

Deliverable D7.3
Federated machine learning apps running

 in app store

Work Package

WP7 Integrated FeatureCloud health informatics
platform and app store

Privacy preserving federated machine learning and
blockchaining for reduced cyber risks in a world of
distributed healthcare

This project has received funding from the
European Unionôs Horizon 2020 research and
innovation programme under grant
agreement No 826078.

D7.3 Federated machine learning apps
running in app store

This project has received funding from the European Unionôs Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 2 of 29

Disclaimer

Copyright message

Document information

Grant Agreement Number: 826078 Acronym: FeatureCloud

Full title
Privacy preserving federated machine learning and blockchaining for
reduced cyber risks in a world of distributed healthcare

Topic
Toolkit for assessing and reducing cyber risks in hospitals and care
centres to protect privacy/data/infrastructures

Funding scheme RIA - Research and Innovation action

Start Date 1 January 2019 Duration 60 months

Project URL https://featurecloud.eu/

EU Project Officer
Christos MARAMIS, Health and Digital Executive Agency (HaDEA) -
Established by the European Commission, Unit HaDEA.A.3 ï Health
Research

Project
Coordinator

Jan BAUMBACH, UNIVERSITY OF HAMBURG (UHAM)

Deliverable D7.3 Federated machine learning apps running in app store

Work Package WP7 Integrated FeatureCloud health informatics platform and app store

Date of Delivery Contractual 31/12/2021 Actual 17/12/2021

Nature Demonstrator
Dissemination
Level

Public

Lead Beneficiary 01 UHAM

Responsible
Author(s)

Julian Matschinske, Niklas Probul, Mohammad Bakhtiari, Jan Baumbach,
Nina Wenke & Christina Saak (UHAM)

Keywords Platform, Federated Apps, SMPC

This project has received funding from the European Unionôs Horizon 2020 research and
innovation programme under grant agreement No 826078. Any dissemination of results reflects
only the author's view and the European Commission is not responsible for any use that may be
made of the information it contains.

© FeatureCloud Consortium, 2021
This deliverable contains original unpublished work except where clearly indicated otherwise.
Acknowledgement of previously published material and of the work of others has been made
through appropriate citation, quotation or both. Reproduction is authorised provided the source is
acknowledged.

https://featurecloud.eu/

D7.3 Federated machine learning apps
running in app store

This project has received funding from the European Unionôs Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 3 of 29

History of changes

Version Date Contributions Contributors (name and institution)

V0.1 1/11/2021 Draft 1
Julian Matschinske, Mohammad Bakhtiari &
Niklas Probul (UHAM)

V0.2 8/11/2021 Comments 1 Balazs Orban & Sandor Feyer (GND)

V0.3 24/11/2021 Draft 2
Julian Matschinske, Mohammad Bakhtiari &
Niklas Probul (UHAM)

V0.4 6/12/2021 Comments 2 Dominik Heider (UMR)

V0.5 13/12/2021 Draft 3 Julian Matschinske & Niklas Probul (UHAM)

V1 15/12/2021 Final version
Jan Baumbach, Nina Wenke & Christina Saak
(UHAM)

V1 16/12/2021 Submission Miriam Simon (concentris)

D7.3 Federated machine learning apps
running in app store

This project has received funding from the European Unionôs Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 4 of 29

Table of Content

A) Objectives of the Deliverable 5

B) Executive Summary 5

C) Results 5

1 App Usage and Execution 5

1.1 App Integration 6

1.2 App Types and Automated Testing 9

1.3 App Isolation 9

2 Development and Testing 9

2.1 App Simulation 9

2.2 App Template 10

2.2.1 State Machine Concept 10

2.2.2 Roles, States, and Log Levels 13

2.2.3 App Class 13

2.2.4 Example Apps 14

2.3 Command-line Interface 15

3 Evaluation 16

3.1 Evaluation Pipeline for End-Users 16

3.2 Evaluation of the AI Store apps 17

3.2.1 Performance 18

3.2.2 Runtime and Network Traffic 19

4 Privacy 19

4.1 Peer-to-peer Communication 20

4.2 Encryption 21

4.3 Additive Secret Sharing 21

4.4 Certification Process and App Evaluation 22

5 System and Implementation 23

5.1 System Architecture 23

5.2 Application Programming Interface 25

5.3 Compute Modules 26

6 Next steps 27

D) Table of Acronyms and Definitions 28

E) Other Supporting Documents, Figures and Tables 29

Command-line Interface 29

Application API 29

D7.3 Federated machine learning apps
running in app store

This project has received funding from the European Unionôs Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 5 of 29

