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Abstract

Motivation: Federated learning enables privacy-preserving machine learning in the medical domain because the
sensitive patient data remain with the owner and only parameters are exchanged between the data holders. The fed-
erated scenario introduces specific challenges related to the decentralized nature of the data, such as batch effects
and differences in study population between the sites. Here, we investigate the challenges of moving classical ana-
lysis methods to the federated domain, specifically principal component analysis (PCA), a versatile and widely used
tool, often serving as an initial step in machine learning and visualization workflows. We provide implementations
of different federated PCA algorithms and evaluate them regarding their accuracy for high-dimensional biological
data using realistic sample distributions over multiple data sites, and their ability to preserve downstream analyses.

Results: Federated subspace iteration converges to the centralized solution even for unfavorable data distributions,
while approximate methods introduce error. Larger sample sizes at the study sites lead to better accuracy of the ap-
proximate methods. Approximate methods may be sufficient for coarse data visualization, but are vulnerable to out-
liers and batch effects. Before the analysis, the PCA algorithm, as well as the number of eigenvectors should be con-
sidered carefully to avoid unnecessary communication overhead.

Availability and implementation: Simulation code and notebooks for federated PCA can be found at https://gitlab.
com/roettgerlab/federatedPCA; the code for the federated app is available at https://github.com/AnneHartebrodt/fc-
federated-pca

Contact: hartebrodt@imada.sdu.dk

Supplementary information: Supplementary data are available at Bioinformatics Advances online.

1 Introduction

Federated learning (FL) has recently gained attention in the machine
learning (ML) community as a privacy-preserving alternative to cen-
tralized computation. Contrary to classical ML, where the data are
consolidated into a single machine or cloud, the data stay with the
owner during the entire learning process and only model parameters
are exchanged between the participants. The concept has potential
applications in domains where the volume of data is too large to be
stored at a single location, and in domains where the owners have
concerns about losing agency over their data or are not allowed to
share their data. This is especially important in the medical domain,
where, due to patient confidentiality, doctors and hospitals are right-
fully unable or unwilling to share their data with a third party.
Outside of academic applications or in hybrid settings, FL can enable
(industry) partners who are unwilling to disclose their raw data, but
willing to join an analysis, to contribute to studies. These scenarios
are cases of cross-silo FL where larger chunks of data are stored in
‘data silos’. Figure 1 shows a comparison between traditional, cloud

based, ML, and cross-silo federated learning. Another type of FL is
cross-device FL popular in particular for mobile applications, where
each participant has only access to their own data (e.g. on their
phone). A complementary approach for private data analysis currently
discussed is the generation of synthetic data with the same properties
as the raw data. This approach is a valid option if sufficiently trust-
worthy generators can be created (Beaulieu-Jones et al., 2019;
Gootjes-Dreesbach et al., 2020). The advantage of FL is that it is a
generic approach while synthetic data could suffer the biases of the
training data and crucial, subtle information can potentially be lost in
the generation process.

In the last decade, high-throughput techniques have been rou-
tinely used to generate vast amounts of biomedical data (Martin-
Sanchez and Verspoor, 2014). Nevertheless, to this day, studies are
commonly reporting a lack of data as a main limitation of their
study, resulting in insufficiently validated, and potentially con-
founded, or unstable predictors (Kourou et al., 2015). In the area of
rare diseases for example, an investigation of the causes for trial ter-
mination showed that 30% of noncompleted clinical trials were
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terminated due to insufficient patient accrual (Rees et al., 2019).
Furthermore, many diagnostic tools are biased toward the predom-
inant demographic at the site of the study, leading to potentially in-
applicable results in other demographic groups posing an ethical
problem (Wiens et al., 2019). Another prominent example of the
restricted data sharing is genome-wide association studies (GWAS)
that suffer from a massive bias toward populations of European an-
cestry (Sirugo et al., 2019) and very small cohorts otherwise. This
problem arises because the data generated in a research facility or
hospital may only leave this institution under restricted conditions
(Ben van Veen, 2018), so researchers fall back to well-known
cohorts. In the future, the data may even be more decentralized in
‘micro biobanks’, where each citizen has full access to their own
data (Wijmenga and Zhernakova, 2018). To address this challenge,
FL has been brought forward as a solution to work with sensitive
medical data without breaching patient privacy.

A popular method for the analysis of biomedical data is principal
component analysis (PCA). It is a dimensionality reduction tech-
nique frequently used for high-throughput sequencing count data,
including bulk and single-cell transcriptome data (Theis, 2019).
Several algorithms have been proposed for PCA in a federated set-
ting. However, these algorithms were mainly evaluated using ‘stand-
ard’ test datasets and rarely with biomedical applications in mind.
For instance, where the popular MNIST (LeCun et al., 2005) dataset
comprises 60 000 samples with 784 pixels (dimensions), bulk tran-
scriptome data usually only have a few hundred samples but meas-
urements for about 20 000 coding genes. The dimensionalities of
these datasets are fundamentally different with large n, moderate d
in the classical case and small n, large d in the biomedical scenario.

