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Abstract

Motivation: Disease module mining methods (DMMMs) extract subgraphs that constitute candidate disease mecha-
nisms from molecular interaction networks such as protein–protein interaction (PPI) networks. Irrespective of the
employed models, DMMMs typically include non-robust steps in their workflows, i.e. the computed subnetworks
vary when running the DMMMs multiple times on equivalent input. This lack of robustness has a negative effect on
the trustworthiness of the obtained subnetworks and is hence detrimental for the widespread adoption of DMMMs
in the biomedical sciences.

Results: To overcome this problem, we present a new DMMM called ROBUST (robust disease module mining via
enumeration of diverse prize-collecting Steiner trees). In a large-scale empirical evaluation, we show that ROBUST
outperforms competing methods in terms of robustness, scalability and, in most settings, functional relevance of
the produced modules, measured via KEGG (Kyoto Encyclopedia of Genes and Genomes) gene set enrichment
scores and overlap with DisGeNET disease genes.

Availability and implementation: A Python 3 implementation and scripts to reproduce the results reported in this
article are available on GitHub: https://github.com/bionetslab/robust, https://github.com/bionetslab/robust-eval.

Contact: david.b.blumenthal@fau.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Over the last decades, high-throughput molecular profiling technol-
ogies have generated an immense amount of omics data, enabling
the generation of detailed interaction networks. Motivated by the
possibility to uncover the pathobiology of complex diseases, the
field of network medicine has emerged to untangle these connections
and to pinpoint the molecular basis of complex diseases (Barabási
et al., 2011; Roy et al., 2014). This task is complicated by the fact
that molecular omics data such as gene expression data are generally
noisy and overdetermined. Disease-causing alterations such as

mutations typically have a cascading effect on the expression of
genes and proteins that form the nodes of most interaction networks
with typically hundreds or thousands of differentially expressed
genes. Additionally, not all of the genes triggering a certain disease
might be differentially expressed in an experiment because the ex-
pression profiles are limited to a snapshot of the cell state.
Therefore, the discovery of disease genes using simple statistical tests
is infeasible. Consequently, disease module mining methods
(DMMMs) have been developed to combine analyses of gene ex-
pression profiles with mining of prior knowledge encoded in pro-
tein–protein interaction (PPI) and other networks.
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DMMMs try to identify significantly enriched subnetworks by
projecting the expression data on a molecular interaction network.
Since solving the underlying mathematical models to optimality is
typically NP-hard (Ideker et al., 2002), heuristic algorithms are used
in practice, where different weight and scoring metrics are applied
to the network components. Using these algorithms, subnetworks
can be identified that are significantly associated with a certain dis-
ease, even when some of the individual nodes have a negligible
score. Various DMMMs have been proposed in the past years
(Batra et al., 2017; Lazareva et al., 2021). They have enabled new
insights into complex diseases like Type-2 diabetes (Fernández-Tajes
et al., 2019; Sharma et al., 2018), pulmonary arterial hypertension
(Samokhin et al., 2018), coronary heart disease (Wang and
Loscalzo, 2018) and asthma (Sharma et al., 2015).

Despite these success stories, existing DMMMs are known to be sub-
ject to several limitations. For instance, Levi et al. (2021) have shown
that most DMMMs do not fully exploit the information contained in
the gene expression data. Lazareva et al. (2021) have demonstrated that
most DMMMs mainly learn from the node degrees rather than from the
biological knowledge encoded in the edges of the PPI networks.

Here, we draw attention to an additional issue which has not been
addressed yet: existing DMMMs lack robustness and are subject to
random bias. The reason for this is that all DMMMs we are aware of
include non-robust steps in their workflows, although this aspect is
often not explicitly mentioned and sometimes not immediately obvi-
ous. For instance, for some methods, changing the order of the input
data leads to dramatically different results. Other methods show varia-
tions of the resulting subnetworks when run multiple times on identical
input. This lack of robustness is a major limitation, because reliable
output is crucial to achieve a widespread adoption of DMMMs in the
biomedical research community: Biomedical scientists without a strong
background in computer science or mathematics often find it difficult
to trust in tools that do not reliably produce the same output and,
when confronted with non-robust disease modules, are therefore often
less inclined to invest time and money in downstream wet lab valid-
ation. Note that simply ordering the input in some canonical but bio-
logically meaningless way (e.g. by sorting based on gene or protein
names) does not resolve this problem but merely hides it.

