
cytosolic factors 1, 2 and 4 (NCF1, NCF2 and NCF4) interact with 
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Fig. 4 | Differentiation of progenitor cells to dysfunctional CD8 T cells. a, Diffusion map of the single cells that differentiate into functional and 
dysfunctional CD8 T cells. On the left, in navy blue, is the development trajectory of cells from progenitor cells (cluster 1 in ref. 10) to functional CD8 T cells 
(cluster 2 in ref. 10). On the right, in amber, is the development trajectory of cells from progenitor cells to dysfunctional CD8 T cells (clusters 3 and 4 in ref. 10).  
b, Mean gene expression and 95% confidence intervals of the selected cluster. The genes in the cluster shown in c are on average expressed at a higher 
level in the cells developing via the functional trajectory. The q value below the plot is based on a Wilcoxon signed-rank test comparing the average gene 
expressions. c, A Scellnetor-identified module. The genes are colour-coded as follows: green genes are involved in immune responses, yellow genes are 
involved in signalling, orange genes are involved in regulation of gene expression, brown genes are involved in metabolism, blue genes are involved in other 
processes and grey genes do not belong to any of the mentioned groups. The colour coding is based on our subjective assessments of the genes’ general 
functions. The associated q value is based on the Mann–Whitney U test. This indicates that the cluster is statistically significantly different from randomly 
generated clusters. All q values in this figure were found using the Benjamini–Hochberg procedure.
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CYBA and RAC2 at the membrane as subunits of the NOX2 com-
plex. Interestingly, the inclusion of RAC2 in this molecular assembly 
is specific for neutrophils36–38.

The GO terms ‘regulation of definitive erythrocyte differentia-
tion’ and ‘erythrocyte development’ from module 3 (Fig. 3f) indicate 
that the cells from the erythrocyte trajectory in fact do express genes 
associated with erythropoiesis. The GO term ‘mitochondrial elec-
tron transport, ubiquinol to cytochrome c’ (Fig. 3f) is interesting, 
because the proteins resulting from the genes linked to this term 
(UQCRC2, UQCRFS1 and CYC1; Fig. 3g) have been found in high 
abundance in erythroid progenitor cells compared to haematopoi-
etic stem cells39. Apparently, these genes are more highly expressed 
in erythrocyte differentiating cells than in neutrophil differentiating 
cells. The GO term ‘negative regulation of RNA polymerase II’ fits 
well with genes involved in erythropoiesis, because mature erythro-
cytes lose their nuclei, which is where RNA polymerase II catalyses 
transcription of genes to pre-mRNA40.

Differences between functional and dysfunctional exhausted 
CD8 T cells in chronic infection. To demonstrate that Scellnetor 
can be used to identify mechanisms underlying disease progression, 
we re-analysed a dataset of pathways of CD8 T-cell differentiation in 
a well-defined standard model of chronic infections10. In their origi-
nal work, the authors of ref. 10 investigated the role of CD4 help for 
the maintenance and function of the stem-like progenitors and their 
terminally differentiated CD8 T-cell progeny using scRNA-seq. 
Using previously established signature genes, they identified five 
clusters. Cluster 1 represented the critical stem-like progenitors 
and cluster 2 the functional and clusters 3–5 the dysfunctional dif-
ferentiated effector cell subpopulations. Absence of CD4 help did 
not affect the maintenance of the progenitors, but caused a massive 
decline in the effector compartment, the most affected of which was 
the functional cluster 2. In our study, we used the cells from these 
five clusters (GSE137007) to generate an ANNDATA object, calcu-
late pseudotime and compute a diffusion map (Methods). We used 
the cluster annotations of the above presented clustering from ref. 10 
to colour-code the cells (Fig. 4a).

