
Federated Principal Component Analysis for Genome-Wide
Association Studies

Anne Hartebrodt

University of Southern Denmark

Department of Mathematics and Computer Science

Odense, Denmark

hartebrodt@imada.sdu.dk

Reza Nasirigerdeh

Technical University of Munich

Chair of Experimental Bioinformatics

Freising, Germany

reza.nasirigerdeh@tum.de

David B. Blumenthal

Technical University of Munich

Chair of Experimental Bioinformatics

Freising, Germany

david.blumenthal@wzw.tum.de

Richard Roettger

University of Southern Denmark

Department of Mathematics and Computer Science

Odense, Denmark

roettger@imada.sdu.dk

ABSTRACT

PVLDB Reference Format:
Anne Hartebrodt, Reza Nasirigerdeh, David B. Blumenthal, and Richard

Roettger. Federated Principal Component Analysis for Genome-Wide

Association Studies. PVLDB, 14(1): XXX-XXX, 2020.

doi:XX.XX/XXX.XX

PVLDB Availability Tag:
The source code of this research paper has been made publicly available at

http://vldb.org/pvldb/format_vol14.html.

1 INTRODUCTION
Federated learning (FL) has recently gained attraction as a privacy

preserving alternative to centralised computation. Instead of consol-

idating the data on a central server, the data holder keep ownership

of their data and send only parameters to an aggregation server [21].

An attractive application case for FL are genome-wide association

studies (GWAS), which investigate the relationship of genetic vari-

ation with phenotypic traits on large cohorts [37, 40]. Genetic data

is extremely sensitive in its nature and data holders hence cannot

make it publicly available. The practical feasibility of using FL for

GWAS has been demonstrated recently [22]. Alternative privacy

preserving techniques such as secure multi-party computation that

have been used for GWAS are computationally very expensive and

hence do not scale to large cohorts [7].

Since GWAS are often done on populations of mixed ancestry,

cryptic population confounders should be controlled for when asso-

ciating the genetic variants to the phenotypic trait of interest. The

standard way for doing this is to compute the leading eigenvectors

of the sample covariance matrix via principle component analysis

(PCA), and including these eigenvectors as confounding variables

to models used for the association tests [9, 23].

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 1 ISSN 2150-8097.

doi:XX.XX/XXX.XX

For federated GWAS, a PCA algorithm for vertically partitioned

data is required for computing the eigenvectors. Although a few

such algorithms are available [12, 16, 26, 41], none of them is suit-

able for federated GWAS. More precisely, the algorithms reviewed

in [41] use client-to-client communication and are therefore unsuit-

able for the star-like FL architectures used in GWAS. The algorithms

presented in [16] and [26] rely on estimating a proxy covariance

matrix and hence do not scale to large GWAS datasets, which often

contain genetic variation data for more than 300 000 individuals.

To the best of our knowledge, the only covariance free PCA algo-

rithm suitable for a star-like architecture has been presented in

[12]. However, this algorithm broadcasts the complete first 𝑘 − 1
eigenvectors to the aggregator, which constitutes a privacy leakage

that should be avoided in federated GWAS.

Extrapolating from the shortcomings of existing approaches, we

can state that, for federated GWAS, a PCA algorithm for vertically

partitioned data is required that combines the following properties:

• The algorithm should be suitable for a star-like FL architec-

ture, i. e., require only client-to-aggregator but no client-to-

client communication.

• The algorithm should not rely on computing or approximat-

ing the covariance matrix.

• The algorithm should not broadcast complete eigenvectors

to the clients.

In this paper, we present the first algorithm that combines all

of these desirable properties and can hence be used for feder-

ated GWAS (and all other applications where these properties are

required). We prove that our algorithm is equivalent to central-

ized vertical subspace iteration [13], a state-of-the-art centralized,

covariance-free PCA algorithm. Moreover, we show in a large-scale

empirical evaluation the eigenvectors computed by our approach

converge to centrally computed eigenvectors after sufficientlymany

iterations.

Although FL is a promising concept for privacy preserving com-

putation, it has been shown that open questions regarding privacy

leaks during the entire learning process remain [21]. One possible

mitigation are hybrid approaches, where the model parameters are

encrypted before sending them to the aggregator [21, 39]. Following

this paradigm, we suggest a symmetric homomorphic encryption

https://doi.org/XX.XX/XXX.XX
http://vldb.org/pvldb/format_vol14.html
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/XX.XX/XXX.XX

Anne Hartebrodt, Reza Nasirigerdeh, David B. Blumenthal, and Richard Roettger

(HE) scheme for our algorithm [1, 31], which protects against data

leakage at the aggregator. We empirically show that, although HE

comes at a considerable computational cost, the overall runtime of

our encrypted algorithm is still perfectly reasonable for application

settings such as GWAS where data collection can take years.

Finally, we present Fever-PCA—a user-friendly web-service

which implements our algorithm and hence makes it available

to non-computer scientist researchers working in the GWAS field.

Fever-PCA is available at http://federated.compbio.sdu.dk/. To the

best of our knowledge, Fever-PCA is the first ready-to-use imple-

mentation of a federated PCA algorithm. Note that providing such

an implementation is crucial for federated GWAS solutions to be

adopted in practice, because GWAS scientists tend to rely on ready-

made software such as PLINK [4]. In sum, this paper contains the

following contributions:

• We present the first federated PCA algorithm for vertically

partitioned data which meets the requirements that apply in

federated GWAS settings.

• We prove that our algorithm is equivalent to centralized

power iteration and show that it exhibits an excellent con-

vergence behavior in practice.

• We present a HE scheme for our algorithm which protects

against data leakage at the aggregator.

• We present Fever-PCA, a user-friendly web-service that im-

plements the proposed algorithm and thereby makes it avail-

able to the GWAS community.

The remainder of this paper is organized as follows: In Section 2,

we introduce concepts and notations that are used throughout

the paper. In Section 3, we discuss related work. In Section 4, we

describe the proposed algorithm. In Section 5, we present Fever-

PCA. In Section 6, we report the results of the experiments. Section 7

concludes the paper and points out to future work.

2 PRELIMINARIES
Federated Learning and Employed Data Model. Unlike in central-

ized machine learning where the data is consolidated at a central

sever and a model is calculated on the combined data, in FL the

data remains at the data owners machine. Instead of sending the

data, only model parameters are sent to the central server which

combines the local models into a global model. See Figure 1 for a

schematic comparison of centralized (cloud) learning and federated

learning. In the cloud based approach, data contributors send their

data to a central server and thereby loose agency over what hap-

pens to it. The global model is computed on all the aggregated data.

In FL, the different sites (e. g., hospitals) calculate a local model

on their private data and send only the model parameters to an

untrusted aggregator. The global model is computed and sent back

to the local sites. No raw data is exchanged in federated leaning.

Typically, a star-like client-aggregator architecture is used in

biomedical federated solutions [22, 35], with the data holders acting

as clients. The data sets at the client sites will be called local data
sets and the parameters or models learned using this data will be

called local parameters or local models, while the final aggregated
model will be called pooled model. The optimal result of the pooled

model is achieved when it equals the result of the conventional

model calculated on all data which we call the global model.

Figure 1: Schematic comparison of traditional cloud base ap-
proaches (left) and federated learning (right).

In federated settings, the data can be distributed in several ways.

Either the clients observe a full set of variables for a subset of

the samples (horizontal partitioning) or they have a partial set of

variables for all samples (vertical partitioning) [27, 41]. In this paper,

we assume that we are given a global data matrix A ∈ R𝑚×𝑛 , where
𝑚 is the number of features (SNPs, in the context of GWAS) and

𝑛 is the overall number of samples. The data is split across 𝑆 local

sites as A = [A1 . . .A𝑠 . . .A𝑆], where A𝑠 ∈ R𝑚×𝑛𝑠 and 𝑛𝑠 denotes
the number of samples available at site 𝑠 . From a semantic point

of view, the partitioning is hence horizontal, since the samples are

distributed over the local sites. However, from a technical point of

view, the partitioning is vertical, since the samples correspond to

the columns of A. The reason for this rather unintuitive setup is

that, when using PCA for GWAS, samples are treated as features.

We explain this in detail in the following paragraphs.

Principal Component Analysis. Given a data matrix A ∈ R𝑚×𝑛 ,
the PCA is the decomposition of the covariance matrix Σ = A⊤A ∈
R𝑛×𝑛 into Σ = ΓΛΓ⊤. Λ ∈ R𝑛×𝑛 is a diagonal matrix containing the

eigenvalues (𝜆𝑖)𝑛𝑖=1 of Σ in non-increasing order, and Γ ∈ R𝑛×𝑛 is

the corresponding matrix of eigenvectors [15]. Usually, one is only

interested in the top 𝑘 eigenvalues and corresponding eigenvectors.

Since𝑘 is arbitrary but fixed throughout this paper, we letG ∈ R𝑛×𝑘
denote these first 𝑘 eigenvectors (i. e., G corresponds to the first 𝑘

columns of Γ). G is typically used to obtain a lower-dimensional

representation A ↦→ AG ∈ R𝑚×𝑘 of the data matrix A, which can

then be used for downstream data analysis tasks. This, however, is

not the way PCA is used in GWAS, as we will explain next.

