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A) Objectives of the Deliverable 

Deliverable 7.3 ñFederated machine learning apps running in app storeò relates to task 1 

ñProgramming interfaces and platformò and task 2 ñApp store and workflow managementò of work 

package 7 as described in the Description of Action. In addition, it touches upon user interfaces, 

testing and evaluation (tasks 3 and 4). Like the previous deliverable 7.2, this deliverable contains all 

progress made in the past reporting period (months 24 - 36) related to the FeatureCloud platform 

and AI Store, including the overall system with additional and updated descriptions, figures and 

documentation. 

B) Executive Summary 

This deliverable has been split into five parts, looking at the advances from different angles: app 

usage (end-user perspective), application development and testing (developer perspective), 

evaluation (performance perspective), privacy enhancements (privacy perspective), and the system 

and implementation (technical perspective). 

 

D7.2 already provided the basic functionality to develop apps, distribute them using the AI Store and 

execute them using the FeatureCloud controller. All of these parts have been extended to increase 

convenience for users and developers (see sections 1 and 2). In terms of evaluation, a flexible 

workflow has been created to assess the accuracy and performance of the platform (section 3). The 

FeatureCloud API has been extended to allow for implementation of more advanced privacy-

enhancing techniques inside the apps themselves, as well as providing such techniques in the 

FeatureCloud system to gain more control over their execution (see section 4). In this context, the 

foundation has been laid to allow for integration of techniques to detect malicious behaviour 

developed by WP2 (see section 5). 

C) Results 

1 App Usage and Execution 

Apps, as have been introduced in D7.2, are implementations of algorithms that are being executed 

locally in an isolated fashion (see section 1.3) and can be combined into a workflow (D7.2, section 

3.3). An example workflow composed of apps available in the AI Store can be found in section 3.1. 

In this section, we provide information about how changes to the API (see section 5.2) and the overall 

FeatureCloud system impact the usage and execution of apps. The general project management 

process has been kept as described in D7.2. Figure 1 outlines this process again, similar to Figure 

8 in D7.2, from an actor perspective. 
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Figure 1. Creating and setting up a federated project. One of the partners takes the role of the 

coordinator and creates a new project on the website (1). After that, the coordinator defines the 

workflow by adding the apps to the projectôs workflow (2). Then, the other partners are invited by 

sending a randomly generated token to each of them (3), which is unique and allows for joining the 

project (4). When all partners have joined, the coordinator triggers the execution on the 

FeatureCloud website and the workflow runs (5). During workflow execution, active interaction with 

the end-user can be required, depending on the apps. 

1.1 App Integration 

Apps could already provide a graphical user interface (GUI) in the form of an app frontend. This 

frontend had to be opened in its own window and opened in a new browser tab. In order to integrate 

these apps better, hide technical details (e.g., frontend URL) and increase the user experience, their 

frontends are now embedded into the FeatureCloud frontend. They can be accessed directly on the 

project page (see Figure 2). This way, we further aim to remove the visible boundary between the 

FeatureCloud system and app implementations, which can be confusing to end-users. 
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Figure 2. App frontend embedded in the FeatureCloud GUI using a modal dialog. Like app 

logs, app frontends can be opened instantly inside the project page, hiding technical details such 

as the endpoint and providing a better user experience. 

 

Apps developers can now also provide the FeatureCloud system with additional information about 

the current execution status. They can now report 

ǒ Progress (a number between 0.0 and 1.0) 

ǒ Message (text of up to 40 characters) 

ǒ State (one of órunningô, óerrorô, óaction_requiredô) 

during the execution in the app API (see section 5.2). This information is used to display a meaningful 

progress page and instantly inform the user about potential problems (see Figure 3). 

 

 
 

Figure 3. Project members overview providing feedback about the app executions. The 

coordinator can see the progress for each member, its message and state. 

 

Apps usually require additional configuration parameters in order to run as expected (e.g., number 

of trees in a random forest, portion of test data, ...). This information is currently being put inside a 

configuration file that contains one section per app in the workflow. For less technical users, this 

could pose a barrier. In the AIMe1 side-project, we implemented a specification language to define 

a form. This language will now be used to specify a parameter form that can be directly placed on 

the workflow page as well. Listing 1 shows a snippet of the specification language and Figure 4 

shows the corresponding form that has been rendered from it. 