To enable the routine use of federated PCA in biomedicine, the
existing algorithms must be evaluated for their suitability to analyze
medical data. A major concern is the accuracy of the methods, given
that the outcome of the studies will be included into medical deci-
sion-making. Here, we will investigate the suitability of various
approaches to federated PCA with varying, but realistic sample dis-
tributions using data from The Cancer Genome Atlas (TCGA).
TCGA is a large-scale project with multiple participating research
centers (Weinstein et al., 2013), which profiled various cancer types
using different OMICS technologies, including genome and tran-
scriptome sequencing. The decentralized nature of the TCGA sam-
pling process makes it suitable to study the feasibility of FL using
real medical data: At the tissue source site (TSS), a sample was col-
lected and the RNA was extracted. The processed sample was then
shipped to a central sequencing center, sequenced and processed
according to a standardized protocol. In this setup, the sequencing

was done at a central facility, which is a slight deviation from a truly
federated sample acquisition process where every TSS would per-
form the sequencing itself. However, it is a realistic example with re-
spect to the number and distribution of participants, potential batch
effects through different population demographics per sample site
and batch effects due to the sample preparation as it would occur in
a truly federated analysis. Additionally, we use a multicentric
Psoriasis dataset (Federico et al., 2020) to show how the methods
work in the presence of strong batch effects. The studies were con-
ducted independently, but underwent a common computational pre-
processing in order to allow for joint analyses.

Computational biology is a notoriously heterogeneous research
field with many practitioners not having a profound background in
computer science and programming. Here, we provide simulation
code and a federated app that allows users to run federated PCA.
Based on our considerations, we support the users with our derived
guidelines to choose the appropriate algorithm for their purpose.

Overall, our contributions are:

• A comprehensive overview of different federated PCA algo-

rithms, including simulation code and a federated app.
• Performance comparisons of those approaches, including com-

munication overhead and different accuracy metrics.
• Evaluation of the algorithms using realistic data partitions

derived from the sample distributions from TCGA.
• A practical illustration of the application of federated PCA using

RNASeq data, in particular to highlight the feasibility and poten-

tial problems of federated biomedical studies.
• Guidelines for the selection of the best algorithmic approach.

The remainder of this article is structured as follows. In Section
2, we discuss the relevant data, algorithms and test setup. In Section
3, we describe our theoretical and practical findings. Section 4 puts
the results into perspective and provides guidelines for the interested
reader, and Section 5 concludes the work.

2 Methods

2.1 Distributed data model
The distributed setting for the remainder of the paper is as follows:
The data A is stored in s distinct subsets A ¼ A1 [ . . . [ As at s differ-
ent sites (e.g. hospitals) and constitutes a total of n patients with d
dimensions. Rows correspond to patients, columns correspond to

Fig. 1. Comparison of cloud learning and FL. In cloud learning (A), the data are consolidated at a central server which computes the global model. In FL (B), the different sites

(e.g. hospitals) calculate a local model on their private data and send only the model parameters to an untrusted aggregator. The global model is computed and can be sent

back to the local sites
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variables. Every site has a different subset of ns patients but the full set
of observed variables. Using terminology established by Ángel

Rodr�ıguez et al. (2017) and Wu et al. (2018), we speak of distributed
rows or horizontal partitioning of the data. Due to privacy con-
straints, the sites are only allowed to exchange aggregated parameters.

We are assuming a client-server/star-like architecture (Imtiaz and
Sarwate, 2018; Steed and Oliveira, 2010), where sites communicate

with a central server that performs the aggregation step. Peer-to-peer
architectures, such as proposed in the concept of swarm learning and
the personal health train (Beyan et al., 2020; Warnat-Herresthal et al.,
2021) could be used at the cost of additional communication steps
and conceptually more involved protocols. The datasets at the distant
sites will be called local datasets and the parameters or models learned

using these data will be called local parameters or local models, while
the final aggregated model will be called global model and considered

optimal when it equals the result of the conventional model, the cen-
tralized model, calculated on all data.

2.2 High-dimensional biomedical data
The dimensionality of OMICS data can be quite unfavorable, with a
high number of features compared to the number of available sam-

ples (d>n). Although the trend toward more granular (e.g. single
cell) analyses alleviates this problem, and PCA is a method applied

to all types of data, there are applications where the number of sam-
ples remains low. Therefore, it is interesting to evaluate, how well-
federated methods perform on data with a high number of features

compared to the number of samples. This setting is rarely considered
in typical test scenarios for new algorithms, where usually the sam-
ple size of the test data exceeds the number of dimensions. For this

study, we selected all publicly available gene expression studies on
TCGA in form of the processed count tables downloaded from the

web repository (https://www.cancer.gov/tcga). These contain frag-
ments per kilobase of transcript per million fragments mapped
(FPKM) normalized counts, according to the unified TCGA pipe-

line. We scaled and normalized the data to unit variance, but did no
further processing. We chose to divide the data according to the can-

cer type annotated in TCGA. We narrowed down the data selection
to studies containing more than 300 individuals. We split the data
into subsets according to the TSS. The sample distribution over dif-

ferent sites varies greatly between the studies. Most of the studies
have skewed sample distributions with one site contributing consid-

erably more samples than others. Please refer to Supplementary
Figure S1 and Table 1 for an overview of the number of samples and
the number of TSS per study after filtering. We want to emphasize

that this setup is distinctively different than the usual test setup of
federated algorithms, where large datasets are split into a few equal-

ly sized chunks with iid data distribution with respect to the classes.