A straightforward approach for robustifying any DMMM is to run
the DMMM n times on shuffled input and then to return the subgraph
induced by nodes contained in many of the returned modules.
However, this naı̈ve approach has the disadvantage that the runtime
increases by a factor of n. Moreover, it is not guaranteed to be effective
because the modules obtained for the shuffled input might not be suffi-
ciently diverse to ensure robustness (see Section 3.2 for results showing
that this is a real and not only a hypothetical problem).

To address this issue, we present a new DMMM called ROBUST
(robust disease module mining via enumeration of diverse prize-
collecting Steiner trees). Unlike the naı̈ve approach, ROBUST ensures
robustness by enumerating pairwise diverse rather than merely pair-
wise non-identical disease modules. Large-scale tests on data for 829
diseases show that, unlike all tested competitors, ROBUST achieves
almost perfect robustness (best-possible robustness already at the first
quartile). ROBUST is also faster than its competitors and manages to
compute disease modules for up to 400 seeds in <30s. Tests on gene
expression data for amyotrophic lateral sclerosis (ALS), non-small cell
lung cancer (LC), ulcerative colitis (UC), Chron’s disease (CD) and
Huntington’s disease (HD) demonstrate that, in most settings,
ROBUST outperforms its competitors in terms of the returned mod-
ules’ functional relevance, which we measured via KEGG (Kanehisa
et al., 2016) gene set enrichment w.r.t. known disease-associated path-
ways and overlap with DisGeNET (Pi~nero et al., 2020) disease genes.
Finally, a case study in multiple sclerosis (MS) shows how ROBUST
can be used for hypothesis generation.

2 Materials and methods

2.1 Modeling disease modules via generalized Steiner

trees
Two strategic decisions have to be made when designing a new
DMMM. First, one has to decide which input should be expected.

In addition to a PPI network, existing DMMMs use various types of
input data such as normalized expression data (Larsen et al., 2020;
Ma et al., 2011; Nacu et al., 2007), gene scores (Barel and Herwig,
2020; Reyna et al., 2018), sorted lists of genes (Breitling et al.,
2004), indicator matrices of differentially expressed genes (List
et al., 2016) or binary input in the form of sets of disease-associated
or differentially expressed seed genes (Ding et al., 2018; Ghiassian
et al., 2015; Levi et al., 2021; Sadegh et al., 2020). For ROBUST,
we chose the latter option for the following reasons:

• Sets of seed genes are very user-friendly input. They can be com-

puted via standard differential gene expression analysis or be

obtained from public databases such as OMIM (Online

Mendelian Inheritance in Man) (Amberger et al., 2019) or

DisGeNET (Pi~nero et al., 2020), which provide disease–gene

associations obtained from genome-wide association studies

(GWAS).
• Levi et al. (2021) have shown that DMMMs using seed sets as in-

put tend to outperform DMMMs operating on non-binary input

data.

Nonetheless, there might be scenarios where binarization is not
desirable because of the arbitrariness in selecting the cutoff and the
resulting loss of information. In such settings, ROBUST is not
applicable.

The second question is how the disease module mining problem
should be modeled mathematically. Informally, our model can be
viewed as a generalized minimum-weight Steiner tree (MWST)
model (relaxation is explained below). Recall that an MWST for a
weighted network G ¼ ðV;E;wÞ and a set of seed nodes S � V is a
tree T ¼ ðVT ;ETÞ with S � VT � V; ET � E, and minimum total
weight

P
e2ET

wðeÞ. Steiner trees have been used for disease module
mining before, e.g. by the DMMMs DOMINO (Levi et al., 2021)
and MuST (Sadegh et al., 2020). Computing MWSTs is NP-hard,
but approximation algorithms exist, e.g. the classical 2-approxima-
tion by Kou et al. (1981) or the currently best 1.39-approximation
by Byrka et al. (2013).