 

 
1 https://aime-registry.org/  

https://aime-registry.org/
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title : Hyper- parameters  
id : HP 
type : complex  
children :  
  -  id : "1"  
    title : Columns 
    type : list  
    default : []  
    child :  
      type : string  
      default : ""  
      title : Feature column  
      question : What's the name of the column used for prediction?  
  -  id : "2"  
    type : string  
    default : ""  
    title : Target column  
    question : What's the name of the column used as a label?  
  -  id : "3"  
    type : boolean  
    default : true  
    title : Use differential privacy  
    question : Do you want to apply DP to enhance privacy?  

 

Listing 1. YAML-based specification language. This sample snippet shows how parameters can 

be specified for apps, including their type and default value. 

 

 
 

Figure 4. HTML-form rendered from YAML specification. This form has been generated from 

the specification shown in Listing 1. 
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1.2 App Types and Automated Testing 

Apps can implement pre-processing, ML, post-processing, evaluation and other types of apps. In 

the AI Store, we currently distinguish between óPre-processingô, óAnalysisô, and óEvaluationô. An 

example workflow consisting of 2 pre-processing apps, 1 model training app and 1 evaluation app 

can be found in section 3. 

 

While we encourage developers to implement their application such that they are compatible with 

existing apps, this is not being enforced currently. We are therefore exploring the possibility of 

automatically testing and embedding apps in a workflow context. For that, before apps are 

considered for certification or even shown in the AI Store, they could be built by the FeatureCloud 

system (e.g., as an extension to the backend). If the apps can be built without errors (first check), it 

is automatically executed and provided with input data formatted according to data formats we 

encourage to use. Conversely, the output should follow a certain structure as well. Both can be 

assessed by looking at the output of the app. We are currently in the conceptualization phase and 

are aiming to provide this as a feature similar to CICD pipelines known from GitHub or GitLab and 

are going to report on it in D7.6 and D7.7. 

1.3 App Isolation 

For security reasons, we isolate the apps as much as possible from the host system. We achieve 

this by running apps as Docker containers. In particular, direct access to the file system as well as 

to the internet is not allowed to any running app container, as described already in D7.2. Since apps 

can provide a frontend, which is run inside the browser, there is a potential security problem: Apps 

could request the user to open the frontend, funnel sensitive data via the internal frontend API to the 

browser and transfer the data to an external endpoint using the browser as man in the middle. This 

is now being prevented using Content Security Policy (CSP)2. The Controller, which sits between 

the frontend API and the browser, sets an HTTP header to instruct the browser to refuse any 

connections to URLs other than the local controller URL. 

2 Development and Testing 

One of the core aspects of FeatureCloud remains the provision of developer tools that increase 

robustness, performance and speed of federated app development. Fast and convenient debugging 

cycles are crucial in this context. This involves the beginning of the implementation, for which we 

offer an app template, and the consecutive implementation, for which we provide a simulation tool. 

2.1 App Simulation 

In order to accelerate the development of apps, it needs to be possible to regularly test and debug 

its implementation. The app simulation tool has been extended for this purpose and now displays 

the new message, progress and state information. Also, the simulation tool now allows for specifying 

a common input directory, whose contents are put in all test input volumes, and modifying the output 

directory for the test results. This increases flexibility and testing capabilities, particularly in 

combination with the newly developed CLI (see section 2.3 and supplement). 

 

 
2 https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP  

https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
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Figure 5. Testbed form has been extended. Under section 4 you can now specify the general 

input directory, under section 7 the output directory can be specified. These options are also 

available via the new CLI. 

2.2 App Template 

App developers should be able to quickly implement a new app starting from a scaffold and ideally 

only put the custom logic inside. Code dealing with serialization, interacting with the controller API, 

reading config information, etc. is very similar across all app implementations and can therefore be 

provided in a well-structured and documented app template. 

2.2.1 State Machine Concept 

We have investigated previous app implementations and came to the conclusion that almost all of 

them implement some kind of state machine: each app instance is in a certain state, usually 

synchronized across the workflow, while the coordinator can have its own states and manages the 

transitions. State machines are a well-investigated and commonly used concept for applications of 
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different levels of complexity, both in theoretical and applied computer science. They provide a 

logical structure and help across all phases of development: conceptualization, implementation, 

testing and debugging. 