2.3 Principal component analysis
PCA is used to calculate a low-dimensional approximation of the
data (Ian, 2002). Intuitively, the data are projected into a lower-di-
mensional representation using the directions which maximize the
variance. Let the global data be given as a matrix A 2 R

n�d. A is
centered and scaled to unit variance. The PCA is the decomposition
of the covariance matrix M ¼ 1

n A>A into M ¼ VRV>. R is a diag-
onal matrix containing the non-negative eigenvalues ri in nonin-
creasing order. V is a matrix containing the eigenvectors vi

corresponding to the eigenvalues ri with vi column vectors. Note:
As we are solving the eigendecomposition of a n�d matrix where
d� n the maximal number of nonzero eigenvalues is n�1. The top
k-eigenvalues and corresponding eigenvectors are called a k-sub-
space and denoted as ðVk;RkÞ.

2.4 Federated PCA for horizontally partitioned data
In the federated case, the data are distributed over s sites with ns

samples, such that n ¼
Ps

i¼1 ni. The goal of the distributed PCA is
to find an eigendecomposition of A without having all the local
datasets As at a central site. The data are assumed to be centered,
and if applicable scaled to unit variance which can be achieved easily
using federated summary statistics. There are broadly two groups of
algorithms, single-round approaches which communicate only once
between the clients and the aggregator and iterative approaches
which require multiple communication rounds. The single-round
approaches follow the same main idea, but have different implemen-
tation details. Generally, a local summary statistic is computed and
sent to the central aggregator, where it is merged to a global model.

2.5 Reconstitution of the covariance matrix
The reconstitution of the global (approximated) covariance matrix
is a popular approach that has been implemented in different varia-
tions. They all rely on the observation that the covariance matrix
can be computed exactly at the global server by adding up the local
covariance matrices. This basic version is, for instance, used in Liu
et al. (2018). In this version, the covariance matrices of the local
datasets are computed and sent to the aggregator. At the aggregator,
the local covariance matrices are summed up element wise. The
eigendecomposition of this exact covariance matrix is computed and
shared with the clients. We denote this version P-COV. A means to
significantly reduce the transmission costs is to approximate the
local subspaces and send these to the aggregator. In this case, a local
singular value decomposition (SVD) is computed and the top-k
eigenspace is sent to the aggregator, where k is fixed but arbitrary
(Al-Rubaie et al., 2017; Fan et al., 2019; Imtiaz and Sarwate, 2018;
Liu et al., 2018; Qu et al., 2002; Wang and Morris Chang, 2019;
Won et al., 2016). More precisely, in these algorithms, the local sub-
space ðVk

s ;R
k
s Þ is computed at each site and sent to the aggregator

(Algorithm 1, Lines 2 and 3). At the aggregator, a proxy covariance
matrix Mp

s ¼ Vk
s R

k
s V> for each site is reconstituted using ðVk

s ;R
k
s Þ,

and added up element wise such that an approximation of the global
covariance matrix Mp is obtained (Algorithm 1, Line 8). As only a
limited number k of eigenvectors is transmitted Mp is an approxima-
tion of the hypothetical global covariance matrix. The global PCA is
then computed by the eigendecomposition of the proxy covariance
matrix (Algorithm 1, Line 12). This version is denoted AP-COV.

2.5.1 Subspace aggregation

The federated PCA algorithm proposed by Balcan et al. (2014) com-
putes a local subspace such as in the proxy covariance methods
above but differs in the aggregation step. The local subspaces
ðVk;RkÞ are concatenated on the vertical axis and the singular value
decomposition of this stacked subspace is computed (Algorithm 1,
Line 10). It is conceptually the same as computing the proxy covari-
ance matrix but more efficient depending on the dimensions of the
input matrices. This version is called AP-STACK in the remainder of
the article. Please refer to Algorithm 1 for a pseudocode description
of these algorithms. (They have been merged due to their conceptual
overlap.)