Genome-Wide Association Studies. The genome stores the hered-

itary information that control the phenotype of an individual in

interplay with the environment. The genetic information is stored

in the DNA encoded as a sequence of bases (A, T, C, G), the positions

are called loci. If we observe two or more possible bases at a specific

locus in a population, we call this locus a single nucleotide polymor-
phism (SNP). The predominant base in a population is called the

major allele; bases at lower frequency are called minor alleles [37].
Genome wide association studies try to identify SNPs that are

linked to a specific phenotype [37, 40]. Phenotypes of interest can

for example be the presence or absence of diseases, or quantitative

traits such as height or body mass index. The SNPs for a large

cohort of individuals are sequences and tested for association with

the trait of interest. Typically, simple models such as linear or

logistic regression are used for this [22, 40]. The input to a GWAS

http://federated.compbio.sdu.dk/

Federated Principal Component Analysis for Genome-Wide Association Studies

is an 𝑛-dimensional phenotype column-vector y, a matrix of SNPs

A ∈ R𝑚×𝑛 , and confounding factors as column vector. Each SNP

𝑙 ∈ [𝑚] is tested in an individual association test

y ∼ 𝛽0 + 𝛽1 · A⊤𝑙,• +
𝑅∑
𝑟=1

𝛽𝑟+1 · x𝑟 + 𝜖 , (1)

where A𝑙,• denotes the 𝑙
th
row of A and the column vectors x𝑟 ∈ R𝑛

contain confounding factors such as age or sex.

The standard software for GWAS is the command line tool PLINK

[4, 24]. Users choose their input files and run their analysis choosing

the correct parameters.While a certain familiarity with the software

is required, no actual programming is necessary.

Principal Component Analysis for Genome-Wide Association Stud-
ies. GWAS deal with possibly large cohorts of individuals which

might come from several sub-populations with different ancestry

or cryptic relatedness. These factors can confound the outcome of

an association test and create false hits if not properly controlled

for [37]. PCA has emerged as a popular strategy to infer population

substructure, but is reported as lacking for decentralized learning

[7]. More precisely, PCA is used to compute the first 𝑘 (usually

𝑘 = 10) eigenvectors G = [g1 . . . g𝑘] ∈ R𝑛×𝑘 of the sample covari-

ance matrix A⊤A. Subsequently, these eigenvectors are included
into the association test as covariates [9, 23]:

y ∼ 𝛽0 + 𝛽1 · A⊤𝑙,• +
𝑅∑
𝑟=1

𝛽𝑟+1 · x𝑟 +
𝑘∑
𝑖=1

𝛽𝑖+𝑅+1 · g𝑖 + 𝜖 (2)

In federated GWAS, each local site 𝑠 needs to have access only

to the partial eigenvector matrix G𝑠
corresponding to the locally

available samples. Consequently, computing the complete eigen-

vector matrix G at the aggregator and/or sharing G𝑠
with other

local sites 𝑠 ′ should be avoided to reduce the possibility of informa-

tion leakage. Federated PCA algorithms that are suitable for GWAS

should hence respect the following constraint:

Constraint 1 In a GWAS-suitable federated PCA algorithm, the

aggregator does not have access to the complete eigenvector

matrix G and each site 𝑠 has access only to its share G𝑠
of G.

The PCA in GWAS studies is usually not performed on the full set

of SNPs. There seems to be no general consensus on howmany SNPs

should be used in population stratification. Gauch and colleagues

identify 125 population studies using PCA [10]. Some of these PCA

based stratification methods rely on a small ancestry informative

markers [19], while others employ over 100 000 SNPs [5, 9, 28].

Note that PCA for GWAS is conceptually different from “regular”

PCA for feature reduction (cf. Figure 2). For feature reduction PCA,

we would decompose the𝑚×𝑚 SNP by SNP covariance matrix and

compute a set of “meta-SNPs” for each sample. This is not what

needs to done for GWAS. Instead, the matrix which needs to be

decomposed is the 𝑛 × 𝑛 sample by sample covariance matrix A⊤A.

In our federated setting where A is vertically distributed across

local sites 𝑠 ∈ [𝑆], A⊤A looks as follows (recall that, unlike in

A

s
a
m
p
l
e
s

features

A⊤A

f
e
a
t
u
r
e
s

features

G

f
e
a
t
u
r
e
s

𝑘

AG

s
a
m
p
l
e
s

𝑘

A

f
e
a
t
u
r
e
s

samples

A⊤A

s
a
m
p
l
e
s

samples

G

s
a
m
p
l
e
s

𝑘

association

test

Figure 2: Regular PCA for dimensionality reduction (upper
panel); GWAS PCA for sample stratification (lower panel).

regular PCA, columns correspond to samples and rows to features):

A⊤A =

©­­­­­«
A1
⊤A1 A1

⊤A2 · · · A1
⊤A𝑆

A2
⊤A1 A2

⊤A2 · · · A2
⊤A𝑆

.

.

.
.
.
.

. . .
.
.
.

A𝑆⊤A1 A𝑆⊤A2 · · · A𝑆⊤A𝑆

ª®®®®®¬
(3)

It is clear that A⊤A cannot be computed directly without sharing

patient level data. Moreover, with growing number of samples, this

matrix can become very large and computing it hence becomes

infeasible. For instance, the UK Biobank— a large cohort frequently

used for GWAS— contains GWAS data for around 300 000 individu-

als. Furthermore, approximating A⊤A matrix would introduce error.

These considerations lead to the second constraint for federated

PCA algorithms suitable for GWAS:

Constraint 2 A GWAS-suitable federated PCA algorithm works

on vertically partitioned data and does not rely on computing

or approximating the covariance matrix.

Gram-Schmidt Orthonormalization. TheGram-Schmidt algorithm

allows to transform a set of linearly independent vectors into a set

of mutually orthogonal vectors, see [3] for a proof. Given a matrix

V = [v1 . . . v𝑘] ∈ R𝑟×𝑘 of 𝑘 linearly independent column vectors, a

matrix U = [u1 . . . u𝑘] ∈ R𝑟×𝑘 of orthogonal column vectors with

the same span can be computed as

u𝑖 =

{
v𝑖 if 𝑖 = 1

v𝑖 −
∑𝑖−1

𝑗=1 𝑟𝑖, 𝑗 · u𝑗 if 𝑖 ∈ [𝑘] \ {1}
, (4)

where the residuals are defined as 𝑟𝑖, 𝑗 = u⊤
𝑗

v𝑖/𝑛 𝑗 with 𝑛 𝑗 = u⊤
𝑗

u𝑗 .

The vectors can then be scaled to unit Euclidean norm as u𝑖 ↦→
(1/√𝑛𝑖) · u𝑖 to achieve a set of orthonormal vectors. In the context

of PCA, this can be used to ensure orthonormality of the candidate

eigenvectors in iterative procedures, which otherwise suffer from

numerical instability in practice [12].

Notations. Table 1 provides an overview of notations which are

used throughout the paper.

Anne Hartebrodt, Reza Nasirigerdeh, David B. Blumenthal, and Richard Roettger

Table 1: Notation table.

Syntax Semantics

[𝑁] ⊂ N index set [𝑁] = {𝑖 ∈ N | 1 ≤ 𝑖 ≤ 𝑁 }
𝑆 ∈ N number of sites

𝑚 ∈ N number of features (i. e., SNPs)

𝑛 ∈ N total number of samples

𝑛𝑠 ∈ N number of samples at site 𝑠 ∈ [𝑆]
𝑘 ∈ N number of eigenvectors

A ∈ R𝑚×𝑛 complete data matrix

A𝑠 ∈ R𝑚×𝑛𝑠 subset of data available at site 𝑠 ∈ [𝑆]
G𝑖 ∈ R𝑛×𝑘 eigenvector matrix of A⊤A at iteration 𝑖

G ∈ R𝑛×𝑘 converged eigenvector matrix of A⊤A
G𝑠
𝑖
∈ R𝑛𝑠×𝑘 partial eigenvector matrix of A⊤A at iteration 𝑖

G𝑠 ∈ R𝑛𝑠×𝑘 converged partial eigenvector matrices of A⊤A.

H𝑖 ∈ R𝑚×𝑘 eigenvector matrix of AA⊤ at iteration 𝑖

H ∈ R𝑚×𝑘 converged eigenvector matrix of AA⊤

H𝑠
𝑖
∈ R𝑚×𝑘 partial eigenvector matrix of AA⊤ at iteration 𝑖

V ∈ R𝑟×𝑘 a generic column vector matrix

U ∈ R𝑟×𝑘 an orthonormal matrix with span(U) = span(V)

3 RELATEDWORK
Centralized, Iterative, Covariance-Free Principal Component Anal-

ysis. While classical PCA algorithms rely on computing the co-

variance matrix A⊤A [references missing], several covariance-free

approaches exist which iteratively approximate the top 𝑘 eigen-

values and eigenvectors [29]. These schemes avoid computing the

covariance matrix by using a two-step approach where the can-

didate eigenvector is first multiplied by the transpose of the data

matrix and then again by the data matrix, thereby achieving the

same outcome as if iterating with the covariance matrix.