 

For this reason, we integrated the state machine concept into the template and added some assisting 

functionality, such as rendering state machine diagrams directly from the code (see Figure 6). For 

that, app developers need to extend an AppState class and implement its abstract methods register 

and run (see Listing 2). We use this information to infer a status message from the current state 

(e.g., óthrow_dieô) and display this information automatically on the FeatureCloud frontend. App 

developers can override this message by calling the update  method. 

 

@app_state ( 'throw_die' ,  Role . BOTH)  
class  DieState ( AppState ):  
    def  register ( self ):  
        self . register_transition ( 'aggregate' ,  Role . COORDINATOR)  
        self . register_transition ( 'obtain' ,  Role . PARTICIPANT)  
 
    def  run ( self )  - > str  or  None:  
        self . update ( progress =0.25 )  
        d = random. randint ( 1,  6)  
        self . app. log ( f 'threw a {d}' )  
        self . configure_smpc ( exponent =6,  operation =SMPCOperation. ADD)  
        self . send_data_to_coordinator ( d,  use_smpc=USE_SMPC)  
 
        if  self . app. coordinator :  
            return  'aggregate'  
        else :  
            return  'obtain'  

 

Listing 2. Sample app state implementation. The register  method requires developers to 

indicate which transitions are possible and for which role (coordinator/participant). The run  method 

contains the actual app logic. 
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Figure 6. State diagram for the throw die example app. Purple, red and blue colours indicate 

valid states and transitions for both roles, only the coordinator or only participants, respectively. 

Names for transitions and states are inferred from the code (see Listing 2) so that no additional 

effort is required from the developers. 

 

Every app should include a couple of files that more or less contain the same information or codes, 

regardless of their application. Among those, main.py is the most important one, which includes 

states. It always imports api_server  and web_server  from FeatureCloud API package to bind with 

the bottle app3 (see Listing 3). 

 

from bottle import Bottle 

from api.http_ctrl import api_server 

from api.http_web import web_server 

import apps.examples.dice 

from engine.app import app 

 

server = Bottle() 

Listing 3. The dice example app is imported from the FeatureCloud apps package. Importing 

the app triggers the @app_state  decorators to register the states and tie them to the app. 

 
3 https://bottlepy.org/docs/dev/  

https://bottlepy.org/docs/dev/


 

D7.3 Federated machine learning apps  
running in app store 
  

 
 

 

 

 
This project has received funding from the European Unionôs Horizon 2020 research 
and innovation programme under grant agreement No 826078. 

 
Page 13 of 29 

 

Importing the states or defining them in the main.py  file registers them into the app instance. Each 

app includes at least one and normally multiple states. All of the states should be registered for the 

same app instance. Accordingly, developers should always use app instances in the FeatureCloud 

engine package. 

2.2.2 Roles, States, and Log Levels 

Every client in the FeatureCloud platform should run an app instance, which can be either participant 
or coordinator. Generally, the coordinator can handle both local updates and global aggregations, 
which entails having access to the locally trained models. On the other hand, the participant role is 
restricted to local computations. These roles are not mutually exclusive, and developers can use 
three constants COORDINATOR, PARTICIPANT, and BOTH to assign a role to each state and state 

transition. Developers are expected to consider clients' roles when defining states and the possible 
transitions between them. FeatureCloud template includes a verification mechanism to ensure that 
clients' roles agree with states and transitions logic during execution. 
 
Once states are executing, any exceptions or errors can happen, which the app will handle 
automatically. For reporting the situation for the front-end app to inform the end-users, developers 
can communicate RUNNING, ERROR, or ACTION_REQUIRED to the controller: 

 
ǒ RUNNING: the app is functioning normally 

ǒ ERROR: app execution is interrupted with an error and cannot recover from it. Consequently, 

app execution will stop 
ǒ ACTION REQUIRED: This expresses the demand for end-usersô intervention. It is specifically 

provided for interactive federated learning or data analysis apps 
 
For proper logging and reporting to the front-end, developers can employ DEBUG, ERROR, and FATAL 
logging levels to facilitate the debugging and reporting process. For debugging and possible error 
messages, developers may use DEBUG and ERROR, respectively. For FATAL, like ERROR, it can log 

erroneous events that the app may encounter during the execution but cannot recover from. The 
app execution stops in case of a fatal error. 