Table 1. Summary of number of samples and number of sites per

cancer type

Dataset No. of samples No. of sites

Kidney 887 24

Thyroid gland 504 11

Liver and intrahepatic bile ducts 404 8

Bladder 408 14

Ovary 377 9

Brain 679 20

Prostate gland 495 14

Corpus uteri 547 12

Breast 1093 19

Cervix uteri 304 8

Colon 458 12

Bronchus and lung 1017 34

Stomach 386 9

Skin 468 11
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2.5.2 Intermediate dimensionality

AP-COV and AP-STACK have a parameter k0 that determines the
number of eigenvectors transferred to the aggregator. This number
of intermediate dimensions k0 is usually larger than the target dimen-
sions k, the size of the final subspace. Naturally, k0 determines the
transmission cost of these approaches. This already hints at an issue
regarding the dimensionality of the local subspaces: The number of
retrieved eigenvectors is limited by the minimum dimension of the
data matrix (i.e. either by the number of features, or by the number
of samples) at the site. For instance, the subspace of a 20 � 20 000
matrix can only have 20 eigenvectors which means higher-order glo-
bal subspaces, that is subspaces where the global k is set to be larger
than any of the local k can possibly be, can suffer accuracy loss w. r. t.
to the centralized solution.

2.6 QR-based PCA
Bai et al. (2005) propose a conceptually different method, which still
only requires one communication round per participant. Their

method is not designed for a star-like architecture, but could be con-
sidered for the cross-silo P2P architectures cited earlier (Beyan et al.,
2020; Warnat-Herresthal et al., 2021); therefore, we include it in
the accuracy analysis. It can also be adapted to the star-like architec-
ture by modifying the merge procedure. See Algorithm 2 for a
pseudocode description of this algorithm. At the local sites s, a QR
factorization of the data matrix is computed and Rs is sent to the ag-
gregator (Algorithm 2, Line 2). From the local QR factorizations,
the global PCA is computed by stacking all Rs matrices vertically to
form R0 2 R

n�m. R0 is decomposed into Q;R00 (Algorithm 2, Lines 7
and 8). In the final step, the singular value decomposition of R00 ¼
URV> is computed and the top k eigenvector matrix Vk;> is returned
as the eigenvector of A>A (Algorithm 2, Line 9).

2.7 Federated subspace iteration
Federated subspace iteration is a direct extension of the centralized
subspace iteration (Halko et al., 2011) and has been formulated in
different versions (Balcan et al., 2016; Hardt and Price, 2014;
Pathak and Raj, 2011). It is the extension of power iteration which
computes one vector at the time. Subspace iteration is described in
Algorithm 3. Initially, a random eigenvector estimate Vi¼0 is gener-
ated at the aggregator as the current eigenvector estimate and ortho-
normalized (Algorithm 3, Lines 1–3). The procedure then iteratively
refines this estimate. It consists of a local phase and a global phase.
In the local phase, the current candidate eigenvector matrix Vi�1 is
multiplied by the covariance matrix of the local data to form Vs;i ¼
A>s AsVi�1 (Algorithm 3, Lines 7–9). This candidate matrix Vs;i is
sent to the aggregator where the global estimate is computed by add-
ing up the local eigenvector estimates Vs;i element wise over the local
estimates. The candidate eigenvector matrix is normalized using QR
factorization and sent back to the clients (Algorithm 3, Lines 12–
15). This procedure is repeated until convergence.

2.8 Vertical partitioning
In this article, we discuss the algorithms and applications of federated
PCA for horizontally partitioned data. Please note that some
applications in computational biology (for instance population

Algorithm 2 Federated PCA using QR factorization (Bai

et al., 2005)

Require: Data matrices As 2 R
ns�m, # eigenvectors k.

1: Client

2:
Qs;Rs  orthonormalizeðAsÞ

3:
send� to� aggregatorðRsÞ

4: Client

5: Aggregator

6: ½Rs�  for s 2 ½S�get� from� clientðRsÞ
7: R0  stack� verticallyð½Rs�Þ
8: Q;R00  orthonormalizeðR0Þ
9: U;R;V> ¼ svdðR00Þ
10: send� to� clientðVk>;RkÞ
11: Aggregator

12: Return Vk " Return eigenvector matrix of A>A.

Algorithm 3 Federated Subspace Iteration

Require: Data matrices As 2 R
ns�m, # eigenvectors k.

1: Generate V0 2 R
m�k randomly " Initialize candidate

eigenvector matrix of A>A.

2: V0  orthonormalizeðV0Þ
3: i 1 " Initialize iteration counter.

4: while termination criterion not met do

5: Client

6: Vi�1  get� from� aggregatorðÞ
7: V0s;i ¼ AsVi�1 " Update local eigenvectors Vs;i

8: Vs;i ¼ A>s V0s;i
9: send� to� aggregatorðVs;iÞ
10: Client

11: Aggregator

12: ½Vs; i�  get� from� clientðÞ
13: Vi ¼

P
s Vs;i " Add up Vs;i element wise.

14: Vi ¼ orthonormalizeðViÞ
15: send� to� clientðViÞ
16: i iþ 1

17: Aggregator

18: end while

19: Vk  Vk
i

20: Return Vk " Return converged eigenvectors of A>A.

Algorithm 1 Federated PCA using subspace aggregation

Require: Data matrices As 2 R
ns�m, # eigenvectors k.