From a biological point of view, using MWSTs to model the dis-
ease module mining problem is promising. Functionally related
genes or proteins tend to be close to each other in the molecular
interaction network, and it could be shown that pairwise shortest
paths of known disease genes show a considerable left shift in their
distribution compared to the random expectation (Menche et al.,
2015). A reasonable hypothesis is hence that the shortest paths be-
tween these disease genes overlap with causal molecular pathways
(Barabási et al., 2011). Since MWSTs can be viewed as generaliza-
tions of shortest paths to settings with more than two endpoints, a
disease module constructed using MWSTs can be expected to cover
a large fraction of the disease-relevant molecular pathways.

As mentioned above, we use a generalized MWST model, which
means that we do not strictly enforce S � VT but allow that some
seeds are left uncovered (see Section 2.3 for the formal specification
of our model). This is because, in the context of disease module min-
ing, the seeds are potentially noisy due to false positives in GWAS or
differential gene expression analysis. Moreover, we are eventually
interested in the subgraph G½VT � induced by the node set of the tree
T ¼ ðVT ;ETÞ rather than in T itself. The reason is that also edges be-
tween nodes from VT which are not contained in ET might pinpoint
to causal disease mechanisms and are hence potentially of interest.

2.2 Ensuring robustness via enumeration with diversity
The main limitation ROBUST is designed to overcome is the lack of
robustness of existing DMMMs. However, our generalized MWST
model alone does not ensure this. For a given seed set S, the PPI net-
work G typically contains multiple near-optimal generalized Steiner
trees. If we simply returned the subgraph induced by the node set of
one cheap generalized Steiner tree, the output would hence again de-
pend on the random storage order of the input, hampering the ro-
bustness of our approach.
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To address this problem, our DMMM ROBUST is designed to
provide a solution for the following problem specification: Given a
weighted network G ¼ ðV;E;wÞ and a set of seed nodes S � V,
compute an induced subgraph G½M�, where M � V contains nodes
that appear in many diverse near-optimal generalized Steiner trees
for S. ROBUST’s overall approach is detailed in Algorithm 1 and
visualized in Figure 1. Instead of computing just one near-optimal
generalized Steiner tree, we enumerate up to n of them and ensure
that their node sets are pairwise diverse (see Section 2.3). We then
return the subgraph induced in G by nodes contained in at least
100 � s % pairwise diverse Steiner trees, where both n 2N and s 2
ð0;1� are hyper-parameters.

Two aspects should be highlighted at this point: First, the sub-
graph G½M� is in general not connected and its connected compo-
nents hence potentially represent disjoint or complementary disease
mechanisms. To allow separate downstream analyses, our imple-
mentation therefore labels G½M�’s connected components via node
attributes in the output file. Second, note that the above specifica-
tion of the problem solved by ROBUST is imprecise, as we did not
formally define the qualifiers ‘diverse’, ‘near-optimal’ and ‘general-
ized’. Several possible formal specifications are discussed in the
Supplementary Material.

2.3 Enumerating cheap and diverse generalized Steiner

trees
Let us consider how a set of diverse, low-weight networks that con-
nect most of the seed nodes (generalized Steiner trees) can be com-
puted. Naı̈vely, we can compute a Steiner tree T on G to obtain our
first network. To obtain a different network, we simply remove a
Steiner node or edge in T from G and compute a new Steiner tree T 0

that now differs in at least one position from T. As mentioned
above, the currently best-known algorithm for the MWST problem
is the 1.39-approximation by Byrka et al. (2013), but even with a

better algorithm, the results may not be as hoped: If the removed
edge or node is in a dense part of the graph, it can easily be circum-
vented and the resulting solution will nearly be the same. If it is in a
sparse part and an important connection, the resulting solution will
be expensive. This naı̈ve approach is employed by the DMMM
MuST (Sadegh et al., 2020), which uses the 2-approximation for
MWST by Kou et al. (1981), iteratively removes Steiner edges and
eventually returns the union of all computed Steiner trees.