A) Objectives of the Deliverable

Deliverable 7.3 ñFederated machine learning apps running in app storeò relates to task 1

ñProgramming interfaces and platformò and task 2 ñApp store and workflow managementò of work

package 7 as described in the Description of Action. In addition, it touches upon user interfaces,

testing and evaluation (tasks 3 and 4). Like the previous deliverable 7.2, this deliverable contains all

progress made in the past reporting period (months 24 - 36) related to the FeatureCloud platform

and AI Store, including the overall system with additional and updated descriptions, figures and

documentation.

B) Executive Summary

This deliverable has been split into five parts, looking at the advances from different angles: app

usage (end-user perspective), application development and testing (developer perspective),

evaluation (performance perspective), privacy enhancements (privacy perspective), and the system

and implementation (technical perspective).

D7.2 already provided the basic functionality to develop apps, distribute them using the AI Store and

execute them using the FeatureCloud controller. All of these parts have been extended to increase

convenience for users and developers (see sections 1 and 2). In terms of evaluation, a flexible

workflow has been created to assess the accuracy and performance of the platform (section 3). The

FeatureCloud API has been extended to allow for implementation of more advanced privacy-

enhancing techniques inside the apps themselves, as well as providing such techniques in the

FeatureCloud system to gain more control over their execution (see section 4). In this context, the

foundation has been laid to allow for integration of techniques to detect malicious behaviour

developed by WP2 (see section 5).

C) Results

1 App Usage and Execution

Apps, as have been introduced in D7.2, are implementations of algorithms that are being executed

locally in an isolated fashion (see section 1.3) and can be combined into a workflow (D7.2, section

3.3). An example workflow composed of apps available in the AI Store can be found in section 3.1.

In this section, we provide information about how changes to the API (see section 5.2) and the overall

FeatureCloud system impact the usage and execution of apps. The general project management

process has been kept as described in D7.2. Figure 1 outlines this process again, similar to Figure

8 in D7.2, from an actor perspective.

D7.3 Federated machine learning apps
running in app store

This project has received funding from the European Unionôs Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 6 of 29

Figure 1. Creating and setting up a federated project. One of the partners takes the role of the

coordinator and creates a new project on the website (1). After that, the coordinator defines the

workflow by adding the apps to the projectôs workflow (2). Then, the other partners are invited by

sending a randomly generated token to each of them (3), which is unique and allows for joining the

project (4). When all partners have joined, the coordinator triggers the execution on the

FeatureCloud website and the workflow runs (5). During workflow execution, active interaction with

the end-user can be required, depending on the apps.

1.1 App Integration

Apps could already provide a graphical user interface (GUI) in the form of an app frontend. This

frontend had to be opened in its own window and opened in a new browser tab. In order to integrate

these apps better, hide technical details (e.g., frontend URL) and increase the user experience, their

frontends are now embedded into the FeatureCloud frontend. They can be accessed directly on the

project page (see Figure 2). This way, we further aim to remove the visible boundary between the

FeatureCloud system and app implementations, which can be confusing to end-users.

D7.3 Federated machine learning apps
running in app store

This project has received funding from the European Unionôs Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 7 of 29

Figure 2. App frontend embedded in the FeatureCloud GUI using a modal dialog. Like app

logs, app frontends can be opened instantly inside the project page, hiding technical details such

as the endpoint and providing a better user experience.

Apps developers can now also provide the FeatureCloud system with additional information about

the current execution status. They can now report

ǒ Progress (a number between 0.0 and 1.0)

ǒ Message (text of up to 40 characters)

ǒ State (one of órunningô, óerrorô, óaction_requiredô)

during the execution in the app API (see section 5.2). This information is used to display a meaningful

progress page and instantly inform the user about potential problems (see Figure 3).

Figure 3. Project members overview providing feedback about the app executions. The

coordinator can see the progress for each member, its message and state.

Apps usually require additional configuration parameters in order to run as expected (e.g., number

of trees in a random forest, portion of test data, ...). This information is currently being put inside a

configuration file that contains one section per app in the workflow. For less technical users, this

could pose a barrier. In the AIMe1 side-project, we implemented a specification language to define

a form. This language will now be used to specify a parameter form that can be directly placed on

the workflow page as well. Listing 1 shows a snippet of the specification language and Figure 4

shows the corresponding form that has been rendered from it.