We defined two trajectories of differentiation starting from the 
progenitor subpopulation (cluster 1), one towards the functional 
effector cells (cluster 2) and one towards the dysfunctional effector 
cells (clusters 3 and 4). We excluded cluster 5 (Fig. 4a, cells in black) 
from the analysis as it is condition-specific and was only observed 
in the absence of CD4 help. Using Scellnetor, we unravelled a gene 
module with increased expression in cells progressing in the dys-
functional trajectory and decreased expression in those progressing 
in the functional trajectory (Fig. 4b,c). The complexity of the gene 
module is highlighted by the diversity of the genes and their func-
tions, including processes like regulation of gene expression (epigen-
etic, transcriptional and translational), signalling, immune defence, 
cell migration, cytoskeletal reorganization and genes involved in the 
T-cell receptor (TCR) signalling pathway (CD3G, FYN, ZAP70, LAT, 
ITK, PTPN22, LCP2, SLA2, NEDD4, NEDD9, LRRK1, SH2D2A and 
SH2D3C), whose excessive stimulation is known to be one of the 
main drivers of T-cell exhaustion41. The two most statistically signif-
icant GO terms associated with this gene module are ‘T-cell recep-
tor signalling pathway’ and ‘T-cell activation’ (Supplementary File 
2). TCR signalling is connected to two therapeutically interesting 
receptors involved in the regulation of the T-cell response, ILDR1 
and TNFRSF9, which could potentially be used for its modulation. 
ILDR1 function as a regulator of T-cell response in chronic infection 
and cancer is intriguing, especially taking into account that ILDR2 
was recently described as a negative regulator of T-cell function42. 
TNFRSF9 (coding 4–1BB) is a positive regulator of T-cell effector 
function and survival, and its stimulation has already been reported 
to ameliorate T-cell exhaustion43. The mechanistic gene module also 
includes diverse regulators of nuclear factor-κB signalling (PPP6R3, 

TERF2IP and EFHD2), which is critical for T-cell survival and cyto-
kine production44. The negative regulator EFHD2 is of particular 
interest, as it is necessary for PD-1-mediated inhibition of prolif-
eration and cytokine secretion in dysfunctional CD8 T cells45. As 
previously reported, the transition from functional to dysfunctional 
CD8 T cells is associated with metabolic reprogramming marked by 
a switch from glycolysis to oxidative phosphorylation (OXPHOS) 
as a main pathway for the generation of adenosine triphosphate 
(ATP). In line with this, our dysfunctional gene module includes 
multiple genes involved in fatty-acid beta oxidation and OXPHOS 
(MDH1, KIAA1191, IDH3A, ECH1, OXCT1 and PRDX5) and puta-
tive regulators of this metabolic adaptation (HIF1AN, ARID5B and 
MTRF1L). Interestingly, HIF1AN is an inhibitor of HIF1α (HIF1, 
hypoxia inducible factor 1), which is known to trigger the expres-
sion of genes promoting the use of glycolysis over mitochondrial 
oxidative phosphorylation as the main energy generating path-
way46–48. Moreover, HIF activity has been shown to enhance the 
effector CD8 T-cell response and influence the expression of piv-
otal transcription, effector and co-stimulatory molecules in chronic 
infection49. Altogether, this demonstrates that the gene modules 
extracted by Scellnetor are functionally related mechanisms that 
precisely reflect the opposing nature of progenitor differentiation 
towards functional or dysfunctional CD8 T cells. Thus, Scellnetor is 
a promising systems medicine hypothesis generator for identifying 
the molecular subnetworks mechanistically driving dynamic differ-
entiation of complex cell populations.

Discussion
To investigate Scellnetor’s robustness and sensitivity, we conducted 
different analyses of Scellnetor in different settings and compared 
it to scPPIN, Switchde and standard single-cell differential expres-
sion analyses (Supplementary Information, Supplementary Tables 
1–9 and Supplementary Fig. 5). Our experiments demonstrate that 
Scellnetor finds relevant module-specific and mechanism-specific 
genes and associated GO terms that could not be detected by any of 
the compared approaches.

Note that we have implemented a moving average function to 
remove noise, and we hypothesize that using a pseudotemporal 
ordering of the data points (single cells) before smoothing is more 
informative than using an arbitrary sorting key. To investigate 
how different sorting keys help define the resulting modules, we 
compared two Scellnetor-generated module sets that were based 
on the same cell sets and generated using two different sorting 
keys (Supplementary Information and Supplementary Table 10). 
The comparison shows that the final modules of the two module 
searches are different, which suggests that choosing a sorting key is 
an important step in the Scellnetor pipeline. In general, we recom-
mend using pseudotime as the sorting key for single-cell ordering 
before clustering.