The alternative we propose is to not just focus on one seed node
which is removed but instead to make all of the previously used
nodes less attractive depending on how often they have been used.
To achieve this, we use prize-collecting Steiner trees (PCSTs) where
we assign every seed a high value and every other node a low but
not negligible value. If a non-seed node is returned in a solution, we
decrease its value to make it less attractive for future solutions. The
seeds’ high values encourage a PCST algorithm to include them in
the solution. The low decreasing values of the other nodes encourage
the algorithm to integrate less often used nodes. By keeping the val-
ues below the edge costs, this approach avoids randomly integrating
nodes at the cost of a more expensive network. More details on the
seed values are provided in the Supplementary Material.

Computing an optimal PCST is unfortunately also NP-hard.
Therefore, we use the primal–dual approximation algorithm by
Goemans and Williamson (1995) and an implementation by Hegde
et al. (2015). It has a guaranteed approximation factor of at most
two and a runtime complexity of OðdjEj log jVjÞ, where d refers to
the encoding size in bits for the weight and values. In practice, this
algorithm yields very natural solutions, because it is based on a lin-
ear programming relaxation which captures a lot of structure and
not only the objective value (see Supplementary Material for
details). The implementation is remarkably fast and solves instances
with multiple hundreds of thousand edges within seconds (often
even less than a second), as shown by Hegde et al. (2014).

Let pcst_apx be a PCST algorithm that receives a graph
G ¼ ðV;EÞ, positive edge weights w : E!R>0, and non-negative
node values p : V ! R�0 and returns a tree T ¼ ðVT ;ETÞ with
VT � V and ET � E, minimizing

P
e2ET

wðeÞ þ
P

v2VnVT
pðvÞ. Note

that, in the context of disease module mining, edges are typically
unweighted, i.e. w(e)¼1 holds for all e 2 E. However, some
DMMMs use edge weights that penalize edges toward high-degree
nodes in the PPI network (Sadegh et al., 2020). While we have
designed ROBUST with unweighted edges in mind, we here present
the more general weighted version.

Our proposed algorithm is defined in Algorithm 2. As input, it
expects a graph G ¼ ðV;EÞ, a seed set S, edge weights w, a number of
desired trees n, as well as tuning parameters a 2 ð0;1� and b 2 ½0;1Þ
explained below. The first step is to define the initial values p to be
passed to pcst_apx. To give the algorithm a high incentive to inte-
grate all seeds, we determine their value based on the diameter of the
graph and the maximum edge weight (line 1). The initial values of the
non-seeds are defined as a times the minimum edge weight (line 1).
Note that, in the unweighted case, both the minimum and the max-
imum edge weight equals 1.After initializing the node values, the algo-
rithm repeatedly calls pcst_apx to compute a new PCST (VT, ET)
dissimilar to the ones computed before until n PCSTs have been com-
puted (line 2) or VT is identical to the node set of a PCST computed
before (line 4). Dissimilarity is ensured by multiplying the values of all
non-seeds contained in VT by a factor b 2 ½0;1Þ, thereby making them
less attractive for subsequent calls to pcst_apx (line 5). If connecting
a seed s 2 S to the remaining seeds would incur a very high cost, it
might happen that VT—and therefore also the final disease module
G½M� returned by ROBUST—does not contain s. This can be viewed
as an unsupervised data cleaning step built into ROBUST: It automat-
ically discards seeds that are very badly connected to the remaining
seeds and are hence potentially unreliable. An alternative which enfor-
ces full Steiner trees is described in the Supplementary Material.

2.4 Influence of the hyper-parameters
ROBUST has four hyper-parameters: the desired number of PCSTs
n, the threshold s, and the tuning parameters a and b. The effects of
these parameters can be summarized as follows:

Algorithm 1: ROBUST

Input: Graph G ¼ ðV;EÞ, seeds S � V, parameters

n 2N; a 2 ð0; 1�; b 2 ½0;1Þ; s 2 ð0; 1�.
Output: Robust disease module for seeds S.