2.2.3 App Class 

In the FeatureCloud engine package, the App class is the central piece, responsible for state 

registration, transition, and execution. Despite acting as an interface between the app and controller 

and managing the app execution, App is a highly transparent class that demands minimum 

developer knowledge and interaction. In fact, developers are not obliged to be familiar with the App 

class; however, there is a verification mechanism in both App and AppState  classes that developers 

should be aware of, which includes registering states and transitions by assigning role/s that are 

responsible/allowed to execute states or take transitions. The App class automatically checks the 

logic to ensure semantic errors in defining the workflow are minimized. 

Each app should contain and start with an initial state. On the other hand, each app, by default, 

includes the terminal state that has no task or operation to accomplish other than explicitly marking 

the final state in the app. Once a state transitions to the terminal state, that state should be 

considered one of the appôs possible exit states. The FeatureCloud app includes various methods 

that provide the ability to flexibly incorporate different states into the app and work as part of the 

verification mechanism. Once all the states are registered and ready to run, app.register()  should 

be called to register all the transitions. 
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When the app instance is running, different errors may happen, or various results may be produced. 

Thereby, the app instance may need to communicate with the controller or front-end parts of 

FeatureCloud which can be easily done through helper functions in AppState class. Developers can 

use status attributes in the App class to send messages between the app container to the controller 

and/or indirectly with the front-end. 

Availability of data to communicate. Once a client wants to communicate with other clients, 

regardless of role, and the data is ready, by setting app.status_available  to True , the app 

instance sends the signal to the controller to execute the communication. Generally, this attribute 

will be used for communication methods and automatically handled by the FeatureCloud app. 

Termination of app execution. The app instance can set the app.status_finished  attribute as 

True to signal the controller that app execution is finished. Generally, this attribute will be set as True 

by the FeatureCloud app once the app enters the terminal state or some exceptions happen during 

the app run. 

Messaging to the frontend. Once there is a specific message, e.g. the occurrence of some 

semantic errors, the app instance can use app.status_message  to inform the end-user in the 

frontend. For sending messages to the frontend, developers can use app.update. 

Overall progress of the app. During the run, app execution progress can be quantified based on 

different factors. Developers can quantify the app progress in the range of zero to one and share it 

with the end-user through the front-end using app.update . 

Operational state of the app. During the app run, different operational states can be reported to 

the end-user using app.update . 

Messaging to other clients. Once clients want to communicate with another client, they should 

provide the ID of the target client for the coordinator. Developers should use the destination 

argument in communication methods for this purpose and status_destination  will be accordingly 

and automatically handled by the app instance. 

Desired configuration of SMPC component. App developers can decide which parameters should 

be used for SMPC aggregation, and they can inform the controller about the configuration using 

app.configure_smpc . 

Shared memory for states. Different states can be defined and registered to the app, and they may 

need to pass data to each other. The App class has an internal attribute, a dictionary that can be 

accessed through self.app.internal in each state to support a shared memory between different 

states. 

2.2.4 Example Apps 

In general, for developing apps in the FeatureCloud platform, apps should communicate with the 

FeatureCloud controller. For this purpose, app developers have multiple options that all include 

employing the FeatureCloud. engine  package, which provides the basic means. Most 

simplistically, they can extend the FeatureCloud.engine.app.State  class to define new custom 

states and use the app_state  handler to register their state inside the app. FeatureCloud apps can 
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support different states and various communications; moreover, they can be used inside a workflow 

in conjunction with other apps. Inside each workflow, every app gets the input files from the output 

of the previous app in the workflow, except for the first one, which gets data from end-users. 

Accordingly, we use a convention that facilitates providing acceptable results for other accompanying 

apps in a workflow. Meanwhile, it increases readability and facilitates debugging. One of the 

simplifying ways for providing expected results for accompanying apps are using the ConfigSate  

from the FeatureCloud engine which also exemplifies how to extend AppState  to define different 

levels of abstractions that can be used in multiple apps. 

 

We provide 4 sample implementations or scaffolds4 illustrating the capabilities of the FeatureCloud 

template, each of them being commented extensively to provide help to the developers: 

ǒ Blank - Blank scaffold for new apps 

ǒ Throw die - Simple state machine with different states for participants and controller 

ǒ Library - Implementation demonstrating AppState extensions 

ǒ Round - Sample app demonstrating peer-to-peer communication 

2.3 Command-line Interface 

While the FeatureCloud app simulation (see section 2.1) is easily accessible through a graphical 

web frontend, developers are often used to performing tasks reproducibly through a command-line 

interface (CLI). Therefore, we now provide a compact FeatureCloud CLI to allow for controlling app 

testing from the terminal. By this, developers can trigger different run scenarios for their apps inside 

bash scripts or from various programming languages, programmatically define different input data 

or parameters, and verify the test results using the CLI commands. 