Scellnetor utilizes per default networks from the BioGRID 
to constrain the agglomerative hierarchical clustering. As men-
tioned, any user-uploaded network should use human Entrez IDs 
as node identifiers, because Scellnetor converts human gene sym-
bols, human Ensemble stable IDs or mouse gene symbols to human 
Entrez IDs. However, because of overlapping gene symbol usage and 
the identical human–mouse gene orthology of certain genes, some 
human and mouse gene symbols are mapped to the same human 
Entrez IDs. In these cases, Scellnetor will automatically represent 
these Entrez IDs by the first instance of the genes in question that 
it meets in its search. As this might introduce minor gene impreci-
sions in the resulting modules, we recommend that users integrate 
a list with either human Entrez IDs or Ensemble stable IDs in the 
applied ANNDATA object. This will preserve the highest number of 
genes that can be used for clustering. Although Scellnetor can utilize 
a user-uploaded network, it only allows undirected edges in the net-
works and thus cannot use all information stored in, for example, 
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gene regulatory networks. Finally, Scellnetor can only compare two 
single-cell sets, which hampers the analysis of biological phenom-
ena where, for example, one progenitor cell develops into more 
progenies. Future versions of Scellnetor will account for these limi-
tations by allowing usage of mouse interaction networks, integrate 
directionality in the clustering process and enable comparisons of 
more than two single-cell sets. One could also imagine having the 
networks not provided by the user but inferred directly from the 
single-cell data. Such a methodology could be developed and inte-
grated in the future.

Methods
Selecting cells on the canvas plot. Generating paths. When drawing paths 
with Scellnetor, users select cells on the canvas plot, which will be connected 
automatically with a path. The order in which the cells are selected directs 
the construction of the path through the plot. Let Z be the set of all cells and 
X = {x1,x2,x3…xn} the set of user-selected cells. The path is created by forming a 
path between x1 and x2 followed by a path between x2 and x3, and so on. A path 
between cell xi and cell xi + 1 is generated by finding the cell xia that is closest to xi 
and closer to xi + 1 than xi is. This is followed by finding the cell xib that is closest to 
xia and closer to xi + 1 than xia is. This is repeated until a sub-path between xi and xi + 1 
has been drawn. This is done for all possible pairs of xi and xi + 1 in X. The result is 
a minimal greedy path, which is the path connecting the cells in X with the fewest 
number of cells possible when following the rules of the greedy path algorithm. 
The cells in the resulting path are stored in the set, Xpath.

The paths can be expanded (that is, made thicker to include more cells) by 
including a user-defined percentage of cells that neighbour cells in the minimal 
greedy path. This is achieved by greedily adding the closest cells to cells that are 
already in Xpath until the desired number of cells is reached. Euclidean distance is 
used as the distance metric and Xexpand = Xpath when i = 0 for Xpath = {x1,x2,x3…xN} 
where N is the number of cells in the minimal greedy path. Additionally, the user 
can even out the sizes of the generated paths so they contain the same number cells.

Finding similar-sized paths. Scellnetor has integrated functionalities that allow users 
to even out the sizes of their drawn paths. If two paths have been drawn and one 
has been expanded by inclusion of the pct percent closest points, and the other is 
in its minimal greedy path form, then let Xexpanded be the set containing the cells 
of the expanded path and Ypath be the set containing the cells of the path, which 
is in its minimal greedy path form. To even out the sizes of Xexpanded and Ypath, first 
expanded by the inclusion of the pct percent closest cells for every yi 2 Ypath

I
. The 

result is the set Yexpanded. If |Yexpanded| = |Xexpanded|, then the objective has been reached. 
If |Yexpanded| < |Xexpanded|, a cell from Yexpanded is chosen at random and its closest 
neighbour that is not already in Yexpanded is added to the set. This is repeated until 
|Yexpanded| = |Xexpanded|. Adding cells like this will promote a uniform expansion of the 
path. If |Yexpanded| > |Xexpanded|, distances from the cells in Ypath to cells in Yexpanded − Ypath 
are calculated. The cells in Yexpanded − Ypath that have the average longest distance 
to all cells in Ypath are removed until |Yexpanded| = |Xexpanded|. Users can even out their 
paths even if both paths have been expanded or none of them has. However, it is 
not possible to get a path smaller than the path’s minimal greedy path form.

Selecting pre-defined clusters. Users select cells on a canvas plot, and the cluster 
to which the cell belongs is coloured in accordance with the chosen set colour. 
Switching between colours and selecting cells in different clusters makes it possible 
to create two distinct sets of clusters that can be compared.