1: Client

2: Us;Rs;V
>
s  svdðAsÞ

3: send� to� aggregatorðVk>
s ;Rk

s Þ
4: Client

5: Aggregator

6:

½Vk>
s ;Rk

s �  for s 2 ½S�get� from� clientðVk>
s ;Rk

s Þ
7: if (P-COV, AP-COV) then " Proxy cov. methods

8:

M 
XS

s

Vk
s R

k
s Vk>

s

9: else " Balcan et al. (AP-STACK)

10: M stack� verticallyð½Rk
s Vk>

s �Þ
11: end if

12: U;R;V> ¼ svdðMÞ
13: send� to� clientðVk>;RkÞ
14: Aggregator

15: Return Vk>;Rk " Return approximate subspace of A>A.
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stratification) require the decomposition of the sample-by-sample co-
variance matrix, which cannot be solved directly with every one of
the algorithms evaluated in this manuscript. In the vertical case, the
computation of the entire covariance matrix is not possible because
for two sites i and j with ni and nj samples, respectively, only the par-
tial covariance matrices Mi;i 2 R

ni�ni and Mj;j 2 R
nj�nj can be com-

puted while the computation of Mi;j 2 R
ni�nj and Mj;i 2 R

nj�ni would
require the transfer of the samples of site i to site j. To illustrate this,
consider a gene panel as example. Every hospital measures d genes
for their ni patients. At every site s, we can compute the gene-by-gene
covariance matrix with the full dimensionality d�d, but we can only
compute the partial patient-by-patient covariance matrices of ns � ns

at each site without exchanging patient-level information.
Nasirigerdeh et al. (2020) have shown that for federate GWAS pipe-
lines, exchanging the entire sample eigenvectors potentially leads to a
privacy breach where binary covariates of participants can be dis-
closed. Therefore, care has to be taken when exchanging the sample
eigenvectors. In Hartebrodt et al. (2021), this problem is presented in
greater detail, and an algorithm is developed, which solves this prob-
lem efficiently and without materializing the covariance matrix or
exchanging the sample eigenvectors at all.

2.9 Other related methods
A plethora of algorithms has been designed for distributed sensor net-
works dealing with both horizontal data partitioning and vertical
partitioning, including but not limited to work described in Bertrand
and Moonen (2014), Fellus et al. (2015), Jelasity et al. (2007),
Schizas and Aduroja (2015) and Wu et al. (2018). These algorithms
cover cross-device FL. In contrast to cross-silo FL where large chunks
of data are available at the sites, cross-device FL assumes a high num-
ber of devices such as sensors or mobile phones with limited compute
power and relatively little data belonging to only one user. Due to
the differing assumptions on architecture and computational resour-
ces, and the frequent use of (randomized) P2P communication, algo-
rithms for this use case will not be considered here. Chen et al.
(2021) describe a gradient method that uses matrix deflation for the
computation of more than one eigenvector which is impractical due
to the increased communication effort (cf. Hartebrodt et al., 2021).

2.10 Test setup and metrics
In the optimal case, the federated PCA produces exactly the central-
ized solution. In order to estimate the performance of the algorithms
on the realistic data from TCGA, we simulate the execution of the
federated algorithm with the data distributed according to the TSS
as described above. Since some of the sample sites are quite small, in
a second experiment, we additionally group several sample sites to-
gether to form larger ‘meta-sample-sites’ of approximately the same
size each using a greedy heuristic. We chose this strategy to better in-
vestigate approaches that compute local subspaces. As explained
above, the dimension of such a subspace is strictly limited by the
number of samples.

To evaluate the algorithms’ performance, we compare the result
of the federated PCA to the solution computed on the centralized
data. As a reference implementation, we use the implementation in
scipy.sparse.linalg which internally uses the LAPACK package. The
comparison of the models is done by calculating the angles between
the leading respective eigenvectors of the centralized and the feder-

ated solution. The angle is calculated as h ¼ cos�1 x�y
jjxjj�jjyjj with x and

y the reference and federated vector, respectively. The angle is trans-
formed from radians to degree. We chose the angle between the
eigenvectors over the data reconstruction error, because the ‘load-
ings’, the coordinates of the eigenvectors, are routinely used in gene
expression analysis, for example to detect correlated genes
(Fehrmann et al., 2015). Therefore, the individual coordinates of the
eigenvectors must be taken into account when comparing the result-
ing subspaces. For applications which only rely on the projected
data, and not on the individual loadings, we compute the data re-
construction error. The data reconstruction error is the distance of
the original data from the reconstructed ‘denoised’ data. It is defined

as jAVkVk> � AjF. It is obtained by computing the projections of the

data onto the first k eigenvectors to obtain the principal components
(PCs) and then reprojecting the PCs using the transpose of the eigen-
vectors to reconstruct data of the original dimensionality.