Algorithm 1: Centralized Vertical Subspace Iteration [13]

Input: Data matrix A ∈ R𝑚×𝑛 , number of eigenvectors 𝑘 .

Output: Eigenvector matrix G ∈ R𝑛×𝑘 of A⊤A.

// Initialize candidate eigenvector matrix of A⊤A.

1 generate G0 ∈ R𝑛×𝑘 randomly;

2 G0 ← orthonormalize(G0);
// Initialize iteration counter.

3 𝑖 ← 1;

4 while termination criterion not met do
// Update candidate eigenvector matrix of AA⊤ .

5 H𝑖 = AG𝑖−1;
6 H𝑖 = orthonormalize(H𝑖);

// Update candidate eigenvector matrix of A⊤A.

7 G𝑖 = A⊤H𝑖 ;

8 G𝑖 ← orthonormalize(G𝑖);
// Increment iteration counter.

9 𝑖 ← 𝑖 + 1;
// Return converged eigenvector matrix of A⊤A.

10 G← G𝑖 ;

11 return G;

Algorithm 1 summarizes the centralized, iterative, covariance-

free PCA algorithm suggested in [13], which will serve as point of

departure for our federated approach. First, an initial eigenvector

matrix is sampled randomly and orthonormalized (lines 1 to 2). In

every iteration 𝑖 , improved candidate eigenvectors G𝑖 of A⊤A are

computed (lines 5 to 5). Once a suitably defined termination crite-

rion is met (eigenvectors converged, maximal number of iterations

reached, time limit reached, etc.), the last candidate eigenvectors

are returned (lines 10 to 11).

To update the candidate eigenvector matrices G𝑖 = A⊤H𝑖 =

A⊤AG𝑖−1 ∈ R𝑛×𝑘 of A⊤A, the algorithm also computes candidate

eigenvector matrices H𝑖 = AG𝑖−1 = AA⊤H𝑖−1 ∈ R𝑚×𝑘 of AA⊤.
Since, in the context of GWAS, AA⊤ corresponds to the “classical”

feature by feature covariance matrix, the algorithm can hence not

only be used for sample stratification but also for feature reduction.

Our federated version will inherit this property.

Federated Principal Component Analysis for Vertically Partitioned
Data. A few algorithms to perform federated computation of PCA

on vertically partitioned static data sets have been proposed [12,

16, 26, 41]. However, none of them is suitable for the GWAS use-

case considered in this paper: The algorithms reviewed in [41] are

specialised for distributed sensor networks and use gossip protocols

and peer-to-peer communication. Therefore, they are not suited for

the intended FL architecture in the medical setting. The algorithms

presented in [16] and [26] rely on estimating a proxy covariance

matrix and hence do not meet Constraint 2 introduced above. Unlike

these approaches, the algorithm described in [12] is covariance-free

and suitable for the intended star-like architecture. However, it

broadcasts the eigenvectors with the all sites and hence does not

fulfill the requirements of Constraint 1.

Federated Matrix Orthonormalization. Matrix orthonormaliza-

tion is a frequently used technique in many applications, includ-

ing the solution of linear systems of equations and singular value

decomposition. There are three main approaches: Householder

reflection, Givens rotation, and the Gram-Schmidt algorithm. In

distributed memory systems and grid architectures, Givens rota-

tion and Householder reflection are popular approaches [references

missing]. However, those algorithms are often highly specialized to

the compute system and rely on shared disk storage. For distributed

sensor networks, Gram-Schmidt procedures relying on push-sum

have been proposed [33, 34, 36]. However, these procedures peer-

to-peer communication and are hence unsuitable for the intended

star-like architecture. In other words, no federated orthonormal-

ization algorithms suitable for our setup are available. Below, we

present such an algorithm, which is used as a subroutine in our

federated PCA algorithm.

Federated Principal Component Analysis for Horizontally Parti-
tioned Data. Although not directly relevant for this work, we also

provide a short overview of existing federated PCA algorithms for

horizontally partitioned data. Here, we selected representatives

for conceptual groups of algorithms. There are ’single-round’ ap-

proaches, where the eigenvectors are computed locally and send

to the aggregator [?]. At the aggregator a global subspace is ap-
proximated from the local eigenspaces. The higher the number of

transmitted intermediate dimensions, the better the global subspace

Federated Principal Component Analysis for Genome-Wide Association Studies

approximation. In this algorithm, the solution quality is not inde-

pendent of the number of transmitted dimensions. Furthermore,

iterative schemes been proposed , where the eigenvectors are com-

puted locally, sent to the aggregator, where an aggregation step is

performed to obtain a new candidate subspace which is then sent

back to the clients. The candidate subspace is refined iteratively

[2, 6, 14]. Furthermore, a number of specific schemes for streaming

[11], and other applications [30] exist. These concepts rely on the

fact that at least an approximation of the entire eigenvector is pos-

sible at the clients or a global covariance matrix is approximated.

As we have discussed earlier these assumptions do not hold true

for vertically partitioned data.

4 ALGORITHMS
In this section, we present a federated PCA algorithm, which is

designed for a star-like architecture, meets the requirements of

Constraint 1 and Constraint 2, and is hence suitable for federated

GWAS. Our algorithm is a federated version of centralized the ver-

tical subspace iteration algorithm [13], which we have summarized

in Algorithm 1 above. In Section 4.1, we describe our algorithm and

prove that it is equivalent to centralized vertical subspace iteration.

In Section 4.2, we present a federated Gram-Schmidt algorithm,

which can be used as a subroutine in our federated PCA algorithm

to ensure that the eigenvectors of A⊤A remain at the local sites.

Again, we prove that our federated Gram-Schmidt algorithm is

equivalent to the centralized counterpart. In Section 4.3, we analyze

the network transmission costs of the proposed algorithms.

4.1 Federated Vertical Subspace Iteration
Algorithm 2 and Algorithm 3 describe our federated vertical sub-

space iteration algorithm from, respectively, the client and the

aggregator view: At the beginning of the algorithm, the first partial

candidate eigenvector matrices G𝑠
0
of A⊤A are initialized randomly

and orthonormalized (lines 1 to 6 in Algorithm 2 and lines 1 to 9

in Algorithm 3). Note that no privacy issues arise if centralized

orthonormalization is chosen here, since the G𝑠
0
matrices contain

only random values. However, using federated orthonormalization

as described in Section 4.2 can be beneficial to reduce network

transmission costs (see Section 4.3 for details).

Inside the main loop, the candidate eigenvectors H𝑖 of AA⊤ are

updated and orthonormalized at the aggregator (lines 9 to 11 in

Algorithm 2 and lines 12 to 15 in Algorithm 3). Next, the clients

update the partial candidate eigenvectors G𝑠
𝑖
of A⊤A (line 12 in

Algorithm 2). Now, the candidate eigenvectors G𝑖 of A⊤A need to

be orthonormalized. If centralized orthonormalization is chosen,

the clients send G𝑠
𝑖
back to the aggregator, which carries out the

orthonormalization (lines 14 to 15 in Algorithm 2 and lines 17 to 21

in Algorithm 3). For federated GWAS, this should be avoided, since

the aggregator might use G𝑖 to approximately reconstruct sensitive

patient data. Consequently, we have developed a federated Gram-

Schmidt orthnormalization algorithm (presented in Section 4.2),

which can be called by the clients and the aggregator to ensure

that the partial candidate eigenvectors G𝑠
𝑖
remain at the local sites

(line 17 in Algorithm 2 and line 23 in Algorithm 3).

Like the original centralized version described in Algorithm 1

above, our algorithm can be run with various termination criteria.

Algorithm 2: Federated Vertical Subspace Iteration –

Client

Input: Partial data matrix A𝑠 ∈ R𝑚×𝑛𝑠 at site 𝑠 , number of

eigenvectors 𝑘 .

Output: Partial eigenvector matrices G𝑠 ∈ R𝑛𝑠×𝑘 of A⊤A
at site 𝑠 .

// Initialize partial candidate eigenvector matrix of A⊤A.

1 generate G𝑠
0
∈ R𝑛𝑠×𝑘 randomly;

2 if use centralized orthonormalization then
3 send-to-aggregator(G0

𝑖
);

4 G0

𝑖
← get-from-aggregator();

5 else
// Use approach described in Algorithm 4 and Algorithm 5.

6 G0

𝑖
← federated-gram-schmidt(G0

𝑖
);

// Initialize iteration counter.

7 𝑖 ← 1;

8 while termination criterion not met do
// Update partial candidate eigenvector matrix of AA⊤ .

9 H𝑠
𝑖
← A𝑠G𝑠

𝑖−1;
10 send-to-aggregator(H𝑠

𝑖
);

11 H𝑖 ← get-from-aggregator();
// Update partial candidate eigenvector matrix of A⊤A.

12 G𝑠
𝑖
← A𝑠⊤H𝑖 ;

13 if use centralized orthonormalization then
14 send-to-aggregator(G𝑠

𝑖
);

15 G𝑠
𝑖
← get-from-aggregator();

16 else
// Use approach described in Algorithm 4 and Algorithm 5.