Hyper-similarity matrix. Extraction of cells and smoothing of timelines. A 
hyper-similarity matrix is only calculated when two sets are compared. For 
the following elucidation of the hyper-similarity matrix computation, it will be 
assumed that a user has made two paths on a canvas plot, path A and path B. The 
cells in path A and path B are extracted and their expression patterns are compiled 
into matrices A and B, respectively (Fig. 2a). Matrix A has size g × m and B has 
size g × l, where g is the number of genes, and m and l are the numbers of cells in 
paths A and B, respectively. The orders of the cells in the matrices are sorted using 
pseudotime as the sorting key. To reduce noise, a moving average function is per 
default applied on the rows of A and B, which results in new matrices called Amean 
and Bmean with sizes g × m′ and g × l′, respectively. The elements in row i and column 
j of Amean and Bmean are found using the following moving average formula:

Ameani;j ¼
1
a

Xa�1

z¼0

Ai;jþz ð1Þ

where a is the user-defined size of the moving average window and Ai,j is the 
element in row i and column j of matrix A. Equation (1) is applied on every row 
of A and B and every jth column in the range fj 2 Nj1≤ j≤m� aþ 1g

I
 for A and 

every jth column in the range fj 2 Nj1≤ j≤ l � aþ 1g
I

 for B. In cases where the 
two paths are of different lengths, the moving average window of the longer path is 
adjusted such that both paths contain the same number of smoothed values.

Uniform manifold approximation and projection of single-cell gene expression. 
Before the gene expression patterns in the two sets are compared, the smoothed 
data in Amean and Bmean are further dimensionality-reduced utilizing uniform 
manifold approximation and projection (UMAP)50. However, it is possible to 
uncouple UMAP from the Scellnetor pipeline, such that only Amean and Bmean are 
used for the hyper-similarity matrix computation (see section ‘Computing the 
hyper-similarity matrix without UMAP’). Researchers can choose one of the four 
distance metrics—Euclidean distance, Manhattan distance, Minkowski distance or 
Correlation—when computing relationships between cellular expression patterns. 
Scellnetor sets the UMAP parameters n_neighbors=30, min_dist=0.0 and random_
state=42 and allow users to choose the number of dimensions to which the input 
data should be reduced. The remaining UMAP parameters are set to their default 
values. Amean and Bmean are concatenated before being transformed by UMAP, as the 
gene expression patterns from the two matrices will thereby be high-dimensional 
coordinates on the same manifold structure. This will provide more meaningful 
inter-coordinate Euclidean-based distances of the dimensionality-reduced data. 
UMAP outputs a different coordinate landscape depending on the order of the 
concatenation. For example, the Euclidean distances between coordinates resulting 
from a UMAP-embedding of the concatenation of Amean and Bmean are similar, but 
slightly different from the Euclidean distances between coordinates resulting from 
a UMAP-embedding of the concatenation of Bmean and Amean.

Hence, to retain determinism of the Scellnetor clustering, a dimensionality 
reduction is conducted on both the concatenation of Amean and Bmean and the 
concatenation of Bmean and Amean. The resulting dimensionality-reduced matrices, 
CsmallAB
I

 and CsmallBA
I

, both have size 2g × 2, where g is the number of genes in 
Amean and Bmean. CsmallBA

I
 is redefined as the concatenation of CsmallBA g :½ 

I
 on top of 

CsmallBA : g½ 
I

, as the order of the genes in the two coordinate sets should be identical 
for the further processing. CsmallBA g :½ 

I
 is the slice of CsmallBA

I
 that contains the last g 

rows and CsmallBA : g½ 
I

 is the slice of CsmallBA
I

 that contains the first g rows.
Hadamard product of distance matrix quadrants. When comparing the two paths—
path A and path B—a hyper-similarity matrix is computed. CsmallAB : g½ 

I
 contains 

the moving-average-modified and dimensionality-reduced gene expression 
patterns from path A, and CsmallAB g :½ 

I
 contains the moving-average-modified and 

dimensionality-reduced gene expression patterns from path B. The same holds 
true for CsmallBA : g½ 