1 https://aime-registry.org/

https://aime-registry.org/

D7.3 Federated machine learning apps
running in app store

This project has received funding from the European Unionôs Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 8 of 29

title : Hyper- parameters
id : HP
type : complex
children :
 - id : "1"
 title : Columns
 type : list
 default : []
 child :
 type : string
 default : ""
 title : Feature column
 question : What's the name of the column used for prediction?
 - id : "2"
 type : string
 default : ""
 title : Target column
 question : What's the name of the column used as a label?
 - id : "3"
 type : boolean
 default : true
 title : Use differential privacy
 question : Do you want to apply DP to enhance privacy?

Listing 1. YAML-based specification language. This sample snippet shows how parameters can

be specified for apps, including their type and default value.

Figure 4. HTML-form rendered from YAML specification. This form has been generated from

the specification shown in Listing 1.

D7.3 Federated machine learning apps
running in app store

This project has received funding from the European Unionôs Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 9 of 29

1.2 App Types and Automated Testing

Apps can implement pre-processing, ML, post-processing, evaluation and other types of apps. In

the AI Store, we currently distinguish between óPre-processingô, óAnalysisô, and óEvaluationô. An

example workflow consisting of 2 pre-processing apps, 1 model training app and 1 evaluation app

can be found in section 3.

While we encourage developers to implement their application such that they are compatible with

existing apps, this is not being enforced currently. We are therefore exploring the possibility of

automatically testing and embedding apps in a workflow context. For that, before apps are

considered for certification or even shown in the AI Store, they could be built by the FeatureCloud

system (e.g., as an extension to the backend). If the apps can be built without errors (first check), it

is automatically executed and provided with input data formatted according to data formats we

encourage to use. Conversely, the output should follow a certain structure as well. Both can be

assessed by looking at the output of the app. We are currently in the conceptualization phase and

are aiming to provide this as a feature similar to CICD pipelines known from GitHub or GitLab and

are going to report on it in D7.6 and D7.7.

1.3 App Isolation

For security reasons, we isolate the apps as much as possible from the host system. We achieve

this by running apps as Docker containers. In particular, direct access to the file system as well as

to the internet is not allowed to any running app container, as described already in D7.2. Since apps

can provide a frontend, which is run inside the browser, there is a potential security problem: Apps

could request the user to open the frontend, funnel sensitive data via the internal frontend API to the

browser and transfer the data to an external endpoint using the browser as man in the middle. This

is now being prevented using Content Security Policy (CSP)2. The Controller, which sits between

the frontend API and the browser, sets an HTTP header to instruct the browser to refuse any

connections to URLs other than the local controller URL.

2 Development and Testing

One of the core aspects of FeatureCloud remains the provision of developer tools that increase

robustness, performance and speed of federated app development. Fast and convenient debugging

cycles are crucial in this context. This involves the beginning of the implementation, for which we

offer an app template, and the consecutive implementation, for which we provide a simulation tool.

2.1 App Simulation

In order to accelerate the development of apps, it needs to be possible to regularly test and debug

its implementation. The app simulation tool has been extended for this purpose and now displays

the new message, progress and state information. Also, the simulation tool now allows for specifying

a common input directory, whose contents are put in all test input volumes, and modifying the output

directory for the test results. This increases flexibility and testing capabilities, particularly in

combination with the newly developed CLI (see section 2.3 and supplement).

2 https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP

https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP

D7.3 Federated machine learning apps
running in app store

This project has received funding from the European Unionôs Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 10 of 29

Figure 5. Testbed form has been extended. Under section 4 you can now specify the general

input directory, under section 7 the output directory can be specified. These options are also

available via the new CLI.

2.2 App Template

App developers should be able to quickly implement a new app starting from a scaffold and ideally

only put the custom logic inside. Code dealing with serialization, interacting with the controller API,

reading config information, etc. is very similar across all app implementations and can therefore be

provided in a well-structured and documented app template.

2.2.1 State Machine Concept

We have investigated previous app implementations and came to the conclusion that almost all of

them implement some kind of state machine: each app instance is in a certain state, usually

synchronized across the workflow, while the coordinator can have its own states and manages the

transitions. State machines are a well-investigated and commonly used concept for applications of

D7.3 Federated machine learning apps
running in app store

This project has received funding from the European Unionôs Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 11 of 29

different levels of complexity, both in theoretical and applied computer science. They provide a

logical structure and help across all phases of development: conceptualization, implementation,

testing and debugging.