 

The FeatureCloud CLI will be further extended and made available as a pip package that can be 

installed globally. Its commands have the following shape: 

 

<scope> <command> - param1 value1 - param2 value2 ...  

 

To start a test, the command would be 

 

test start -- client - dirs ./test1,./test2 -- app- image test_app  

 

Here, the scope is test , the command is start  and the parameters are cl ient - dirs  and app-

image. 

 

After the test run starts successfully, the test id will be returned. If something went wrong, the 

corresponding error message occurs, e.g. {"detail":"Error: No such image: test_app"}  

 

A list of the currently available commands can be found in the supplement. 

 

The CLI uses the same endpoints as the front end. Therefore, every action performed using the CLI 

will also be shown in the frontend and vice versa. The CLI is especially useful for developers of WP5 

 
4 https://github.com/FeatureCloud/app-template/tree/master/apps/examples  

https://github.com/FeatureCloud/app-template/tree/master/apps/examples
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from SDU, who are developing unsupervised ML apps for FeatureCloud, which require regular and 

extensive testing. 

 

In the future, we aim to merge the app template library and the CLI into a single pip package, such 

that all tools needed by developers are provided by the all-purpose pip package ófeaturecloudô. 

3 Evaluation 

We can distinguish two different types of evaluations needed in the context of machine learning apps 

in the FeatureCloud AI Store: 

 

1. Evaluation of an analysis performed by the end-user. Here, similar to central ML 

pipelines, the performance of the trained model needs to be validated. The performance here 

is mainly dependent on the data that is used for training. 

2. Evaluation of the app algorithm itself, performed by the app developer. Here, the app 

developer compares the performance and runtime of the federated algorithms with the central 

algorithm. This evaluation is data-independent. It should show that similar or identical results 

are achieved if the same dataset is used for the central and federated algorithms (if they were 

merged). 

The following sections will describe how FeatureCloud enables both evaluation types to allow state-

of-the-art machine learning workflows with apps from the AI store. 

3.1 Evaluation Pipeline for End-Users 

To evaluate the performance of a machine learning model and detect misbehaviours, such as 

underfitting or overfitting, a simple training of the machine learning model on training data is not 

enough in practice. The trained models need to be evaluated on an unseen set of data to make sure 

that models generalize well and do not only perform well on the already seen training data. 

 

For this, FeatureCloud offers several apps in the AI store that make it easy to evaluate a machine 

learning model. As in medicine sample size and therefore data samples are the bottleneck, we 

support a cross-validation app that splits the local data into various splits. Every upcoming analysis 

app will perform the analyses on each of these splits in parallel. In the end, an evaluation app can 

calculate the corresponding scores like sensitivity, specificity, accuracy, or the Matthews correlation 

coefficient to determine the modelôs performance through cross-validation. 

 

Figure 7 shows an example of such a workflow. The cross-validation app (purple) splits the local 

data into three splits and creates the corresponding train and validation data. After that, the 

normalization app (green) performs a normalization (e.g., standardization) on each data split. After 

that, an analysis app (e.g., Linear Regression) performs a regression on the normalized data splits. 

Finally, the evaluation app evaluates the model by calculating different scores for each split and 

visualizes these scores to validate the model performance. 
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Figure 7. Workflow structure used for evaluation. The first app (purple) creates splits for cross-

valuation. All following apps perform their tasks on each split individually, in a federated fashion, 

only transmitting model parameters. The grey dots represent intermediate training/test data. The 

second app (green) performs normalization, and the third (blue) trains the models, generating a 

global model. The global model is evaluated in the evaluation app (orange). The evaluation results 

are finally aggregated to obtain an evaluation report based on the initial CV splits. 

 

The workflow approach in FeatureCloud and the cross-validation app and evaluation apps allow a 

state-of-the-art evaluation of machine learning algorithms in FeatureCloud for the federated 

analysis. 

3.2 Evaluation of the AI Store apps 

Representing the many apps in the AI store, we evaluated the performance and runtime of the 

FeatureCloud apps of four commonly used algorithms in machine learning: logistic regression (LR) 

and random forest (RF) for classification tasks and regression tasks. Each evaluation of the 

federated apps was run in the workflow that was previously described in section 3.1. 