I
 and CsmallBA g :½ 

I
, respectively. Again, g is the number of genes 

in Amean and Bmean. A CsmallAB
I

 versus CsmallAB
I

 distance matrix, DsmallAB
I

, and a CsmallBA
I

 
versus CsmallBA

I
 distance matrix, DsmallBA

I
, are calculated using Euclidean distance as 

the metric. Again, to retain determinism of the Scellnetor clustering approach, a 
distance matrix, Dsmall, is found by

Dsmall ¼
DsmallAB  DsmallBA

2
ð2Þ

where the values of Dsmall are modified by

D0
small ¼

Dsmall

max Dsmallð Þ þ 10�6 ð3Þ

In the matrix Dsmall in our example (Fig. 2), the upper left quadrant corresponds 
to a path A versus path A Euclidean distance matrix and the lower right quadrant 
corresponds to a path B versus path B Euclidean distance matrix. The upper triangle 
of the upper right quadrant corresponds to the upper triangle of a path A versus 
path B Euclidean distance matrix and the lower triangle of the upper right quadrant 
corresponds to the lower triangle of a path B versus path A Euclidean distance matrix.

The diagonal of Dsmall is zeroed out. The diagonal of the upper right quadrant 
of Dsmall is zeroed out as well, because similar values will be used to weigh the 
hyper-similarity matrix at a later step. The upper triangular matrix of the upper left 
quadrant is defined as DAA, the upper triangular matrix of the lower right quadrant 
is defined as DBB, the upper triangular matrix of the upper right quadrant is defined 
as DAB, and the lower triangular matrix of the upper right quadrant is defined as 
DBA. The values in DAA and DBB are reversed by

D0
XX ¼ DXX � 1ð Þj j ð4Þ

where DXX is the matrix and 1 is subtracted from it to set the values of the matrix in 
the range]0;1]. In this way, no values are zeroed out after reversion of the distance 
values and the relative distance differences remain unchanged. If the user wants 
modules that have similar expression patterns in path A and path B, respectively, 
and similar expression patterns when comparing path A and path B, then DAB and 
DBA are updated using equation (4) (module type 1).

The matrices DAB and DBA remain as initially defined if the resulting modules 
should have similar expression patterns in path A and path B, respectively, and 
dissimilar expression patterns when comparing path A against path B (module type 
2). To compress matrices DAA, DBB, DAB and DBA into a single ‘pre-hyper-similarity 
matrix’, D, the four matrices are element-wise multiplied as follows:

D ¼ DAA  DBB  DAB  D>
BA ð5Þ

where ⊙ is the Hadamard product. The diagonal and the lower triangular matrix of 
D are zeroed out. Now, the matrix D only needs a few processing steps before it is 
ready for the clustering as a hyper-similarity matrix.
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Weighting values of the hyper-similarity matrix. In D, the values depend on the 
Euclidean distances between the gene expression patterns from the cells in path 
A and on the Euclidean distances between the gene expression patterns from the 
cells in path B. The matrices Amean and Bmean, derived from the two paths, contain 
the moving-average-modified expression values of the same genes in the same 
order, but measured as the cells in the two sets follow different differentiation 
trajectories. The matrix element at Di,j depends on the expression values of gene i 
in Amean and Bmean, respectively, and on the expression values of gene j in Amean and 
Bmean, respectively. The matrix element at Di,j should also depend on the Euclidean 
distance of gene i in Amean versus gene i in Bmean and gene j in Amean versus gene j in 
Bmean. Until now, these values have been zeroed out and ignored, but they will be 
used to weigh the matrix D in the following steps (Fig. 2).

For example, if a user applies Euclidean distance as metric and wants to 
find modules of module type 1, then the value in row i and column i of D 
should be ‘penalized’ if Ameani,: and Bmeani,: are far away from each other in the 
Euclidean space and/or if Ameanj,: and Bmeanj,: are far away from each other in the 
Euclidean space. Ameani,: indicate the entire row i of Amean. To obtain the Euclidean 
distances of genes with identical IDs in Amean and Bmean, new coordinate sets 
are defined: CABA ¼ CsmallAB : g½ 

I
, CABB ¼ CsmallAB g :½ 
I

, CBAA ¼ CsmallBA : g½ 
I

 and 
CBAB ¼ CsmallBA g :½ 
I

, where g is the number of genes in Amean and Bmean. Two vectors, 
vAB and vBA, are calculated by finding the Euclidean distances between every 
identically indexed row of CABA