17 G𝑠
𝑖
← federated-gram-schmidt(G𝑠

𝑖
);

// Increment iteration counter.

18 𝑖 ← 𝑖 + 1;
// Return converged partial eigenvector matrix of A⊤A.

19 G𝑠 ← G𝑠
𝑖
;

20 return G𝑠
;

In our implementation, we use the convergence criterion

diag(H⊤𝑖 H𝑖−1) ≥ 1𝑘 − 𝜖 (5)

using the angle as a global measure as suggested in [18], where 1𝑘
is the 𝑘-dimensional vector of ones and 𝜖 is a small positive number.

With this criterion, the algorithm terminates once all candidate

eigenvectors of AA⊤ are asymptotically collinear. Other conver-

gence criteria could be used as drop-in replacements.

We now prove that our federated algorithm is equivalent to

the centralized version described in Algorithm 1. Consequently,

it inherits its convergence behavior from the centralized version.

Details on the convergence behavior of centralized vertical subspace

iteration can be found in the original publication [13].

Proposition 1. Centralized and federated vertical subspace itera-
tion are equivalent.

Proof. Let G𝑖 and H𝑖 denote the eigenvector matrices main-

tained by the centralized algorithm described in Algorithm 1 at

the end of the main while-loop, and G𝑠
𝑖
be the sub-matrix of G𝑖

for the samples available at site 𝑠 . Moreover, let H̃𝑖 , G̃𝑖 , G̃𝑠
𝑖
, and H̃𝑠

𝑖

Anne Hartebrodt, Reza Nasirigerdeh, David B. Blumenthal, and Richard Roettger

Algorithm 3: Federated Vertical Subspace Iteration – Ag-

gregator

Input: Partial data matrices A𝑠 ∈ R𝑚×𝑛𝑠 at sites 𝑠 ∈ [𝑆],
number of eigenvectors 𝑘 .

Output: Partial eigenvector matrices G𝑠 ∈ R𝑛𝑠×𝑘 of A⊤A
at sites 𝑠 ∈ [𝑆].

// Initialize candidate eigenvector matrix of A⊤A.

1 generate G0 ∈ R𝑛×𝑘 randomly;

2 if use centralized orthonormalization then
3 for 𝑠 ∈ [𝑆] do G𝑠

0
← get-from-client(𝑠);

4 G0 ← stack-vertically(G1

0
, . . . ,G𝑆

0
) ;

5 G0 ← orthonormalize(G𝑖);
6 G1

0
, . . . ,G𝑆

0
← split-vertically(G0);

7 for 𝑠 ∈ [𝑆] do send-to-client(G𝑠
0
, 𝑠);

8 else
// Use approach described in Algorithm 4 and Algorithm 5.

9 federated-gram-schmidt();
// Initialize iteration counter.

10 𝑖 ← 1;

11 while termination criterion not met do
// Update partial candidate eigenvector matrices of AA⊤ .

12 for 𝑠 ∈ [𝑆] do H𝑠
𝑖
← get-from-client(𝑠);

13 H𝑖 ←
∑𝑆
𝑠=1 H𝑠

𝑖
;

14 H𝑖 ← orthonormalize(H𝑖);
15 for 𝑠 ∈ [𝑆] do send-to-client(H𝑖 , 𝑠);

// Update partial candidate eigenvector matrices of A⊤A.

16 if use centralized orthonormalization then
17 for 𝑠 ∈ [𝑆] do G𝑠

𝑖
← get-from-client(𝑠);

18 G𝑖 ← stack-vertically(G1

𝑖
, . . . ,G𝑆

𝑖
) ;

19 G𝑖 ← orthonormalize(G𝑖);
20 G1

𝑖
, . . . ,G𝑆

𝑖
← split-vertically(G𝑖);

21 for 𝑠 ∈ [𝑆] do send-to-client(G𝑠
𝑖
, 𝑠);

22 else
// Use approach described in Algorithm 4 and Algorithm 5.

23 federated-gram-schmidt();
// Inrement iteration counter.

24 𝑖 ← 𝑖 + 1;

be the (partial) eigenvector matrices maintained by our federated

algorithm described in Algorithm 2 and Algorithm 3 at the end of

the main while-loop. We will show by induction on the iterations

𝑖 that H𝑖 = H̃𝑖 and G𝑠
𝑖
= G̃𝑠

𝑖
for all 𝑠 ∈ [𝑆] holds throughout the

algorithm, if the same random seeds are used for initialization.

For 𝑖 = 0, we only have to show G𝑠
0
= G̃𝑠

0
. This directly follows

from Proposition 2 and our assumption that the same random

seeds are used for initialization. For the inductive step, note that,

before orthonormalization in line 14 of Algorithm 3, we have H̃𝑖 =∑𝑆
𝑠=1 H̃𝑠

𝑖
=
∑𝑆
𝑠=1 A𝑠 G̃𝑠

𝑖−1 =
∑𝑆
𝑠=1 A𝑠G𝑠

𝑖−1 = AG𝑖−1 = H𝑖 , where the

third equality follows from the inductive assumption. Because of

Proposition 2, this identity continues to hold at the end of the main

while-loop.

Similarly, after updating in line 12 of Algorithm 2 but before

orthonormalization, we have G̃𝑠
𝑖
= A𝑠⊤H̃𝑖 = A𝑠⊤H𝑖 = (A⊤H𝑖)𝑠 =

G𝑠
𝑖
, where the second equality follows the identity H𝑖 = H̃𝑖 shown

above and (A⊤H𝑖)𝑠 denotes the sub-matrix ofA⊤H𝑖 for the samples

available at site 𝑠 . Again, Proposition 2 ensures that the identity

continues to hold after orthonormalization. □

4.2 Federated Gram-Schmidt Algorithm
Here, we describe federated Gram-Schmidt orthonormalization for

vertically partitioned column vectors. Previous federated PCA algo-

rithms require the complete eigenvectors to be known at all sites

for the orthonormalization procedure. The naïve way of orthonor-

malizing the eigenvector matrices would be to send them to the

aggregator which performs the aggregation and then sends the or-

thonormal matrices back to the clients (lines 14 to 15 in Algorithm 2

and lines 17 to 21 in Algorithm 3). However, in this naïve scheme,

the transmission cost scales with the number of variables (samples

in GWAS) and all eigenvectors are known to the aggregator.

To address these two problems, we suggest a federated Gram-

Schmidt orthonormalization algorithm. Algorithm 4 and Algo-

rithm 5 describe the algorithm from, respectively, the aggregator’s

and clients’ perspectives. The algorithm exploits the fact that the

computations of the squared norms 𝑛𝑖 and of the residuals 𝑟𝑖 𝑗 can

be decomposed into independent computations of summands 𝑛𝑠
𝑖

and 𝑟𝑠
𝑖 𝑗
computable at the local sites 𝑠 ∈ [𝑆].

Algorithm 4: Federated Gram-Schmidt – Client

Input: Data matrix V𝑠 = [v𝑠
1
. . . v𝑠

𝑘
] ∈ R𝑟×𝑘 at site 𝑠 .

Output: Orthonormalized data matrix U𝑠
at site 𝑠 .

// Compute squared norm of first orthogonal vector.

1 u𝑠
1
← v𝑠

1
;

2 𝑛𝑠
1
← u𝑠

1

⊤u𝑠
1
;

3 send-to-aggregator(𝑛𝑠
1
);

4 𝑛1 ← get-from-aggregator();
// Orthogonalize all subsequent vectors.

5 for 𝑖 ∈ [𝑘] \ {1} do
// Compute residuals for vector which should be orthogonalized.

6 for 𝑗 ∈ [𝑖 − 1] do
7 𝑟𝑠

𝑖 𝑗
← u𝑠

𝑗
⊤v𝑠

𝑖
/𝑛 𝑗 ;

8 send-to-aggregator((𝑟𝑠
𝑖 𝑗
)𝑖−1
𝑗=1
);

9 (𝑟𝑖 𝑗)𝑖−1𝑗=1
← get-from-aggregator();

// Orthogonalize the vector and compute squared norm.

10 u𝑠
𝑖
← v𝑠

𝑖
−∑𝑖−1

𝑗=1 𝑟𝑖 𝑗 · u𝑠𝑗 ;
11 𝑛𝑠

𝑖
← u𝑠

𝑖
⊤u𝑠

𝑖
;

12 send-to-aggregator(𝑛𝑠
𝑖
);

13 𝑛𝑖 ← get-from-aggregator();
// After orthogonalization, scale all 𝑘 vectors to unit norm and return them.

14 for 𝑖 ∈ [𝑘] do
15 u𝑠

𝑖
← 1√

𝑛𝑖
· u𝑠

𝑖

16 U𝑠 ← [u𝑠
1
. . . u𝑘𝑠];

17 return U𝑠
;

In a first step, the squared norm of the first orthogonal vector is

computed (lines 1 to 4 in Algorithm 4 and lines 1 to 3 in Algorithm 5).