Complementing the simulated results which established the accur-
acy of the methods, we also provide a real implementation of the algo-
rithms. We use the FeatureCloud (Matschinske et al., 2021) platform
for this purpose and implemented an app that can compute all previ-
ously presented algorithms. The application has multiple modes,
including a batch mode and a train/test mode allowing for cross-valid-
ation splits. We then set up a test using the FeatureCloud ‘Testbed’,
which allows to simulate a federated setting by spawning multiple cli-
ents on the same machine. The parameters are passed via a remote re-
lay server, meaning the transmission cost is close to a realistic
estimate. For more details on this system, please refer to the website
featurecloud.ai and the publication (Matschinske et al., 2021). We
measure the wall clock time, the number of iterations and the number
and size of sent packages. The tests were run on a UNIX server with
502GB RAM and 64 CPUs partially in parallel. AP-COV has been
omitted because it is as accurate as AP-STACK and has the same com-
munication properties as P-COV. We used a randomly generated
dataset with 5000 samples and 10 features, and the MNIST dataset.
They were randomly chunked into three, and five equal chunks and
repeated five times. We set the termination criterion to 1e�9 for SUB-
IT. Table 2 summarizes the investigated parameters.

2.11 Practical application using integrated Psoriasis

data
A possible use of PCA is the visualization of the data to detect batch
effects, systematic shifts in the data distribution due to different ex-
perimental processing of the data. We illustrate this use case with a
publicly available collection of Psoriasis datasets (Federico et al.,
2020). The studies were originally not conceived as a federated
study, but have been manually curated and preprocessed following
the same computational pipeline (Federico et al., 2020). We selected
the sequencing datasets with accession numbers GSE107871,
GSE123785, GSE41745, GSE54456, GSE67785, GSE83645,
GSE117405, GSE123786, GSE47944, GSE63979 and GSE74697.
We investigate the differences of federated exact PCA (SUB-IT), fed-
erated approximate PCA (AP-STACK) and the naı̈ve superimpos-
ition of the local PCA spaces to show whether they can be used to
accurately determine the presence of batch effects in the data. We
furthermore show how a sampling strategy can be used to avoid
sharing the exact projections and still be used to detect the batch
effects. The procedure works as follows: first, the eigenvectors are
computed using exact federated PCA (e.g. SUB-IT). Then, the data
are projected onto the PCs. Instead of sharing the projections, we
compute the empirical covariance matrix of the projections locally,
and sample artificial data points from a multivariate Gaussian distri-
bution. These artificial projections are sent to the other participants,
which obtain an idea of the data layout. We include a pseudocode
description of this procedure in the Supplementary Algorithm S1.

3 Results

3.1 Analysis of the exchanged and final parameters
Firstly, we analyze the actually transmitted information and investi-
gate which algorithm discloses the highest amount of information. V
denotes the complete eigenvector matrix and Vk and Vk0 the

Table 2. The parameter choices for the truly federated implementa-

tion of PCA

Parameter Choices

Algorithm P-COV, AP-STACK, SUB-IT, QR-PCA

Clients 3, 5

Datasets Random, MNIST

Epsilon 10e�9
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matrices containing the top k and k0 eigenvectors, respectively.
Table 3 summarizes the parameters known to the clients and the ag-
gregator at the end of the run. Note that V allows the computation
of the covariance matrix M and Vk and Vk0 analogously its approxi-
mations Mk and Mk0. Given the aggregator has all the exact local co-
variance matrices it can run local subspace iteration and therefore
access Vk

i when using P-COV and QR-PCA, given the same initial-
ization. Following this reasoning, we claim that in terms of disclosed
knowledge, P-COV and QR-PCA are equivalent and disclose the
highest amount of information. AP-COV and AP-STACK disclose
larger Vk subspaces than SUB-IT which only discloses the required
Vk; however, SUB-IT might be prone to iterative leakage and dis-
close the covariance matrix. It is outside the scope of this manuscript
to try and attack either algorithm. It is also apparent that there is an
asymmetry of the knowledge of the parameters in the chosen archi-
tecture which favors the aggregator who gains knowledge of all
intermediate steps. This asymmetry is due to the chosen architecture
and can be trivially resolved by adopting a P2P architecture at the
expense of increased network traffic. Another solution to this prob-
lem is the use of secure multiparty aggregation (Cramer et al., 2015)
which can be used to hide parameters with an additive aggregation
strategy. This applies to P-COV, AP-COV and SUB-IT but not trivi-
ally to QR-PCA and AP-STACK which use QR decomposition and
singular value decomposition as their respective aggregation
strategies.

3.2 Network traffic
Here, we analyze the communication requirements for federated
PCA. Let D be the dimensionality of the parameters in terms of
floats transmitted between client and aggregator and let N be the
number of communication rounds. Let T be the total transmission
cost. Recall that the global data matrix has dimensions A 2 R

n�d

and is divided into S local data matrices As with ns samples and d
dimensions each. k is the number of eigenvectors of the final decom-
position and k0 the intermediate dimensionality if applicable. i is the
number of iterations for subspace iteration to converge. Table 4
summarizes the parameter and the associated transmission cost
exchanged between the sites. All methods assume a centered data
matrix, so the exchange of the column sums and the number of sam-
ples is required.