I
 and CABB

I
 and every identically indexed row of 

CBAA

I
 and CBAB

I
, respectively, such that vABj j ¼ vBAj j ¼ g

I
. A vector, v, is defined by

v ¼ vAB þ vBA
2

ð6Þ

If the aim is to find modules of module type 1, then v is normalized as follows

v0 ¼ v �min vð Þ ð7Þ

v00 ¼ v0

max v0ð Þ þ 10�6ð Þ � 1

� �����
���� ð8Þ

If modules of module type 2 are the objective, then v is normalized by

v0 ¼ v � min vð Þ � 10�6
� �

ð9Þ

v00 ¼ v0

max v0ð Þ ð10Þ

In both scenarios, v will be in the range ]0;1], which implies that nothing 
will be zeroed out by the weighting of v. The hyper-similarity matrix is found by 
weighting row Di,: by element vi and weighting column D:,j by element vj, where i is 
in the range fi 2 Nj1≤ i≤gg

I
 and j is in the range fj 2 Nj1≤ j≤gg

I
. As a final step, 

D is normalized by

D0 ¼ D� min Dð Þ � 10�6
� �

ð11Þ

D00 ¼ D0

max D0ð Þ ð12Þ

such that all possible gene–gene hyper-similarities are in the range ]0;1].

Computing the hyper-similarity matrix without UMAP. Scellnetor allows users to 
choose whether they want to use UMAP on top of the moving average function for 
further dimensionality-reduction of the data. When UMAP is uncoupled from the 
Scellnetor pipeline, the hyper-similarity matrix computation includes the following 
steps presented:

	1.	 The lengths of the genes’ pseudotemporal expression patterns are reduced 
using the moving average function.

	2.	 The resulting dimensionality-reduced expression data are used for calculation 
of a distance matrix, which is modified using equation (3).

	3.	 Depending on whether the user wishes to find modules of module type 1 or 
module type 2, the relevant quadrants of the distance matrix are converted to 
similarities by equation (4).

	4.	 The element-wise product of the quadrants is found using equation (5).
	5.	 The vector containing the distances of identical genes but from the different 

sets are modified by equations (7) and (8) or by equations (9) and (10), 
depending on whether modules of module type 1 or module type 2, respec-
tively, are desired.

	6.	 Every row and column of the matrix found in step 4 are multiplied by the 
elements of the vector found in step 5.

	7.	 The final matrix is normalized by equations (11) and (12).

Interpreting the hyper-similarity values. When comparing two sets of cells, 
Scellnetor computes a hyper-similarity matrix. The hyper-similarity matrix 
contains information on how the genes are expressed relative to each other within 

a set of cells as well as between the compared sets of cells. The main goal of our 
similarity function is to find genes whose expression patterns are highly similar 
and conserved within each cell set, but dissimilar between the cell sets (module 
type 2). As an example, a high hyper-similarity value (close to 1) between two 
genes (gene1 and gene2) that are connected in a network implies the following if, 
for example, Euclidean distance is used as the metric:

	1.	 Both genes express pseudotimelines in two user-drawn paths, path A and 
path B: gene1A and gene2A are the pseudotimelines from path A and gene1B 
and gene2B are the pseudotimelines from path B.

	2.	 The genes gene1A and gene2A are in close proximity to each other and gene1B 
and gene2B are in close proximity to each other in Euclidean space.

	3.	 The distance between gene1A and gene2B is large and the distance between 
gene1B and gene2A is large in Euclidean space.

	4.	 The distance between gene1A and gene1B is large and the distance between 
gene2A and gene2B is large in Euclidean space (weighting by values in vector v).

Generating results. Users can inspect the main results online and download all 
data that were produced in the Scellnetor pipeline. The main results are as follows:

	1.	 Modules of genes as PDF files and two edge lists for every module in CSV file 
format where nodes are denoted as both human Entrez IDs and human gene 
symbols.

	2.	 One plot per module of mean expression of the genes together with 
the 95% confidence interval in PDF file format. On the x axis is 
‘Moving-average-modified number of single cells’. The cells are arranged 
after the variable selected as the sorting key. The y axis shows ‘Normalized 
moving-average-modified gene expression’. It has been normalized such that 
the highest value of the concatenation of Amean and Bmean is 1 and the smallest 
is 0. This normalization only serves visualization purposes and is done after 
completion of the hyper-similarity calculation.