1 T  enumerate diverseðG; S;n; a;bÞ;
2 M fv 2 VjjfVT 2 T jv 2 VTgj � s � jT jg;
3 return G½M�;

Fig. 1. Visualization of how enumeration with diversity ensures robustness. The

bounding circle represents the set of all nodes contained in any near-optimal gener-

alized Steiner tree. The sets VTi
represent the node sets of three pairwise diverse

near-optimal generalized Steiner trees. For s > 2=3, the set M corresponds to the

intersection of the sets VTi
. The sets VT 0

i
represent the node sets of three randomly

sampled near-optimal generalized Steiner trees. Nodes contained in M are contained

in almost all of the sets VT0
i
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• Intuitively, the desired number of trees n 2N controls the extent

to which the disease module computed by ROBUST covers the

space of all near-optimal generalized Steiner trees. Setting n to a

rather large value is hence desirable but detrimental for the

runtime.
• The threshold s 2 ð0; 1� provides a tradeoff between robustness

and explorativeness. The larger s, the more robust but less ex-

plorative the disease module computed by ROBUST.
• The parameter a 2 ð0; 1� modifies the initial values for integrat-

ing non-seeds into the tree. This implicitly represents the allowed

diversion from the cheapest Steiner tree. For a¼0, the algorithm

would only return the best Steiner tree it can find but not allow

any diversion from it. The larger a, the more diverse and but also

more expensive the returned Steiner trees are allowed to become.
• The parameter b 2 ½0; 1Þmodifies the decrease of the values for inte-

grating non-seeds into the trees. Setting b¼0 will only give a value

to a non-seed until its first appearance in one tree. This can quickly

exhaust the available non-seeds and then has the same problem as

a¼0. A too high value, on the other hand, might not be able to

reduce the values sufficiently to make the other non-seeds more

attractive. Hence, more trees need to be generated to achieve

diversity.

3 Results and discussion

3.1 Compared methods
We compared ROBUST to the state-of-the-art DMMMs
DIAMOnD (Ghiassian et al., 2015), MuST (Sadegh et al., 2020)
and DOMINO (Levi et al., 2021). These methods were selected for
the following reasons:

• They all expect binary input (i.e. lists of differentially expressed

or disease-associated seed genes) and are hence directly compar-

able to our method ROBUST.
• DOMINO has been shown to outperform other DMMMs in two

independent studies (Lazareva et al., 2021; Levi et al., 2021) and

can hence be considered to be one of the best available methods.
• Based on the number of citations, DIAMOnD is arguably one of

the most widely used DMMMs.
• MuST serves as a baseline model for extracting disease modules

via Steiner trees without the improvements of ROBUST.

Moreover, we compared ROBUST to a baseline implementing
the naı̈ve approach at robustification outlined in Section 1. More
precisely, instead of enumerating diverse PCSTs as detailed above,

we enumerate multiple Steiner trees by simply shuffling the input
data and running the classical 2-approximation algorithm by Kou
et al. (1981) several times. In the sequel, this naı̈ve baseline is called
R-MuST (randomized MuST). An AIMe report (Matschinske et al.,
2021) with further details on the empirical evaluation is available at
https://aime-registry.org/report/VM0hhS.

3.2 Robustness
3.2.1 Protocol and data used for robustness tests

The methods were tested on a human PPI network obtained from
IID (Integrated Interactions Database) (Kotlyar et al., 2019) filtered
for experimentally validated interactions. The network consists of
329 215 edges between 17 666 proteins. Sets of disease-associated
seed genes were constructed for 929 diseases by merging disease–
gene associations from OMIM (Amberger et al., 2019) and
DisGeNET (Pi~nero et al., 2020). For the hyper-parameter evaluation
of ROBUST (Section 3.2.2), 100 of the seed sets were used and sub-
sequently excluded for the comparison of ROBUST to its competi-
tors (Section 3.2.3).

Robustness was measured by running each DMMM ALG 20
times on each seed set S. In each iteration, the input PPI network
was randomly permuted before running ALG, yielding 20 disease
modules. Let MALG;S

i be the node set of the ith disease module com-
puted by ALG on S. Then, we quantified ALG’s robustness on U using
the mean Jaccard index

rSðALGÞ :¼ 20
2

� ��1X19

i¼1

X20

j¼iþ1

jMALG;S
i \MALG;S

j j
jMALG;S

i [MALG;S
j j

;

i.e. rSðALGÞ 2 ½0; 1� and large values of rSðALGÞ indicate that ALG is
robust to random storage order on the seed set S.