Subsequently, the remaining 𝑘 − 1 vectors are orthogonalized. For

Federated Principal Component Analysis for Genome-Wide Association Studies

Algorithm 5: Federated Gram-Schmidt – Aggregator

Input: Data matrices V𝑠 at sites 𝑠 ∈ [𝑆].
Output: Orthonormalized data matrices U𝑠 at sites 𝑠 ∈ [𝑆].
// Compute squared norm of first orthogonal vector.

1 for 𝑠 ∈ [𝑆] do 𝑛𝑠
1
← get-from-client(𝑠);

2 𝑛1 ←
∑𝑆
𝑠=1 𝑛

𝑠
1
;

3 for 𝑠 ∈ [𝑆] do send-to-client(𝑛1, 𝑠);
// Orthogonalize all subsequent vectors.

4 for 𝑖 ∈ [𝑘] \ {1} do
// Compute residuals for vector which should be orthogonalized.

5 for 𝑠 ∈ [𝑆] do (𝑟𝑠
𝑖 𝑗
)𝑖−1
𝑗=1
← get-from-client(𝑠);

6 for 𝑗 ∈ [𝑖 − 1] do
7 𝑟𝑖 𝑗 ←

∑𝑆
𝑠=1 𝑟

𝑠
𝑖 𝑗
;

8 for 𝑠 ∈ [𝑆] do send-to-client((𝑟𝑖 𝑗)𝑖−1𝑗=1
, 𝑠);

// Compute squared norm of orthogonalized vector.

9 for 𝑠 ∈ [𝑆] do 𝑛𝑠
𝑖
← get-from-client();

10 𝑛𝑖 ←
∑𝑆
𝑠=1 𝑛

𝑠
1
;

11 for 𝑠 ∈ [𝑆] do send-to-client(𝑛𝑖 , 𝑠);

the 𝑖th vector v𝑖 , the algorithm computes the residuals 𝑟𝑖 𝑗 w. r. t. all

already computed orthogonal vectors u𝑗 , using the fact that the

corresponding squared norms 𝑛 𝑗 are already available (lines 5 to 9

in Algorithm 4 and lines 5 to 8 in Algorithm 5). Next, v𝑖 is orthogo-
nalized at the clients (line 10 in Algorithm 4) and the squared norm

of the resulting orthogonal vector u𝑖 is computed (lines 11 to 13 in

Algorithm 4 and lines 9 to 11 in Algorithm 5). After orthogonaliza-

tion, all orthogonal vectors are scaled to unit norm at the clients

(lines 14 to 15 in Algorithm 4).

Proposition 2. Centralized and federated Gram-Schmidt orthonor-
malization are equivalent.

Proof. Let V = [v1 . . . v𝑘] be the matrix that should be or-

thonormalized, v𝑠
𝑖
be the restriction of the 𝑖th columns vector to the

samples available at side 𝑠 , and u𝑠
𝑖
be the restriction of the 𝑖th orthog-

onal vector computed by the centralized Gram-Schmidt algorithm

before normalization to the samples available at side 𝑠 . Moreover,

let 𝑛𝑖 and 𝑟𝑖, 𝑗 be the centrally computed norms and residuals, and

𝑛̃𝑖 , 𝑟𝑖, 𝑗 , and ũ𝑠
𝑖
be the locally computed norms, residuals, and partial

orthogonal vectors before normalization. We show by induction

on 𝑖 that 𝑛𝑖 = 𝑛̃𝑖 , 𝑟𝑖 𝑗 = 𝑟𝑖 𝑗 , and u𝑠
𝑖
= ũ𝑠

𝑖
holds for all 𝑖 ∈ [𝑘] and all

𝑗 ∈ [𝑖 − 1]. This implies the proposition.

For 𝑖 = 1, we have u𝑠
1
= v𝑠

1
= ũ𝑠

1
and 𝑛1 = u⊤

1
u1 =

∑𝑆
𝑠=1 u𝑠

1

⊤u𝑠
1
=∑𝑆

𝑠=1 ũ𝑠⊤
1

ũ𝑠
1
= 𝑛̃1. For the inductive step, note that 𝑟𝑖 𝑗 = u𝑗

⊤v𝑖/𝑛 𝑗 =∑𝑆
𝑠=1 u𝑠

𝑗
⊤v𝑠

𝑖
/𝑛 𝑗 =

∑𝑆
𝑠=1 ũ𝑠⊤

𝑗
v𝑠
𝑖
/𝑛̃ 𝑗 = 𝑟𝑖 𝑗 , where the third identity

follows from the inductive assumption. Moreover, we have u𝑠
𝑖
=

v𝑠
𝑖
−∑𝑖−1

𝑗=1 𝑟𝑖 𝑗 ·u𝑠𝑗 = v𝑠
𝑖
−∑𝑖−1

𝑗=1 𝑟𝑖 𝑗 · ũ𝑠𝑗 = ũ𝑠
𝑖
, where the second identity

follows from the identities 𝑟𝑖 𝑗 = 𝑟𝑖 𝑗 established before and the

inductive assumption. We hence obtain 𝑛𝑖 = u⊤
𝑖

u𝑖 =
∑𝑆
𝑠=1 u𝑠

𝑖
⊤u𝑠

𝑖
=∑𝑆

𝑠=1 ũ𝑠⊤
𝑖

ũ𝑠
𝑖
= 𝑛̃𝑖 , which completes the proof. □

4.3 Network Transmission Costs
The main bottleneck in FL is the amount of data transmitted be-

tween the different sites and the number of network communica-

tions. The following Proposition 3 specifies these quantities for our

federated PCA algorithm. Recall that 𝑆 , 𝑘 ,𝑚, and 𝑛 denote, respec-

tively, the numbers of sites, eigenvectors, features, and samples.

Proposition 3. Let D be the total amount of data transmitted
by our federated PCA algorithm, N be the total number of network
communications, and 𝐼 be the total number of iterations of the main
while-loop. Then the following statements hold:

• If centralized orthonormalization is used, it holds that D =

O(𝐼 · 𝑆 · 𝑘 · (𝑚 + 𝑛)) and N = O(𝐼 · 𝑆).
• If federated Gram-Schmidt orthonormalization is used, it holds
that D = O(𝐼 · (𝑆 · 𝑘 ·𝑚 + 𝑘2)) and N = O(𝐼 · 𝑆 · 𝑘).

Proof. In each iteration 𝑖 of our federated vertical subspace iter-

ation algorithm, the matrices H𝑠
𝑖
∈ R𝑚×𝑘 have to be sent from the

clients to the aggregator and the matrix H𝑖 ∈ R𝑚×𝑘 has to be sent

back to the clients. In iteration 𝑖 , the amount of transmitted data and

the number of communications due to H𝑖 is hence O(𝑆 · 𝑘 ·𝑚) and
O(𝑆), respectively. For orthonormalizing the eigenvector matrices

G𝑖 ∈ R𝑛×𝑘 , we need to transmit a data volume of O(𝑆 · 𝑘 ·𝑚) in
O(𝑆) rounds of communication, if centralized orthonormalization

is used. If our federated Gram-Schmidt algorithm is employed, the

transmitted data volume is reduced to O(𝑆 · 𝑘2) but the number

of communications increases to O(𝑆 · 𝑘). By summing over the

iterations 𝑖 , this implies the statement of the proposition. □

If our federated Gram-Schmidt algorithm is used, the overall

volume of transmitted data is hence independent of the number

of samples 𝑛. This is especially important in the intended GWAS

setting, since here we can achieve 𝑛 ≫𝑚 by pre-filtering the SNPs

(i. e., features) before carrying out the PCA [19, 20]. Moreover, 𝑘

is small (typically, 𝑘 = 10 is used for GWAS PCA), which implies

that the additional factor 𝑘 in the complexities of D and N can be

neglected. Therefore, using our federated Gram-Schmidt algorithm

is preferable not only because it protects against data leakage at

the aggregator, but also because it greatly improves the scalability

of our federated vertical subspace iteration algorithm.

5 WEB-SERVICE
Many federated principal component algorithms exist on paper,

but lack implementations. Therefore, we provide a demonstra-

tion software to show, that federated principal component anal-

ysis can be done in practice. This software can help familiarize

researchers to the federated learning approach, without highly spe-

cialised computer setups and with limited programming knowledge.

Researchers performing genome-wide association studies rely on

ready made software such as plink [4, 24] to compute their results.

In order to make federated GWAS available to these researchers

community a user-friendly tool is required, otherwise it is unlikely

to be adopted in practice.

We provide a software designed for a server-client architecture

which allows several users to collaboratively compute a PCA. It

consists of three components:

Anne Hartebrodt, Reza Nasirigerdeh, David B. Blumenthal, and Richard Roettger

Participant Coordinator

Sign up

Accept invite?

Sign up

Create Project

Invite
participants

Upload and run

Contribute
data?

Upload and run

YesYes

No

Stop

View results View results

Execute
federated
algorithm

Execute
federated
algorithm

No

Figure 3: Schematic overview of federated study.

• a client, which runs on the data holder’s computer. There

the local parameters are computed and send to the server.

The data is never shared to the server.

• An aggregation server which receives and aggregates the

parameters received by the clients and sends them back to

the client.

• A web interface which can be used to set up the study. This

includes the generation of tokens for all participants to en-

sure only authenticated users participate in the study.