 

D7.3 Federated machine learning apps  
running in app store 
  

 
 

 

 

 
This project has received funding from the European Unionôs Horizon 2020 research 
and innovation programme under grant agreement No 826078. 

 
Page 18 of 29 

 

3.2.1 Performance 

Figure 8 shows the performance of the FeatureCloud apps on different datasets (subfigures) for the 

centralized algorithm (orange), the federated FeatureCloud app (blue), the individual training on each 

site on a central, common test dataset (dark grey) and the individual training on each site with local 

test data only. 

 

As we can see in the Figure, the federated logistic regression app and the federated linear regression 

app perform identically to their centralized counterparts. The federated Random Forest does not 

perform identically but is comparable to their centralized counterparts. This is because the app does 

not compute each tree in a federated fashion. Each participant computes a forest on its own data 

that are finally merged and weighted into a global forest. Therefore, identical results are no longer 

possible, but the results have shown similar performance. 

 

 
 

Figure 8. Performance evaluation of federated AI methods. The boxplots show the results of a 

10-fold CV for the different classification and regression models and datasets in multiple settings. 

The centralized results are shown in orange, the corresponding federated results in blue and the 

individual results obtained locally at each participant in grey. Each model was evaluated on the 

entire test set (dark grey) like the centralized and federated models, and on the individual (local) 
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parts of the test set (light grey). The federated logistic and linear regressions perform identically to 

their centralized versions and the federated random forest performs similar to its centralized 

version. 

3.2.2 Runtime and Network Traffic 

 

 
 

Figure 9. Runtime and network traffic. The left plots show runtime for unlimited and throttled 

connections, the right plots show network traffic for coordinator and participants evaluated on the 

Indian Liver Patient Dataset. The lines represent the median values measured over 10 executions. 

The areas show the 25% and 75% quartiles to illustrate variance across the executions. 

4 Privacy 

Privacy is one of the crucial aspects that FeatureCloud has to consider. While federated learning 

usually already provides a significantly higher level of privacy, it cannot generally be ruled out that 

the transmitted model parameters reveal information about the raw data. App developers can 

integrate additional privacy-enhancing techniques (PETs) such as differential privacy (DP), as 

suggested in D2.4. However, these implementations need to be verified manually and still leave the 

risk of flaws in the implementation, bugs, malicious intent etc. For this reason, the FeatureCloud 

consortium constantly evaluates possible extensions to the FeatureCloud system itself. Differential 

privacy of the app outputs (i.e., the learned model parameters) will thus be provided as an additional 

app that can be directly applied to the local workflow. In addition, modules for stochastic gradient 

descent will be available (cf. Section 5.3). 
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This section contains information about changes to the communication and other logic implemented 

in the FeatureCloud system and relates it to privacy considerations. Additive secret sharing is 

discussed as a first example for a privacy-enhancing nodule inside FeatureCloud. 

4.1 Peer-to-peer Communication 

The existing star-based communication logic (see D7.2, section 2.2) allowed for common use-cases 

in federated learning, where a global model is continuously being updated by aggregating local 

updates in one common model. Sending data to a single participant from the coordinator was not 

possible so far, let alone peer-to-peer (P2P) communication. This imposed restrictions in terms of 

the available range of privacy-enhancing techniques that can be integrated into app 

implementations. A possible workaround was emulating P2P communication inside this architecture 

which caused a significant increase in network traffic. 

 

We therefore integrated P2P communication into the FeatureCloud system. While all traffic is still 

routed through the relay server, it logically provides a secure P2P channel. Please note that the relay 

server is a FeatureCloud system component (see 13) and has to be distinguished from the 

coordinator app instance, which is not involved here. In P2P communication, all app instances 

behave the same and their role (coordinator/participant) is of no significance. 

 

To hide the traffic from the relay server, asymmetric encryption is being used, as described in section 

4.2. Figure 10 shows the process of transmitting data from one participant to another via the relay 

server. 

 

 
 

Figure 10. Peer-to-peer communication built on top of star architecture. In step 1, participant 

1 encrypts value X using the public key of participant 3. In step 2, the relay server sends the 

encrypted value to participant 3, which decrypts it in step 3. 
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In order to allow for P2P-communication, the API was extended. From an app developerôs 

perspective, it is very simple to use this piece of functionality by specifying the destination client ID 

(see Listing 4). 