3.2.2 Effect of hyper-parameters

For testing ROBUST’s robustness w.r.t. the hyper-parameters, we varied
a 2 f0:25;0:5;0:75g; b 2 f0:1; 0:3; . . . ;0:9g; s 2 f0:1; 0:2; . . . ;0:9g
and n 2 f5;10; . . . ;30g. Supplementary Figure S1 shows the full
results. While increasing a significantly deteriorated the robustness,
increasing b marginally improved it. Therefore, we focus on the results
for a ¼ 0:25 and b ¼ 0:9, which are shown in Figure 2. Unsurprisingly,
we observe that the robustness improved when increasing the threshold
s and the number of trees n. However, for n¼30, we observe large ro-
bustness coefficients already for small values of s. Keeping s small is
prima facie desirable as it allows ROBUST to compute more explora-
tory disease modules. Moreover, ROBUSTS’s runtime requirements in-
crease only very moderately with increasing n (see Section 3.4). For
these reasons, we selected the hyper-parameter setup ða; b; n; sÞ ¼
ð0:25;0:9;30; 0:1Þ for all further experiments. Note (i) that the 100
seed sets used to select these hyper-parameters were not used for evalu-
ating ROBUST’s robustness in comparison to its competitors and (ii)
that we tuned the hyper-parameters only for robustness and not for
functional relevance.

3.2.3 Robustness in comparison to competitors

Figure 3 shows the distribution of the 829 mean Jaccard indices for
each of the compared DMMMs. Of all the tested DMMMs, only
ROBUST yielded almost perfectly robust disease modules with a ro-
bustness coefficient of rS ¼ 1:0 at the first quartile. ROBUST is
clearly superior to its precursor MuST, to the naı̈ve baseline
implementation R-MuST, and, most importantly, also to the state-
of-the-art DMMM DOMINO. DIAMOnD yielded remarkably high
robustness coefficients, especially considering that its hyper-
parameters were not tuned for robustness. Nonetheless, its robust-
ness coefficients were still statistically significantly lower than the
ones obtained for ROBUST (Table 1). The superiority of ROBUST
to MuST and R-MuST shows that it is indeed necessary to ensure di-
versity when enumerating (generalized) Steiner trees. Merely enu-
merating pairwise different trees does not yield the desired
robustness. More generally, the rather bad performance of R-MuST
shows that the above-mentioned naı̈ve approach for robustification

Algorithm 2: enumerate diverse

Input: Graph G ¼ ðV;EÞ, seeds S � V, edge weights

w : E! R�0, parameters n 2N; a 2 ð0;1�; b 2 ½0; 1Þ.
Output: Set T of diverse PCST node sets.

1 for v 2 S do pðvÞ  2 � diamðGÞ �maxe2EwðeÞ;
2 for v 2 VnS do pðvÞ  a �mine2EwðeÞ;
3 T  1;

4 while jT j < n do

5 ðVT ;ETÞ  pcst apxðG;w; pÞ;
6 if VT 2 T then break

7 T  T [ fVTg;
8 for v 2 VTnS do pðvÞ  b � pðvÞ
9 return T

Robust disease module mining 1603

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/38/6/1600/6497106 by guest on 11 August 2022

https://aime-registry.org/report/VM0hhS
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab876#supplementary-data


(run DMMM n times on shuffled input and then return subgraph
induced by nodes contained in many modules) is not guaranteed to
be effective.