For this reason, we integrated the state machine concept into the template and added some assisting

functionality, such as rendering state machine diagrams directly from the code (see Figure 6). For

that, app developers need to extend an AppState class and implement its abstract methods register

and run (see Listing 2). We use this information to infer a status message from the current state

(e.g., óthrow_dieô) and display this information automatically on the FeatureCloud frontend. App

developers can override this message by calling the update method.

@app_state ('throw_die' , Role . BOTH)
class DieState (AppState):
 def register (self):
 self . register_transition ('aggregate' , Role . COORDINATOR)
 self . register_transition ('obtain' , Role . PARTICIPANT)

 def run (self) - > str or None:
 self . update (progress =0.25)
 d = random. randint (1, 6)
 self . app. log (f 'threw a {d}')
 self . configure_smpc (exponent =6, operation =SMPCOperation. ADD)
 self . send_data_to_coordinator (d, use_smpc=USE_SMPC)

 if self . app. coordinator :
 return 'aggregate'
 else :
 return 'obtain'

Listing 2. Sample app state implementation. The register method requires developers to

indicate which transitions are possible and for which role (coordinator/participant). The run method

contains the actual app logic.

D7.3 Federated machine learning apps
running in app store

This project has received funding from the European Unionôs Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 12 of 29

Figure 6. State diagram for the throw die example app. Purple, red and blue colours indicate

valid states and transitions for both roles, only the coordinator or only participants, respectively.

Names for transitions and states are inferred from the code (see Listing 2) so that no additional

effort is required from the developers.

Every app should include a couple of files that more or less contain the same information or codes,

regardless of their application. Among those, main.py is the most important one, which includes

states. It always imports api_server and web_server from FeatureCloud API package to bind with

the bottle app3 (see Listing 3).

from bottle import Bottle

from api.http_ctrl import api_server

from api.http_web import web_server

import apps.examples.dice

from engine.app import app

server = Bottle()

Listing 3. The dice example app is imported from the FeatureCloud apps package. Importing

the app triggers the @app_state decorators to register the states and tie them to the app.

3 https://bottlepy.org/docs/dev/

https://bottlepy.org/docs/dev/

D7.3 Federated machine learning apps
running in app store

This project has received funding from the European Unionôs Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 13 of 29

Importing the states or defining them in the main.py file registers them into the app instance. Each

app includes at least one and normally multiple states. All of the states should be registered for the

same app instance. Accordingly, developers should always use app instances in the FeatureCloud

engine package.

2.2.2 Roles, States, and Log Levels

Every client in the FeatureCloud platform should run an app instance, which can be either participant
or coordinator. Generally, the coordinator can handle both local updates and global aggregations,
which entails having access to the locally trained models. On the other hand, the participant role is
restricted to local computations. These roles are not mutually exclusive, and developers can use
three constants COORDINATOR, PARTICIPANT, and BOTH to assign a role to each state and state

transition. Developers are expected to consider clients' roles when defining states and the possible
transitions between them. FeatureCloud template includes a verification mechanism to ensure that
clients' roles agree with states and transitions logic during execution.

Once states are executing, any exceptions or errors can happen, which the app will handle
automatically. For reporting the situation for the front-end app to inform the end-users, developers
can communicate RUNNING, ERROR, or ACTION_REQUIRED to the controller:

ǒ RUNNING: the app is functioning normally

ǒ ERROR: app execution is interrupted with an error and cannot recover from it. Consequently,

app execution will stop
ǒ ACTION REQUIRED: This expresses the demand for end-usersô intervention. It is specifically

provided for interactive federated learning or data analysis apps

For proper logging and reporting to the front-end, developers can employ DEBUG, ERROR, and FATAL
logging levels to facilitate the debugging and reporting process. For debugging and possible error
messages, developers may use DEBUG and ERROR, respectively. For FATAL, like ERROR, it can log

erroneous events that the app may encounter during the execution but cannot recover from. The
app execution stops in case of a fatal error.