The following basic workflow is required to set up a federated

study.

• Every user sets up an account using a web interface.

• The study coordinator (owner) sets up a study by selecting

the algorithm and parameters and invites participants.

• Each participant securely receives their invitation and can

accept or decline.

• All data contributing participants load their data into the

client using a graphical user interface and trigger the run.

• At the end of the computation, the results are downloaded

to the user’s computers, such that everyone has the same

shared result.

This tool targets the less technically inclined GWAS community

and intends to demonstrate the feasibility of federated genome-wide

association studies with population stratification. As it is exper-

imental software under development it has not been technically

optimised. Nevertheless, we were able to compute a federated prin-

cipal component analysis in ... using a matrix of 2500 individuals

with 100,000 features.

Security Enhancing Measures in Federated Learning. In the star-

like architecture assumed here, a potentially untrusted party per-

forms the aggregation step. This means that the aggregator sees all

the intermediate results, and specifically gains more information

about the intermediate parameters than the data holding parties.

In order to increase the privacy of the proposed scheme, we con-

sider a hybrid approach. A hybrid approach is a combination of Fl

with additional privacy enhancing mechanisms, such as differential

privacy (DP) [8], homomorphic encryption (HE) [1, 31] or secure

multiparty computation [7] which used to hide the parameters from

third parties, such as the aggregator.

Federated medical studies will still be required to follow all eth-

ical guidelines. Therefore ad-hoc studies on federated data are

unlikely. More concretely, the federated system, we have in mind

is a setting where high-trust parties, such as hospitals and research

institutes compute results together, using a study protocol they pre-

viously agreed on. Based on these assumptions on the system, we

evaluate whether homomorphic encryption is a practical method

to increase the privacy of the learning set up. If the parties are

concerned about the aggregator learning from the transmitted pa-

rameters, we propose to use a basic symmetric HE scheme where

all participating parties privately gain access to a shared key and

encrypt their parameters under said key before sending them to

the aggregator. The aggregation server does not have access to the

common key and only blindly aggregates the data.

Two things are to be noted here. First, strictly speaking, a sym-

metric encryption library would be sufficient for this purpose,

which would speed up to process up to a factor of 8 [31], but there

is no library beyond prototype status yet. Secondly, naturally this

scheme does only protect against the aggregator. A multiparty ho-

momorphic encryption scheme would be better suited to protect

everyone’s parameters against all participants, but such libraries

are likewise not readily available yet.

6 EMPIRICAL EVALUATION
In the following section, we will show the results of the experi-

ments we conducted to demonstrate the accuracy and feasibility

of federated PCA with vertical partitioning empirically. We eval-

uate the 4 scenarios, sequential iteration of the vectors (Guo) and

concurrent iteration of the vectors with and without federated QR

normalisation. See table 2 for notation. The use case in this article

is PCA for Genome-Wide association studies, because the goal is

not feature reduction, but sample stratification. Nevertheless, this

algorithm can be applied to general data sets as well. Therefore

we also demonstrate, the usefulness of this approach for general

audiences using more widely used data sets.

6.1 Data
In this study, we use 3 publicly available data sets to measure the

empirical performance of the algorithm, the MNIST handwritten

Federated Principal Component Analysis for Genome-Wide Association Studies

Table 2: Methods compared in the experiments.

Method Paper PCA QR

seq-cent [12] sequential central

seq-fed this paper sequential federated

sim-cent this paper simultaneous central

sim-fed this paper simultaneous federated

digit repository, a larger gene expression data set from the can-

cer genome atlas and genetic data from the 1000 Genomes Project.

Mnist [17] contains 60,000 gray scale images of handwritten nu-

merals of 784 pixels. Every image is a sample, where the pixels are

the features. We apply minimal preprocessing, which includes cen-

tering and scaling the data to unit variance, both frequently applied

steps before PCA. Gene expression data comes in a tabular format,

with the genes acting as the features on one axis and the sample

on the other axis. Here we used data from the MMRF-COMMPASS

study from TCGA with approximately 20,000 coding genes and 859

samples. We complete our data set selection with data from the 1000

genomes project [38] which contains 2502 individuals and several

millions of SNP measurements. The input to the PCA is encoded as

a tabular format where for each SNP an individual has either 0, 1

or 2 minor alleles. These values are then normalized according to

the formulas given in [9]. We applied standard preprocessing steps

(MAF filtering, LD pruning) and use a random sub sample of the

remaining SNPs. As mentioned before, selecting a high number of

SNPs might be prohibitive for the runtime, but methods requiring

fewer SNPs are available. We emphasize that we do not intend to

perform a ’realistic’ GWAS study, which required careful prepro-

cessing and might include additional steps. Our goal is to show, that

the prinicpal component analysis is equivalent to the centralised

PCA.

6.2 Vertically partitioned federated PCA
In order to assess the performance of the algorithms we split the

data sets into differing numbers of vertical chunks to simulated

clients which hold a subset of the features for all the samples. In the

case of the 1000 Genomes data, we distributed the samples, meaning

every client gets a sub set of the samples and holds measurements

for every SNP. We then run the federated algorithm 20 times on the

test data and report the average angle between the eigenvectors

computed with the federated version of PCA and the centralised

version of PCA.

The Eigenvectors converge to the real eigenvector to very high

accuracy, meaning the angle between the federated and the real

eigenvector tend to 0 as the number of iterations grows. The higher

the eigenvector rank, the worse the convergence behaviour. This

is normal, since the convergence depends on the eigenvalue gap

between the two consecutive eigenvalues which becomes smaller

with higher rank. Figure 6 and 7 show exemplary convergence be-

haviours for the first eigenvector of the SNP data set (chromosome

1), which behaves nicely and the 8th eigenvector of the mnist data

set, which is the most difficult to retrieve due to the small Eigengap

between eigenvalue 8 and 9. All algorithms behave similarly. The

small differences are due to the random initialisation rather than

one algorithm performing systematically better than another one.

The number of sites does not impede the convergence properties,

when splitting the data into equal chunks. Notably, using federated

QR factorisation and not exchanging the eigenvectors comes at no

loss of accuracy and equal convergence behaviour.

Figure 4 shows the performance of simulated federated PCA

using data from human chromosome 1. Shown is the angle be-

tween the reference eigenvector computed using plink 2.0 (using

excat PCA due to the small number of samples). The eigenvectors

converge to the eigenvectors as computed by plink, essentially

showing that the behaviour of this standard tool can be replicated

using federated PCA.

6.3 Federated QR factorisation
To show the performance of the orthonormalisation, we randomly

generate matrices of dimensions 50, 000𝑥20, a realistic dimensions

for PCA, and split them into horizontal chunks. We then run feder-

ated matrix orthonormalisation and compare the result to a matrix

orthonormalized using a standard version (LAPACK interfaced via

scipy). To show the feasibility of federated QR factorisation with

aggregation under homomorphic encryption, we used a python in-

terface to SEAL [25, 32], an open source asymmetric homomorphic

encryption library. In a simulation we encrypt parameters that are

sent to the server and the aggregation is done on the encrypted

values. Before the client operations the values are decrypted again.

The overhead due to the HE-scheme can be mainly attributed to

the time required for the encryption. In our simulation the average

time increases from a fraction of seconds to ca. 15 seconds without

actual transmission between clients. Depending on the use case,

this can be an acceptable increase in run time or a prohibitive over-

head. The accuracy loss due to the encryption is negligible. The

fact that the aggregation step only required addition, which can be

done efficiently and at minimal accuracy loss, is beneficial here.

6.4 Scalability
One main bottleneck in federated learning is the amount of trans-

mitted data. In this federation scheme, the H matrix, which needs

to be transmitted no matter the chosen version of the algorithm,

is dependent on the number of selected features. Thanks to the

decentralized QR orthonormalisation, the federation scheme does

not scale with the number of individuals in the study. Therefore, the

goal of facilitation GWAS with higher sample sizes in a federated

fashion can be achieved, as the main scaling factor for the transmis-

sion cost is the number of SNPs. We hope that reducing the number

of SNPs used in the PCA is a trade-off investigators are willing to

make in order to increase their sample size and cohort diversity by

running federated GWAS. More generally, since the scheme allows

to retrieve both left and right eigenvectors, it is also possible to

retrieve the eigenvectors of the feature-by-feature matrix, where

the amount of transmitted data does not scale with the number of

samples.

• Figure convergence comparison

• scalability

Anne Hartebrodt, Reza Nasirigerdeh, David B. Blumenthal, and Richard Roettger

vector_2_power_federated_qr

vector_2_gradient_central_qr vector_2_power_central_qr

matrix_2_power_central_qr matrix_2_power_federated_qr

0 10 20 30 40 50

0 10 20 30 40 50

0

25

50

75

0

25

50

75

0

25

50

75

Angle [degree]

E
ig

en
ve

ct
or

 r
an

k

Eigenvector
rank

1

2

3

4

5

Figure 4: Angles between the eigenvectors computed by plink and the eigenvectors computed in a federated fashion.

0 5 10

Wallclock time [s]

addition decryption encryption setup

Figure 5: Compute overhead of encrypted federated QR pro-
cedure.