3.3 Accuracy on a standard image dataset
To put the performance of the algorithms into perspective, we first
provide accuracy values for the performance on the standard image
dataset MNIST. This dataset consists of 60 000 gray scale images
containing 784 pixels each. The dimensionality is hence d<n. Here,
the performance of the algorithms is generally very good. Table 5
summarizes selected angles for each of the selected approaches using
the MNIST dataset split into 20 equal chunks. Using these data, all
algorithms lead to a good approximation of the subspace with low
angular deviations. SUB-IT, P-COV and QR-PCA outperform AP-
COV and AP-STACK, but by a small margin.

3.4 Accuracy of the selected approaches to TCGA data
Table 5 summarizes the accuracy of the eigenvectors computed
using the simulated federated PCA using TCGA data. As a measure
of quality, we show the angle between the eigenvector calculated by
the federated approach against the centralized singular value decom-
position. There are three values, one for the original data partition-
ing extracted from TCGA, and one each for the ‘meta-sample-sites’.
Generally speaking, SUB-IT, as well as the P-COV and QR-PCA per-
form accurately regardless of the data distribution. The angle be-
tween all selected eigenvectors is close to 0. The approximate
algorithms AP-COV and AP-STACK do not perform as well. They
improve when creating larger meta-sites which confirms that these
algorithms only perform well, when there are sufficiently many sam-
ples at each collection site. In order to put these values into perspec-
tive, in Table 6, we also provide the ratio of the subspace
reconstruction error achieve by the federated method divided by the
gold standard reconstruction error. The deviation of the data recon-
struction error of the federated solution w. r. t. centralized solution
is small. This indicates that downstream analyses relying on the
coordinates of the eigenvectors are likely to suffer from the approxi-
mate approaches, while analyses merely relying on proxy data are

Table 6. Comparison of the PCA performance

EV PCA MNIST TCGA 5 2

1 Approx 1 1 1 1

5 Approx 1.000022 1.006 1.005 1.002

10 Approx 1.000101 1.01 1.008 1.002

Notes: Shown are the ratios data of the reconstruction errors of data pro-

jected using the federated eigenvector and references for 1st, 5th and 10th

eigenvectors, respectively, for AP-COV/AP-STACK only.

Table 4. Summary of the transmitted parameters and the required

number of iterations

Algorithm Param. Direction D N T

P-COV M C! A d� d 1 Oðd2Þ
Vk C A d� k 1

AP-COV Vk0 C! A d� k 1 Oðdk0Þ
Vk C A d� k 1

AP-STACK Vk0 C! A d� k 1 Oðdk0Þ
Vk C A d� k 1

SUB-IT Vk C$ A d� k i OðdkiÞ
QR-PCA R C! A d� d 1 Oðd2Þ

Vk C A d� k 1

Note: C, client; A, aggregator.

Table 5 Comparison of the PCA performance using the MNIST

dataset over 20 randomized splits, the TCGA data distributed

according to the tissue sample site and combined into 2 and 5

meta-sites, respectively

EV PCA MNIST TCGA 5 2

1 Exact 0 0 0 0

Approx 0.47 13.0 10.4 6.79

5 Exact 0 0 0 0

Approx 1.46 38.9 45.0 32.9

10 Exact 0 0 0 0

Approx 10.35 71.3 69.3 46.7

Notes: Exact methods are SUB-IT, QR-PCA and P-COV, approximate

methods are AP-COV and AP-STACK. Shown are the angles between the fed-

erated eigenvector and references for 1st, 5th and 10th eigenvectors,

respectively.

Table 3. Summary of the transmitted parameters and the comput-

able parameters

Algorithm Vk Vk0 V Rs Vk
i

C A C A C A C A C A

P-COV s* S s* S s* S s* S s* S

AP-COV s* S s* S

AP-STACK s S s S

SUB-IT s* S s* S

QR-PCA s S s S s S s S s S

Notes: s denotes the knowledge of the local parameter, S denotes the know-

ledge of all local parameters and hence the aggregate. A * indicates which

parameters can be hidden via the use of secure addition.
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more resilient against the errors introduced by the approximations.
Supplementary Figure S4 shows an extended view of these results.

3.5 Application of federated PCA to Psoriasis data
We applied the methods on a manually curated multicentric
Psoriasis dataset where individually performed studies were
assembled and reprocessed with the same computational pipeline. In
Figure 2, we show the PC plots of the data using federated power it-
eration (SUB-IT), which is identical to the centralized power iter-
ation, AP-STACK and by superimposing the results of the local
computations. The exact PCA (SUB-IT) shows that there are prom-
inent batch effects in the data, as the data separates according to the
experiment, whereas this is not replicated by AP-STACK and the
superimposition of the locally computed PCAs. This is visualized in
Figure 2A–C. The additional plots visualize the sampling-based visu-
alization approach. Figure 2D shows all exact and sampled projec-
tions. Generally, the sampled projections and the exact projections
overlap. Figure 2E shows the view, one of the participants would
have. In gray, the resampled projections show the global sample dis-
tribution, whereas the black dots represent the local, exact projec-
tions, which were never shared. In Supplementary Figure S2, we
show similar results for simulated data. Supplementary Figure S5
shows more individual PC plots in comparison with the global re-
sult. We also include plots that visualize the distributions of covari-
ates in the data (Supplementary Fig. S6). Further figures show
similar results for federated PCA on single-cell data using different k
for the visualization (Supplementary Figs. S7 and S9) and down-
stream analyses such as clustering (Supplementary Fig. S10 and
Table S2) and gene importance scoring (Supplementary Fig. S11).