2.2.3 App Class

In the FeatureCloud engine package, the App class is the central piece, responsible for state

registration, transition, and execution. Despite acting as an interface between the app and controller

and managing the app execution, App is a highly transparent class that demands minimum

developer knowledge and interaction. In fact, developers are not obliged to be familiar with the App

class; however, there is a verification mechanism in both App and AppState classes that developers

should be aware of, which includes registering states and transitions by assigning role/s that are

responsible/allowed to execute states or take transitions. The App class automatically checks the

logic to ensure semantic errors in defining the workflow are minimized.

Each app should contain and start with an initial state. On the other hand, each app, by default,

includes the terminal state that has no task or operation to accomplish other than explicitly marking

the final state in the app. Once a state transitions to the terminal state, that state should be

considered one of the appôs possible exit states. The FeatureCloud app includes various methods

that provide the ability to flexibly incorporate different states into the app and work as part of the

verification mechanism. Once all the states are registered and ready to run, app.register() should

be called to register all the transitions.

D7.3 Federated machine learning apps
running in app store

This project has received funding from the European Unionôs Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 14 of 29

When the app instance is running, different errors may happen, or various results may be produced.

Thereby, the app instance may need to communicate with the controller or front-end parts of

FeatureCloud which can be easily done through helper functions in AppState class. Developers can

use status attributes in the App class to send messages between the app container to the controller

and/or indirectly with the front-end.

Availability of data to communicate. Once a client wants to communicate with other clients,

regardless of role, and the data is ready, by setting app.status_available to True , the app

instance sends the signal to the controller to execute the communication. Generally, this attribute

will be used for communication methods and automatically handled by the FeatureCloud app.

Termination of app execution. The app instance can set the app.status_finished attribute as

True to signal the controller that app execution is finished. Generally, this attribute will be set as True

by the FeatureCloud app once the app enters the terminal state or some exceptions happen during

the app run.

Messaging to the frontend. Once there is a specific message, e.g. the occurrence of some

semantic errors, the app instance can use app.status_message to inform the end-user in the

frontend. For sending messages to the frontend, developers can use app.update.

Overall progress of the app. During the run, app execution progress can be quantified based on

different factors. Developers can quantify the app progress in the range of zero to one and share it

with the end-user through the front-end using app.update .

Operational state of the app. During the app run, different operational states can be reported to

the end-user using app.update .

Messaging to other clients. Once clients want to communicate with another client, they should

provide the ID of the target client for the coordinator. Developers should use the destination

argument in communication methods for this purpose and status_destination will be accordingly

and automatically handled by the app instance.

Desired configuration of SMPC component. App developers can decide which parameters should

be used for SMPC aggregation, and they can inform the controller about the configuration using

app.configure_smpc .

Shared memory for states. Different states can be defined and registered to the app, and they may

need to pass data to each other. The App class has an internal attribute, a dictionary that can be

accessed through self.app.internal in each state to support a shared memory between different

states.

2.2.4 Example Apps

In general, for developing apps in the FeatureCloud platform, apps should communicate with the

FeatureCloud controller. For this purpose, app developers have multiple options that all include

employing the FeatureCloud. engine package, which provides the basic means. Most

simplistically, they can extend the FeatureCloud.engine.app.State class to define new custom

states and use the app_state handler to register their state inside the app. FeatureCloud apps can

D7.3 Federated machine learning apps
running in app store

This project has received funding from the European Unionôs Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 15 of 29

support different states and various communications; moreover, they can be used inside a workflow

in conjunction with other apps. Inside each workflow, every app gets the input files from the output

of the previous app in the workflow, except for the first one, which gets data from end-users.

Accordingly, we use a convention that facilitates providing acceptable results for other accompanying

apps in a workflow. Meanwhile, it increases readability and facilitates debugging. One of the

simplifying ways for providing expected results for accompanying apps are using the ConfigSate

from the FeatureCloud engine which also exemplifies how to extend AppState to define different

levels of abstractions that can be used in multiple apps.

We provide 4 sample implementations or scaffolds4 illustrating the capabilities of the FeatureCloud

template, each of them being commented extensively to provide help to the developers:

ǒ Blank - Blank scaffold for new apps

ǒ Throw die - Simple state machine with different states for participants and controller

ǒ Library - Implementation demonstrating AppState extensions

ǒ Round - Sample app demonstrating peer-to-peer communication

2.3 Command-line Interface

While the FeatureCloud app simulation (see section 2.1) is easily accessible through a graphical

web frontend, developers are often used to performing tasks reproducibly through a command-line

interface (CLI). Therefore, we now provide a compact FeatureCloud CLI to allow for controlling app

testing from the terminal. By this, developers can trigger different run scenarios for their apps inside

bash scripts or from various programming languages, programmatically define different input data

or parameters, and verify the test results using the CLI commands.