3.3 Functional relevance
3.3.1 Protocol and data used for functional relevance tests

Functional relevance tests were conducted by implementing custom
wrappers for the DMMM test suite introduced by Lazareva et al.
(2021). In the test suite, gene expression datasets with case/control
information for five complex diseases are used, namely ALS, non-
small cell LC, UC, CD and HD. The seed genes are obtained by
applying a two-sided Mann–Whitney U test on the case/control ex-
pression vectors and extracting all genes with Bonferroni-adjusted

P-values <0.001. Each set of seed genes was projected onto one of
the five widely used PPI networks BioGRID (Oughtred et al., 2019),
APID (Agile Protein Interactomes DataServer) (Alonso-Lopez et al.,
2016, 2019), STRING (Search Tool for the Retrieval of Interacting
Genes/Proteins) (Szklarczyk et al., 2019) with high confidence inter-

actions only, HPRD (Human Protein Reference Database) (Keshava
Prasad et al., 2009) and IID (Kotlyar et al., 2019). Functional rele-
vance was evaluated via gene set enrichment P-values w.r.t. KEGG

pathways (Kanehisa et al., 2016) corresponding to the diseases and
via overlap coefficients with the disease-associated DisGeNET

(Pi~nero et al., 2020) gene sets. For more details, we refer to Lazareva
et al. (2021).

3.3.2 Functional relevance in comparison to competitors

Figure 4 shows the distributions of the functional relevance scores

for ROBUST, MuST, DIAMOnD and DOMINO run on the five dis-
ease networks. The baseline implementation R-MuST was excluded
from the tests due to high runtime requirements and poor robustness

results. Overall, ROBUST outperformed the other three DMMMs
w.r.t. both functional relevance scores. The CD dataset is the only

case where DIAMOnD clearly yielded better results than ROBUST.
The test suite introduced by Lazareva et al. (2021) also supports

permutation tests to assess to which extent DMMMs are potentially

biased toward hub nodes in the PPI networks (for details, we refer
to the original publication). This was also tested for ROBUST,

DIAMOnD and DOMINO, the results are shown in Supplementary
Figure S2 (MuST was excluded because of its high runtime and the
large number of runs required for the permutation tests). In this di-

mension, ROBUST performed similarly to DIAMOnD but was out-
performed by DOMINO. To reduce the risk of including false

positives into the solution, it might hence be advisable to run
ROBUST on context-specific networks, e.g. by keeping edges only
for PPIs experimentally validated in tissue relevant for the disease of

interest. We followed this approach for our case study in MS
(Section 3.5).

3.4 Scalability
3.4.1 Protocol and data used for scalability tests

As for the robustness tests, we used a human PPI network obtained

from IID, filtered based on experimental validation. We randomly
generated seed sets of sizes k ¼ 25; 50; . . . ; 400, ran all compared

DMMMs on all of them and measured the runtimes. For ROBUST,
MuST and R-MuST, we additionally varied the number of trees
n 2 f5; 10; . . . ; 30g. For all DMMMs except MuST and R-MuST

and each seed set size k, runtimes were measured on 10 random seed
sets of size k. MuST and R-MuST were evaluated only on one seed

set for each k, because of their high runtime requirements.

3.4. 2 Scalability in comparison to competitors

Figure 5 shows the results of the scalability tests. The most import-
ant observations are the following:

• MuST and R-MuST are around 2 orders of magnitude slower

than DIAMOnD, DOMINO and ROBUST.
• While, for ROBUST and DOMINO, the runtime increases subli-

nearly with the number of seeds, we observe a linear increase in

runtime for DIAMOnD.
• Increasing the number of trees affects ROBUST’s runtime only

very moderately.

In sum, ROBUST hence exhibits the best runtime behavior even
if the number of trees is set to n¼30 as suggested above: For small
seed sets, ROBUST is approximately as fast as DIAMOnD and

around five times faster than DOMINO. For large seed sets, it is
around twice as fast as DIAMOnD and between three and four

times faster than DOMINO.

Table 1. P-values obtained by comparing the robustness coeffi-

cients from two DMMMs via the Mann–Whitney U test (alternative

hypothesis: DMMM 1 yields larger robustness coefficients than

DMMM 2)

DMMM 1 DMMM 2 P-value

ROBUST DOMINO 1:668� 10�278

ROBUST MuST 3:847� 10�226

ROBUST R-MuST 4:460� 10�68

ROBUST DIAMOnD 6:796� 10�6

Note: Note that the P-values should be interpreted carefully, because

the Mann–Whitney U test is a rank-based test and can hence yield very small

P-values even if the quantitative differences between the compared popula-

tions are small.