7 CONCLUSIONS AND OUTLOOK
We presented an improved federated principal component analysis

which can for instance be used federated population stratification

in GWAS. Unlike previous algorithms, the eigenvectors are not

shared among the participants due to the use of fully federated QR

orthonormalisation. This not only increases the scalabiliy of the

proposed approach in terms of transmission cost, but also improves

the privacy of the algorithm. We provide a user friendly tool to

promote federated learning in less technically inclined communities.

Future work will include to reduce the transmission cost further

possibly by introducing concentrated updates instead of updating

all values at every iteration.

ACKNOWLEDGMENTS
The FeatureCloud project has received funding from the European

Union’s Horizon 2020 research and innovation programme under

grant agreement No 826078. This publication reflects only the au-

thors’ view and the European Commission is not responsible for

any use that may be made of the information it contains.

REFERENCES
[1] Abbas Acar, Hidayet Aksu, A. Selcuk Uluagac, and Mauro Conti. 2018. A Survey

on Homomorphic Encryption Schemes. Comput. Surveys 51, 4 (2018), 1–35.

https://doi.org/10.1145/3214303

[2] Maria-Florina Balcan. [n.d.]. An Improved Gap-Dependency Analysis of the

Noisy Power Method. ([n. d.]), 26.

[3] Robert A. Beezer. 2016. A first course in linear algebra. http://linear.ups.edu/fcla/

section-O.html. [Online book; accessed 2020-11-18].

[4] Christopher C. Chang, Carson C. Chow, Laurent C.A.M. Tellier, Shashaank Vat-

tikuti, Shaun M. Purcell, and James J. Lee. 2015. Second-generation PLINK: Rising

to the challenge of larger and richer datasets. GigaScience 4, 1 (2015), 1–16.

https://doi.org/10.1186/s13742-015-0047-8 arXiv:1410.4803

[5] Gyaneshwer Chaubey, Manvendra Singh, Niraj Rai, Mini Kariappa, Kamayani

Singh, Ashish Singh, Deepankar Pratap Singh, Rakesh Tamang, Deepa Selvi Rani,

Alla G. Reddy, and et al. 2016. Genetic affinities of the Jewish populations of

India. Scientific Reports 6, November 2015 (2016), 1–10. https://doi.org/10.1038/

srep19166

[6] Xi Chen, Jason D. Lee, He Li, and Yun Yang. 2020. Distributed Estimation for

Principal Component Analysis: a Gap-free Approach. arXiv:2004.02336 [cs, stat]
(Sep 2020). http://arxiv.org/abs/2004.02336 arXiv: 2004.02336.

[7] Hyunghoon Cho, David J. Wu, and Bonnie Berger. 2018. Secure genome-wide

association analysis using multiparty computation. Nature Biotechnology 36, 6

(2018), 547–551. https://doi.org/10.1038/nbt.4108

[8] Cynthia Dwork and Aaron Roth. 2013. The Algorithmic Foundations of Differ-

ential Privacy. Foundations and Trends® in Theoretical Computer Science 9, 3–4
(2013), 211–407. https://doi.org/10.1561/0400000042

[9] Kevin J. Galinsky, Gaurav Bhatia, Po-Ru Loh, Stoyan Georgiev, Sayan Mukherjee,

Nick J. Patterson, and Alkes L. Price. 2016. Fast Principal-Component Analysis

Reveals Convergent Evolution of ADH1B in Europe and East Asia. The American
Journal of Human Genetics 98, 3 (mar 2016), 456–472. https://doi.org/10.1016/j.

ajhg.2015.12.022

[10] Hugh G. Gauch, Sheng Qian, Hans Peter Piepho, Linda Zhou, and Rui Chen. 2019.

Consequences of PCA graphs, SNP codings, and PCA variants for elucidating

https://doi.org/10.1145/3214303
http://linear.ups.edu/fcla/section-O.html
http://linear.ups.edu/fcla/section-O.html
https://doi.org/10.1186/s13742-015-0047-8
https://arxiv.org/abs/1410.4803
https://doi.org/10.1038/srep19166
https://doi.org/10.1038/srep19166
http://arxiv.org/abs/2004.02336
https://doi.org/10.1038/nbt.4108
https://doi.org/10.1561/0400000042
https://doi.org/10.1016/j.ajhg.2015.12.022
https://doi.org/10.1016/j.ajhg.2015.12.022

Federated Principal Component Analysis for Genome-Wide Association Studies

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

0

10

20

30

40

0

10

20

30

40

0

20

40

iterations

M
ea

n
an

gl
e

[d
eg

re
e] Algorithm

Hybrid
Matrix
Vector

QR version
central
federated

Figure 6: Angle between the reference and federated eigenvector of rank 1 run in function of the number of iterations. The
randomized data has been split into 2, 5, or 10 data sets of equal size. Shown are the three proposed schemes, sequential
iteration using a vector, a simultaneous iteration using a matrix and the hybrid scheme. Shown here: Eigendecomposition of
GRM of SNPs on chromosome 1

0 25 50 75 100 125 0 25 50 75 100 125 0 25 50 75 100 125

0

20

40

60

80

0

20

40

60

80

0

20

40

60

80

iterations

M
ea

n
an

gl
e

[d
eg

re
e] Algorithm

Hybrid
Matrix
Vector

QR version
central
federated

Figure 7: Angle between the reference and federated eigenvector of rank 8 run in function of the number of iterations. Data
used: Mnist. The eigengap between the 8th and 9th eigenvalue is an order of magnitude smaller than the other eigengaps,
therefor all algorithms show poor convergence behaviour.

population structure. PLoS ONE 14, 6 (2019), 1–26. https://doi.org/10.1371/

journal.pone.0218306

[11] Andreas Grammenos, Rodrigo Mendoza-Smith, Jon Crowcroft, and Cecilia Mas-

colo. [n.d.]. Federated Principal Component Analysis. ([n. d.]), 12.

[12] Yue Fei Guo, Xiaodong Lin, Zhou Teng, Xiangyang Xue, and Jianping Fan. 2012. A

covariance-free iterative algorithm for distributed principal component analysis

on vertically partitioned data. Pattern Recognition 45, 3 (2012), 1211–1219. https:

//doi.org/10.1016/j.patcog.2011.09.002

[13] N. Halko, P. G. Martinsson, and J. A. Tropp. 2011. Finding Structure with Ran-

domness: Probabilistic Algorithms for Constructing Approximate Matrix Decom-

positions. SIAM Rev. 53, 2 (Jan 2011), 217–288. https://doi.org/10.1137/090771806

[14] Hafiz Imtiaz and Anand D. Sarwate. 2018. Differentially Private Distributed

Principal Component Analysis. In 2018 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2206–2210. https://doi.org/10.1109/

ICASSP.2018.8462519

[15] Ian T. Joliffe. 2002. Principal Component Analysis. Springer-Verlag. https:

//doi.org/10.1007/b98835

[16] Hillol Kargupta, Weiyun Huang, Krishnamoorthy Sivakumar, and Erik John-

son. 2001. Distributed Clustering Using Collective Principal Component Anal-

ysis. Knowledge and Information Systems (2001). https://doi.org/10.4324/

9781315799476-12

[17] Yann LeCun, Corinna Cortes, and Christopher J.C. Burges. 2005. MNNIST data-

base of handwritten digits. http://yann.lecun.com/exdb/mnist/. [Online; accessed

27-02-2020].

[18] Qi Lei, Kai Zhong, and Inderjit S Dhillon. 2016. Coordinate-wise Power

Method. In Advances in Neural Information Processing Systems, D. Lee,

M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett (Eds.), Vol. 29. Curran

Associates, Inc., 2064–2072. https://proceedings.neurips.cc/paper/2016/file/

8b4066554730ddfaa0266346bdc1b202-Paper.pdf

[19] Yafang Li, Jinyoung Byun, Guoshuai Cai, Xiangjun Xiao, Younghun Han, Olivier

Cornelis, James E. Dinulos, Joe Dennis, Douglas Easton, Ivan Gorlov, Michael F.

Seldin, and Christopher I. Amos. 2016. FastPop: A rapid principal component

derived method to infer intercontinental ancestry using genetic data. BMC
Bioinformatics 17, 1 (2016), 1–8. https://doi.org/10.1186/s12859-016-0965-1

[20] Eric R. Londin, Margaret A. Keller, Cathleen Maista, Gretchen Smith, Laura A.

Mamounas, Ran Zhang, Steven J. Madore, Katrina Gwinn, and Roderick A.

Corriveau. 2010. CoAIMs: A Cost-Effective Panel of Ancestry Informative

Markers for Determining Continental Origins. 5 (Oct 2010), e13443. https:

//doi.org/10.1371/journal.pone.0013443

[21] Viraaji Mothukuri, Reza M. Parizi, Seyedamin Pouriyeh, Yan Huang, Ali De-

hghantanha, and Gautam Srivastava. 2021. A survey on security and privacy of

federated learning. Future Generation Computer Systems 115 (Feb 2021), 619–640.
https://doi.org/10.1016/j.future.2020.10.007

[22] Reza Nasirigerdeh, Reihaneh Torkzadehmahani, Julian Matschinske, Tobias

Frisch, Markus List, Julian Späth, Stefan Weiss, Uwe Völker, Nina Kerstin Wenke,

Tim Kacprowski, and Jan Baumbach. 2020. sPLINK: A Federated, Privacy-

Preserving Tool as a Robust Alternative to Meta-Analysis in Genome-Wide

Association Studies. bioRxiv (2020). https://doi.org/10.1101/2020.06.05.136382

[23] Alkes L. Price, Nick J. Patterson, Robert M. Plenge, Michael E. Weinblatt, Nancy A.