The FeatureCloud CLI will be further extended and made available as a pip package that can be

installed globally. Its commands have the following shape:

<scope> <command> - param1 value1 - param2 value2 ...

To start a test, the command would be

test start -- client - dirs ./test1,./test2 -- app- image test_app

Here, the scope is test , the command is start and the parameters are cl ient - dirs and app-

image.

After the test run starts successfully, the test id will be returned. If something went wrong, the

corresponding error message occurs, e.g. {"detail":"Error: No such image: test_app"}

A list of the currently available commands can be found in the supplement.

The CLI uses the same endpoints as the front end. Therefore, every action performed using the CLI

will also be shown in the frontend and vice versa. The CLI is especially useful for developers of WP5

4 https://github.com/FeatureCloud/app-template/tree/master/apps/examples

https://github.com/FeatureCloud/app-template/tree/master/apps/examples

D7.3 Federated machine learning apps
running in app store

This project has received funding from the European Unionôs Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 16 of 29

from SDU, who are developing unsupervised ML apps for FeatureCloud, which require regular and

extensive testing.

In the future, we aim to merge the app template library and the CLI into a single pip package, such

that all tools needed by developers are provided by the all-purpose pip package ófeaturecloudô.

3 Evaluation

We can distinguish two different types of evaluations needed in the context of machine learning apps

in the FeatureCloud AI Store:

1. Evaluation of an analysis performed by the end-user. Here, similar to central ML

pipelines, the performance of the trained model needs to be validated. The performance here

is mainly dependent on the data that is used for training.

2. Evaluation of the app algorithm itself, performed by the app developer. Here, the app

developer compares the performance and runtime of the federated algorithms with the central

algorithm. This evaluation is data-independent. It should show that similar or identical results

are achieved if the same dataset is used for the central and federated algorithms (if they were

merged).

The following sections will describe how FeatureCloud enables both evaluation types to allow state-

of-the-art machine learning workflows with apps from the AI store.

3.1 Evaluation Pipeline for End-Users

To evaluate the performance of a machine learning model and detect misbehaviours, such as

underfitting or overfitting, a simple training of the machine learning model on training data is not

enough in practice. The trained models need to be evaluated on an unseen set of data to make sure

that models generalize well and do not only perform well on the already seen training data.

For this, FeatureCloud offers several apps in the AI store that make it easy to evaluate a machine

learning model. As in medicine sample size and therefore data samples are the bottleneck, we

support a cross-validation app that splits the local data into various splits. Every upcoming analysis

app will perform the analyses on each of these splits in parallel. In the end, an evaluation app can

calculate the corresponding scores like sensitivity, specificity, accuracy, or the Matthews correlation

coefficient to determine the modelôs performance through cross-validation.

Figure 7 shows an example of such a workflow. The cross-validation app (purple) splits the local

data into three splits and creates the corresponding train and validation data. After that, the

normalization app (green) performs a normalization (e.g., standardization) on each data split. After

that, an analysis app (e.g., Linear Regression) performs a regression on the normalized data splits.

Finally, the evaluation app evaluates the model by calculating different scores for each split and

visualizes these scores to validate the model performance.

D7.3 Federated machine learning apps
running in app store

This project has received funding from the European Unionôs Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 17 of 29

Figure 7. Workflow structure used for evaluation. The first app (purple) creates splits for cross-

valuation. All following apps perform their tasks on each split individually, in a federated fashion,

only transmitting model parameters. The grey dots represent intermediate training/test data. The

second app (green) performs normalization, and the third (blue) trains the models, generating a

global model. The global model is evaluated in the evaluation app (orange). The evaluation results

are finally aggregated to obtain an evaluation report based on the initial CV splits.

The workflow approach in FeatureCloud and the cross-validation app and evaluation apps allow a

state-of-the-art evaluation of machine learning algorithms in FeatureCloud for the federated

analysis.

3.2 Evaluation of the AI Store apps

Representing the many apps in the AI store, we evaluated the performance and runtime of the

FeatureCloud apps of four commonly used algorithms in machine learning: logistic regression (LR)

and random forest (RF) for classification tasks and regression tasks. Each evaluation of the

federated apps was run in the workflow that was previously described in section 3.1.