Fig. 2. Effect of the number of trees n and the threshold s on the robustness of

ROBUST for a ¼ 0:25 and b ¼ 0:9

Fig. 3. Robustness of ROBUST with hyper-parameter setup ða; b; n; sÞ ¼
ð0:25; 0:9; 30; 0:1Þ in comparison to its competitors. Like ROBUST, MuST and R-

MuST were setup to run with ðn; sÞ ¼ ð30; 0:1Þ
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3.5 Case study in MS
In addition to the quantitative evaluation reported in the previous
sections, we performed a case study in MS to showcase how to use
ROBUST for hypothesis generation. First, we constructed a context-
specific PPI network from IID by filtering for the interactions experi-
mentally validated in brain tissue. Then, proteins associated with
MS were obtained by merging DisGeNet and OMIM annotations.
This yielded 42 seeds, 26 of which were contained in the context-
specific network.

Running ROBUST on these 26 seeds yielded a disease module
with 90 additional proteins (Supplementary Fig. S3), including
galectin-1, which was found in each of the 30 trees. It has been
shown that galectin-1 plays an important regulatory role in MS
patients (Starossom et al., 2012). We then took a closer look at the
2-hop neighborhood of galectin-1 within the computed diseases
module (Supplementary Fig. S4). In this submodule, we found thio-
redoxin (TXN), peroxiredoxin-2 (PRDX2), the mitochondrial thio-
redoxin-dependent peroxide reductase (PRDX3) and DJ-1
(extended findings in the Supplementary Material).

TXN, PRDX2, PRDX3 and DJ-1 are antioxidant molecules
related to oxidative stress, a sign of various neurological disorders
including MS (Liu et al., 2020). TXN has been found to be

significantly upregulated in MS patients compared to healthy con-
trols (Mahmoudian et al., 2017). PRDX2 and PRDX3 are enzymes
which reduce H2O2 and hydroperoxides using TXN as substrate
(Cao et al., 2007; Kamariah et al., 2016). PRDX2 was shown to be
upregulated in white matter MS lesions (Voigt et al., 2017). While
DJ-1 is not directly linked to TXN, the two molecules share down-
stream targets and it has been suggested that there is some cross-talk
between these two systems (Raninga et al., 2014) and various stud-
ies have linked DJ-1 to MS (Hirotani et al., 2008; van Horssen
et al., 2010). These findings show how ROBUST can identify a sub-
module related to oxidative stress in MS whose participants share
common pathways.

4 Conclusions, limitations and outlook

In this article, we have presented a novel DMMM called ROBUST
which, unlike existing approaches, computes almost perfectly robust
disease modules when run multiple times on equivalent input.
ROBUST is also faster than its competitors and, in most settings,
outperforms them in terms of functional relevance of the computed
modules.

We conclude this article by pointing out three limitations of
ROBUST which constitute challenges for future work. First,
ROBUST supports only binary input and so future work is needed
to overcome the robustness deficit in disease module detection with

Fig. 4. Distribution of the functional relevance scores for ROBUST, MuST,

DIAMOnD and DOMINO. (A) Overlap coefficients of the disease modules and the

DisGeNET disease genes, split by disease. (B) KEGG gene set enrichment P-values

split by disease. (C) Overlap coefficient distributions over all networks and disease

seed sets. (D) KEGG gene set enrichment distributions over all networks and disease

seed sets

Fig. 5. Runtime of the DMMMs versus number of seeds (all DMMMs) and number

of seeds and trees (MuST, R-MuST and ROBUST). The line plots visualize the mean

runtimes
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continuous input. Second, ROBUST is outperformed by DOMINO
w.r.t. resistance to hub node bias and it hence remains an open algo-
rithmic challenge to design a DMMM which is both immune to hub
node bias and robust w.r.t. random storage order. Third, it would
be interesting from a theoretical point of view to investigate whether
the Steiner tree enumeration problem underlying ROBUST can be
formalized such that it allows for approximation algorithms with
provable approximation guarantees.
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