	3.	 TSV files containing statistically significant GO terms associated with the mod-
ules. They are generated using GOATOOLS51, which uses Fisher’s exact test to 
calculate P values and the Benjamini–Hochberg procedure to adjust P values.

Constrained agglomerative hierarchical clustering. Scellnetor uses a constrained 
agglomerative hierarchical clustering algorithm. This means that it iteratively 
clusters genes together pairwise in order of descending hyper-similarity until 
all items have been assigned to a cluster or a threshold has been reached. The 
threshold is defined via user-chosen parameters that defines the minimum module 
size and the minimum number of modules. As the clustering is constrained by the 
interactions of a network, Scellnetor will always output connected subnetworks 
(modules) of genes as clusters. Per default, the clustering is constrained by 
biological networks, for example from BioGRID or uploaded by the user. For the 
clustering, the constraint implies that (1) two single genes can only be fused into 
a cluster if they are connected by an edge (are neighbours) in the network, (2) a 
single gene needs to neighbour a gene in a cluster before it can be added to the 
cluster and (3) when merging two clusters, they need to have at least one gene each 
that are neighbours in the graph. The possible connections of a cluster are equal to 
the sum of all connections of genes in that cluster.

When Scellnetor encounters a tie (two or more genes with the same short 
distance or high similarity), it will choose the first instance that appears in the data 
matrix. However, when utilizing the hyper-similarity matrix for the clustering, tie 
encounters are unlikely, as the hyper-similarities are based on multiplications of 
many inter-gene distances or similarities. Scellnetor is limited to only using genes 
that are present in the used network and in the uploaded data. This means that genes 
that cannot be mapped to the applied network will be ignored, and genes that are not 
in the used ANNDATA object will not be included in the clustering nor in the results.

Extraction and conversion of genes from an uploaded file. Per default, Scellnetor 
constrains the clustering by the interaction networks from BioGRID. However, 
the user can also utilize any other network provided in a tab separated edge list. 
The only restriction is the required usage of human Entrez IDs as node identifiers. 
The same restriction applies to the genes of uploaded H5AD files (the file format 
of the ANNDATA object), which are also required to be given as Entrez IDs (or 
as identifiers that can be converted to Entrez IDs) and are additionally available 
as nodes in the network. All IDs without a corresponding network node will be 
discarded from further analysis. Scellnetor automatically recognizes human Entrez 
IDs, human gene symbols, human Ensemble stable IDs and mouse gene symbols.

Pre-processing of data for Scellnetor haematopoiesis study. Using the scRNA-seq 
data from the 19 cell groups defined by ref. 15 (GSE72857), we created an initial 
count matrix and made sure that we could reproduce the measured group-wise 
average gene expressions from ref. 15 before we constructed an ANNDATA object. 
We then generated cell maps and computed pseudotime, which was stored in the 
ANNDATA object. Note that we could not identify 10 genes from their list with 
group-wise average gene expressions, because they were not annotated as any 
known gene. These anonymous genes were omitted from our analysis. This gave us 
a total of 2,730 single cells that expressed 3,451 genes. We pre-processed the count 
matrix in the same way as in the study in ref. 52, with the exception of using the top 
1,726 (3,451/2 ≈ 1,726) most variable genes instead of the top 1,000.
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Pre-processing of data for the Scellnetor exhausted CD8 T cell study. Using the 
scRNA-seq data from the five clusters the authors identified in ref. 10 (GSE137007) 
we generated an ANNDATA object. The data were already pre-processed using 
the Seurat7 package. Additionally, we computed a diffusion map and calculated 
pseudotime. The ‘start cell’ for the pseudotime inference was the cell in the 
progenitor cluster (cluster 1, Fig. 4a) that was furthest away from all progenies. The 
Supplementary Information provides a discussion of the rationale for this.

Data availability
The scRNA-seq data used for the Scellnetor haematopoiesis analysis is from GEO 
(GSE72857). The scRNA-seq used for the clustering of exhausted CD8 T cells 
in chronic infections is also from GEO (GSE137007). Scellnetor results can be 
downloaded from ref. 53 and from GitLab.

Code availability
Scellnetor is freely available as an online tool at https://exbio.wzw.tum.de/scellnetor/ 
and can be downloaded as a standalone program from ref. 53 and from GitLab.
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