D7.3 Federated machine learning apps
running in app store

This project has received funding from the European Unionôs Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 18 of 29

3.2.1 Performance

Figure 8 shows the performance of the FeatureCloud apps on different datasets (subfigures) for the

centralized algorithm (orange), the federated FeatureCloud app (blue), the individual training on each

site on a central, common test dataset (dark grey) and the individual training on each site with local

test data only.

As we can see in the Figure, the federated logistic regression app and the federated linear regression

app perform identically to their centralized counterparts. The federated Random Forest does not

perform identically but is comparable to their centralized counterparts. This is because the app does

not compute each tree in a federated fashion. Each participant computes a forest on its own data

that are finally merged and weighted into a global forest. Therefore, identical results are no longer

possible, but the results have shown similar performance.

Figure 8. Performance evaluation of federated AI methods. The boxplots show the results of a

10-fold CV for the different classification and regression models and datasets in multiple settings.

The centralized results are shown in orange, the corresponding federated results in blue and the

individual results obtained locally at each participant in grey. Each model was evaluated on the

entire test set (dark grey) like the centralized and federated models, and on the individual (local)

D7.3 Federated machine learning apps
running in app store

This project has received funding from the European Unionôs Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 19 of 29

parts of the test set (light grey). The federated logistic and linear regressions perform identically to

their centralized versions and the federated random forest performs similar to its centralized

version.

3.2.2 Runtime and Network Traffic

Figure 9. Runtime and network traffic. The left plots show runtime for unlimited and throttled

connections, the right plots show network traffic for coordinator and participants evaluated on the

Indian Liver Patient Dataset. The lines represent the median values measured over 10 executions.

The areas show the 25% and 75% quartiles to illustrate variance across the executions.

4 Privacy

Privacy is one of the crucial aspects that FeatureCloud has to consider. While federated learning

usually already provides a significantly higher level of privacy, it cannot generally be ruled out that

the transmitted model parameters reveal information about the raw data. App developers can

integrate additional privacy-enhancing techniques (PETs) such as differential privacy (DP), as

suggested in D2.4. However, these implementations need to be verified manually and still leave the

risk of flaws in the implementation, bugs, malicious intent etc. For this reason, the FeatureCloud

consortium constantly evaluates possible extensions to the FeatureCloud system itself. Differential

privacy of the app outputs (i.e., the learned model parameters) will thus be provided as an additional

app that can be directly applied to the local workflow. In addition, modules for stochastic gradient

descent will be available (cf. Section 5.3).

D7.3 Federated machine learning apps
running in app store

This project has received funding from the European Unionôs Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 20 of 29

This section contains information about changes to the communication and other logic implemented

in the FeatureCloud system and relates it to privacy considerations. Additive secret sharing is

discussed as a first example for a privacy-enhancing nodule inside FeatureCloud.

4.1 Peer-to-peer Communication

The existing star-based communication logic (see D7.2, section 2.2) allowed for common use-cases

in federated learning, where a global model is continuously being updated by aggregating local

updates in one common model. Sending data to a single participant from the coordinator was not

possible so far, let alone peer-to-peer (P2P) communication. This imposed restrictions in terms of

the available range of privacy-enhancing techniques that can be integrated into app

implementations. A possible workaround was emulating P2P communication inside this architecture

which caused a significant increase in network traffic.

We therefore integrated P2P communication into the FeatureCloud system. While all traffic is still

routed through the relay server, it logically provides a secure P2P channel. Please note that the relay

server is a FeatureCloud system component (see 13) and has to be distinguished from the

coordinator app instance, which is not involved here. In P2P communication, all app instances

behave the same and their role (coordinator/participant) is of no significance.

To hide the traffic from the relay server, asymmetric encryption is being used, as described in section

4.2. Figure 10 shows the process of transmitting data from one participant to another via the relay

server.

Figure 10. Peer-to-peer communication built on top of star architecture. In step 1, participant

1 encrypts value X using the public key of participant 3. In step 2, the relay server sends the

encrypted value to participant 3, which decrypts it in step 3.

D7.3 Federated machine learning apps
running in app store

This project has received funding from the European Unionôs Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 21 of 29

In order to allow for P2P-communication, the API was extended. From an app developerôs

perspective, it is very simple to use this piece of functionality by specifying the destination client ID

(see Listing 4).