 

{  

 " available " :  true ,  

 " destination " :  " 38b0da293e4ed6c1"  

}  

 

Listing 4. P2P API extension (JSON). Specifying a destination ID causes the FeatureCloud 

system to deliver the data to the identified participant (here 38b0da293e4ed6c1). The usual 

gather/broadcast behaviour is not applied in this case. 

4.2 Encryption 

To hide the data from the relay server and other potential eves droppers, we apply a state-of-the art 

combination of asymmetric and symmetric encryption: First, a symmetric key is generated and used 

to encrypt the data. Before actually encrypting the data, a nonce (sequence of 12 random bytes) is 

prepended to make previously sent data indistinguishable from new data when comparing the 

ciphertexts. The symmetric key is then encrypted using the public key of the destination client. 

 

Symmetric encryption. For the symmetric encryption, we apply the Advanced Encryption Standard 

(AES) with a 256-bit key. 

 

Asymmetric encryption. For the asymmetric encryption part, we make use of elliptic hash curves, 

using the P-224 curve (see FIPS 186-3, section D.2.2). We decided to use this technique instead of 

the more popular RSA standard, because we can significantly reduce the key sizes of the involved 

participants that way. 

4.3 Additive Secret Sharing 

One of the crucial steps in FL is aggregating local models from multiple participants. This leads to 

an imbalance of required trust: while every participant will be able to see the aggregated model after 

an aggregation step, only the coordinator knows all individual models. To address this problem, an 

adapted additive secret sharing technique has been implemented. Each participant splits its local 

model into n pieces or secrets, a masked model (M - r1 - é - rn-1), and the masks r1, é, rn-1 which 

are equally distributed random values. Those secrets are then distributed to the other parties. They, 

in turn, sum up all received pieces individually and send their sum to the coordinator, which can 

calculate the global sum and redistribute it to the other parties again (see Figure 11). 
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Figure 11. Additive secret sharing implemented in FeatureCloud. Step 1 shows how two secrets 

are created by each of the three participants for their values X1, X2 and X3. Step 2 distributes them 

according to the P2P protocol. In step 3, the received secrets are decrypted and summed up by 

each participant. Step 4 relays the local sums to the coordinator, which decrypts them in step 5 

and calculates the global sum. 

 

When using this technique during training, at the beginning of each iteration, each participant first 

receives the global model (e.g., a randomly initialized neural network). Each participant then creates 

an updated model using its local data and masks the model with n-1 different masks, one for each 

participant, and encrypts them with the respective participantôs public key. The masked model, 

together with the encrypted masks, is then sent back to the coordinator. The coordinator relays the 

encrypted masks to the participants who can decrypt their share of the masks and calculate the sum, 

which is then sent back to the coordinator. The coordinator finally sums up the masked models and 

the sums received from the participants to obtain the sum of local models. While providing enhanced 

privacy for each participant, it leads to an increase in network traffic, growing quadratic with the 

number of participants. 

4.4 Certification Process and App Evaluation 

 
As an extension of the certification process and migration to a more structured approach, we are 
currently integrating the AIMe report tool into FeatureCloud. The current process entirely relies on a 
description by the developer, making manual checks of completeness of the reported pieces of 
information necessary. In order to solve this, an additional AIMe section entirely dedicated to privacy 
is being drafted, using the AIMe specification language shown in Listing 1. In order to be certified, 
each app then requires a privacy AIMe report providing details about potential privacy leaks for: 
 
ǒ A single execution 
ǒ Multiple executions on the same data 
ǒ Execution in a pipeline 
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This AIMe report will then be a mandatory part of the certification process and used as a basis for 
the verification of the risk assessment (see Figure 12). 
 

 
Figure 12. Outline of the certification process. A new app and app updates need to undergo 5 

stages during the certification process: Checking for errors, providing AIMe risk assessment, 

disclosing source code, verifying privacy measures, verifying risk assessment. 

5 System and Implementation 

This section contains the updated description of the system and software architecture. 

5.1 System Architecture 

The FeatureCloud system consists of multiple components that are distributed across IT 

infrastructures of the workflow participants and servers hosted by FeatureCloud. 

 

Figure 13. System architecture of FeatureCloud with two participants. The Controller, 

Frontend, Docker Engine, and App Instances are running locally at the participants. The 

FeatureCloud Backend and Docker Registry are running on FeatureCloud servers. The Relay 

Server can be run on a separate server, or participants can use a provided instance from 