Shadick, and David Reich. 2006. Principal components analysis corrects for

stratification in genome-wide association studies. Nature Genetics 38, 8 (2006),
904–909. https://doi.org/10.1038/ng1847

https://doi.org/10.1371/journal.pone.0218306
https://doi.org/10.1371/journal.pone.0218306
https://doi.org/10.1016/j.patcog.2011.09.002
https://doi.org/10.1016/j.patcog.2011.09.002
https://doi.org/10.1137/090771806
https://doi.org/10.1109/ICASSP.2018.8462519
https://doi.org/10.1109/ICASSP.2018.8462519
https://doi.org/10.1007/b98835
https://doi.org/10.1007/b98835
https://doi.org/10.4324/9781315799476-12
https://doi.org/10.4324/9781315799476-12
http://yann.lecun.com/exdb/mnist/
https://proceedings.neurips.cc/paper/2016/file/8b4066554730ddfaa0266346bdc1b202-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/8b4066554730ddfaa0266346bdc1b202-Paper.pdf
https://doi.org/10.1186/s12859-016-0965-1
https://doi.org/10.1371/journal.pone.0013443
https://doi.org/10.1371/journal.pone.0013443
https://doi.org/10.1016/j.future.2020.10.007
https://doi.org/10.1101/2020.06.05.136382
https://doi.org/10.1038/ng1847

Anne Hartebrodt, Reza Nasirigerdeh, David B. Blumenthal, and Richard Roettger

[24] Shaun Purcell and Christopher Chang. [n.d.]. Plink 2.0. www.cog-genomics.org/

plink/2.0/. Accessed: October 2020.

[25] Pyfhel 2020. Pyfhel (PYthon For Homomorphic Encryption Libraries). https:

//github.com/ibarrond/Pyfhel. Ibarrond, Alberto.

[26] Hairong Qi, Tse Wei Wang, and J. Douglas Birdwell. 2003. Global principal

component analysis for dimensionality reduction in distributed data mining.

Statistical Data Mining and Knowledge Discovery (2003), 323–338. https://doi.

org/10.1201/9780203497159.ch19

[27] Miguel Ángel Rodríguez, Alberto Fernández, Antonio Peregrín, and Francisco

Herrera. 2017. A Review of Distributed Data Models for Learning. Springer

International Publishing, Cham. 88–97 pages.

[28] Juan L. Rodriguez-Flores, Khalid Fakhro, Francisco Agosto-Perez, Monica D.

Ramstetter, Leonardo Arbiza, Thomas L. Vincent, Amal Robay, Joel A. Malek,

Karsten Suhre, Lotfi Chouchane, and et al. 2016. Indigenous Arabs are descendants

of the earliest split from ancient Eurasian populations. Genome Research 26, 2

(2016), 151–162. https://doi.org/10.1101/gr.191478.115

[29] Yousef Saad. 2011. Numerical Methods for Large Eigenvalue Problems. Society for

Industrial and Applied Mathematics. https://doi.org/10.1137/1.9781611970739

[30] A. Sanchez-Fernandez, M.J. Fuente, and G.I. Sainz-Palmero. 2015. Fault detection

in wastewater treatment plants using distributed PCA methods. In 2015 IEEE
20th Conference on Emerging Technologies & Factory Automation (ETFA). IEEE,
1–7. https://doi.org/10.1109/ETFA.2015.7301504

[31] Savvas Savvides, Darshika Khandelwal, and Patrick Eugster. 2020. Efficient

confidentialitypreserving data analytics over symmetrically encrypted datasets.

Proceedings of the VLDB Endowment 13, 8 (2020), 1290–1303. https://doi.org/10.

14778/3389133.3389144

[32] SEAL 2020. Microsoft SEAL (release 3.6). https://github.com/Microsoft/SEAL.

Microsoft Research, Redmond, WA.

[33] Ondrej Sluvciak, Hana Straková, Markus Rupp, and Wilfried Gansterer. 2016.

Distributed Gram-Schmidt orthogonalization with simultaneous elements re-

finement. Eurasip Journal on Advances in Signal Processing 2016, 1 (2016), 1–13.

https://doi.org/10.1186/s13634-016-0322-6

[34] Ondrej Sluciak, Hana Strakova, Markus Rupp, and Wilfried N. Gansterer. 2012.

Distributed Gram-Schmidt orthogonalization based on dynamic consensus. Con-
ference Record - Asilomar Conference on Signals, Systems and Computers (2012),
1207–1211. https://doi.org/10.1109/ACSSC.2012.6489213

[35] Anthony Steed and Manuel Fradinho Duarte de Oliveira. 2010. More than two.

Network Graphics (12 2010), 125–168. https://doi.org/10.1016/B978-0-12-374423-

4.00004-5

[36] Hana Strakov, Wilfried N Gansterer, and Thomas Zemen. 2012. Based on Ran-

domized Algorithms. (2012), 235–244.

[37] Vivian Tam, Nikunj Patel, Michelle Turcotte, Yohan Bossé, Guillaume Paré, and

David Meyre. 2019. Benefits and limitations of genome-wide association studies.

Nature Reviews Genetics 20, 8 (2019), 467–484. https://doi.org/10.1038/s41576-

019-0127-1

[38] The 1000 Genomes Project Consortium., Corresponding authors., Auton, A. et al.

2015. A global reference for human genetic variation. Nature 526, 7571 (2015),
68–74. https://doi.org/10.1038/nature15393

[39] Reihaneh Torkzadehmahani, Reza Nasirigerdeh, David B. Blumenthal, Tim

Kacprowski, Markus List, Julian Matschinske, Julian Späth, Nina Kerstin Wenke,

Béla Bihari, Tobias Frisch, Anne Hartebrodt, Anne-Christin Hausschild, Do-

minik Heider, Andreas Holzinger, Walter Hötzendorfer, Markus Kastelitz, Rudolf

Mayer, Cristian Nogales, Anastasia Pustozerova, Richard Röttger, Harald H. H. W.

Schmidt, Ameli Schwalber, Christof Tschohl, Andrea Wohner, and Jan Baum-

bach. 2020. Privacy-preserving Artificial Intelligence Techniques in Biomedicine.

(2020). arXiv:2007.11621 http://arxiv.org/abs/2007.11621

[40] Peter M. Visscher, Naomi R. Wray, Qian Zhang, Pamela Sklar, Mark I. McCarthy,

Matthew A. Brown, and Jian Yang. 2017. 10 Years of GWAS Discovery: Biology,

Function, and Translation. American Journal of Human Genetics 101, 1 (2017),
5–22. https://doi.org/10.1016/j.ajhg.2017.06.005

[41] Sissi Xiaoxiao Wu, Hoi To Wai, Lin Li, and Anna Scaglione. 2018. A Review

of Distributed Algorithms for Principal Component Analysis. Proc. IEEE 106, 8

(2018), 1321–1340. https://doi.org/10.1109/JPROC.2018.2846568

www.cog-genomics.org/plink/2.0/
www.cog-genomics.org/plink/2.0/
https://github.com/ibarrond/Pyfhel
https://github.com/ibarrond/Pyfhel
https://doi.org/10.1201/9780203497159.ch19
https://doi.org/10.1201/9780203497159.ch19
https://doi.org/10.1101/gr.191478.115
https://doi.org/10.1137/1.9781611970739
https://doi.org/10.1109/ETFA.2015.7301504
https://doi.org/10.14778/3389133.3389144
https://doi.org/10.14778/3389133.3389144
https://github.com/Microsoft/SEAL
https://doi.org/10.1186/s13634-016-0322-6
https://doi.org/10.1109/ACSSC.2012.6489213
https://doi.org/10.1016/B978-0-12-374423-4.00004-5
https://doi.org/10.1016/B978-0-12-374423-4.00004-5
https://doi.org/10.1038/s41576-019-0127-1
https://doi.org/10.1038/s41576-019-0127-1
https://doi.org/10.1038/nature15393
https://arxiv.org/abs/2007.11621
http://arxiv.org/abs/2007.11621
https://doi.org/10.1016/j.ajhg.2017.06.005
https://doi.org/10.1109/JPROC.2018.2846568

	Abstract
	1 Introduction
	2 Preliminaries
	3 Related Work
	4 Algorithms
	4.1 Federated Vertical Subspace Iteration
	4.2 Federated Gram-Schmidt Algorithm
	4.3 Network Transmission Costs

	5 Web-Service
	6 Empirical Evaluation
	6.1 Data
	6.2 Vertically partitioned federated PCA
	6.3 Federated QR factorisation
	6.4 Scalability

	7 Conclusions and Outlook
	Acknowledgments
	References