{

 " available " : true ,

 " destination " : " 38b0da293e4ed6c1"

}

Listing 4. P2P API extension (JSON). Specifying a destination ID causes the FeatureCloud

system to deliver the data to the identified participant (here 38b0da293e4ed6c1). The usual

gather/broadcast behaviour is not applied in this case.

4.2 Encryption

To hide the data from the relay server and other potential eves droppers, we apply a state-of-the art

combination of asymmetric and symmetric encryption: First, a symmetric key is generated and used

to encrypt the data. Before actually encrypting the data, a nonce (sequence of 12 random bytes) is

prepended to make previously sent data indistinguishable from new data when comparing the

ciphertexts. The symmetric key is then encrypted using the public key of the destination client.

Symmetric encryption. For the symmetric encryption, we apply the Advanced Encryption Standard

(AES) with a 256-bit key.

Asymmetric encryption. For the asymmetric encryption part, we make use of elliptic hash curves,

using the P-224 curve (see FIPS 186-3, section D.2.2). We decided to use this technique instead of

the more popular RSA standard, because we can significantly reduce the key sizes of the involved

participants that way.

4.3 Additive Secret Sharing

One of the crucial steps in FL is aggregating local models from multiple participants. This leads to

an imbalance of required trust: while every participant will be able to see the aggregated model after

an aggregation step, only the coordinator knows all individual models. To address this problem, an

adapted additive secret sharing technique has been implemented. Each participant splits its local

model into n pieces or secrets, a masked model (M - r1 - é - rn-1), and the masks r1, é, rn-1 which

are equally distributed random values. Those secrets are then distributed to the other parties. They,

in turn, sum up all received pieces individually and send their sum to the coordinator, which can

calculate the global sum and redistribute it to the other parties again (see Figure 11).

D7.3 Federated machine learning apps
running in app store

This project has received funding from the European Unionôs Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 22 of 29

Figure 11. Additive secret sharing implemented in FeatureCloud. Step 1 shows how two secrets

are created by each of the three participants for their values X1, X2 and X3. Step 2 distributes them

according to the P2P protocol. In step 3, the received secrets are decrypted and summed up by

each participant. Step 4 relays the local sums to the coordinator, which decrypts them in step 5

and calculates the global sum.

When using this technique during training, at the beginning of each iteration, each participant first

receives the global model (e.g., a randomly initialized neural network). Each participant then creates

an updated model using its local data and masks the model with n-1 different masks, one for each

participant, and encrypts them with the respective participantôs public key. The masked model,

together with the encrypted masks, is then sent back to the coordinator. The coordinator relays the

encrypted masks to the participants who can decrypt their share of the masks and calculate the sum,

which is then sent back to the coordinator. The coordinator finally sums up the masked models and

the sums received from the participants to obtain the sum of local models. While providing enhanced

privacy for each participant, it leads to an increase in network traffic, growing quadratic with the

number of participants.

4.4 Certification Process and App Evaluation

As an extension of the certification process and migration to a more structured approach, we are
currently integrating the AIMe report tool into FeatureCloud. The current process entirely relies on a
description by the developer, making manual checks of completeness of the reported pieces of
information necessary. In order to solve this, an additional AIMe section entirely dedicated to privacy
is being drafted, using the AIMe specification language shown in Listing 1. In order to be certified,
each app then requires a privacy AIMe report providing details about potential privacy leaks for:

ǒ A single execution
ǒ Multiple executions on the same data
ǒ Execution in a pipeline

D7.3 Federated machine learning apps
running in app store

This project has received funding from the European Unionôs Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 23 of 29

This AIMe report will then be a mandatory part of the certification process and used as a basis for
the verification of the risk assessment (see Figure 12).

Figure 12. Outline of the certification process. A new app and app updates need to undergo 5

stages during the certification process: Checking for errors, providing AIMe risk assessment,

disclosing source code, verifying privacy measures, verifying risk assessment.

5 System and Implementation

This section contains the updated description of the system and software architecture.

5.1 System Architecture

The FeatureCloud system consists of multiple components that are distributed across IT

infrastructures of the workflow participants and servers hosted by FeatureCloud.

Figure 13. System architecture of FeatureCloud with two participants. The Controller,

Frontend, Docker Engine, and App Instances are running locally at the participants. The

FeatureCloud Backend and Docker Registry are running on FeatureCloud servers. The Relay

Server can be run on a separate server, or participants can use a provided instance from