3.6 Practical implementation
Table 7 shows the results of the empirical runtimes of the PCA algo-
rithms for different datasets averaged over five runs. AP-STACK, P-
COV and QR-PCA have low execution times in the order of sec-
onds. The low number of executions does not allow to rank the
algorithms further. SUB-IT has longer execution times and requires
more data transmission. Additional results for random data can be
found in Supplementary Table S1.

4 Discussion

4.1 Choice of the performance criteria
The angle between the eigenvectors is a very stringent criterion
for the performance of the algorithm, as with high-dimensional
vectors very few deviating coordinates can lead to a drastic
change of the angle. The data reconstruction error measures the
distance between the reconstruction of the data and the actual
data and is therefore suitable for analyses that solely rely on
proxy data. The ratios of the subspace reconstruction errors show
that both bases (federated and centralized) lead to a reasonable
numerical solution but can be misleading for the downstream
data analysis; therefore, we report the angle between the eigenvec-
tors. The wall clock time and number of communication steps are
both useful measures as their combination allows to estimate the
run times for future studies.

4.2 Analytical performance of the methods
Approximate methods generally perform poorly according to the an-
gular deviation of the eigenvectors, especially when retrieving many
eigenvectors. This strong deviation of the federated eigenvectors
from the centralized baseline implies that the analysis of the loadings
of the eigenvectors is not possible using the approximate methods
and is additionally very vulnerable to outliers. The eigenvector coor-
dinates may deviate significantly even in low ranks, therefore differ-
ent hypotheses will be generated using approximate PCA compared
to centralized PCA. This is further illustrated in Figure 2 where the
results of exact and approximate PCA are fundamentally different,
and the approximate method does not reproduce the result to an ex-
tent, where the batch effect in the data cannot be detected.
According to the subspace reconstruction error for the TCGA data,
most methods perform reasonably well even on unfavorably distrib-
uted data with many small subsets. However, due to the centralized
processing, TCGA data are still likely to give optimistic estimates of
the error incurred due to federated approximate PCA, meaning that
the sites do not show a fundamentally different data distribution.

In the Supplementary Material, we include additional analyses
which show that the approximate method induced differences in the
downstream analyses of single-cell data, such as cluster assignment.
Furthermore, the method is vulnerable to outliers, which is not sur-
prising given the general vulnerability of PCA to outliers. This also
impacts popular visualization methods such as UMAP. It has recent-
ly been argued that UMAP and t-SNE should only be used for the
coarse analysis of the data (Chari et al., 2021). If that is the case, the
approximate methods could be used for visualization of datasets
larger than the ones studied here.

4.3 Computational performance of the methods
Our practical implementations show that the overhead through the
use of the federated methods is acceptable given the long sourcing
process of biological data and the potential privacy gain. The
FeatureCloud platform introduces a certain overhead through vir-
tualization and encryption techniques. Nonetheless, with the run
time of a few seconds to a few minutes for federated PCA research-
ers can realistically use these methods in practice. The bottleneck is
the number of communication steps required; therefore, federated
power iteration is slower than the single-round methods. The advan-
tage of SUB-IT is that it can cope with a higher number of features
while performing exact PCA, contrary to QR-PCA and P-COV
which need to load the covariance matrix into memory. The conver-
gence criterion for power iteration is also set very stringent, so a
lower number of iterations and thus a decreased run time might be
sufficient in practice.

4.4 Privacy of federated SVD
Critiques may raise the issue of the privacy of the parameters.
Indeed, the amount of data transmitted between the sites is quite
large since they are the result of a matrix decomposition. Recall
that we are working on the matrix A 2 R

n�d, where n is the num-
ber of samples and d is the number of features and A ¼ URV>.
This means each vector u in U ¼ ½u1; u2; . . . ;uk� contains elements
belonging to the samples, whereas V ¼ ½v1; v2; . . . ; vk� summarizes
the features across all samples. If all participants are to receive the
complete SVD, then the aggregator has to broadcast the final U
and V to all the clients. In previous work, it has already been
shown that federated pipelines which include the use of the sample
eigenvectors U are prone to data leakage when broadcasting the
full eigenvectors. Therefore, we highly recommend to not broad-
cast the sample-specific eigenvectors U. Ideally, this would happen
in an oracle fashion, where the parties gain knowledge of the out-
put, but none of the intermediate parameters. Unfortunately, this is
not the case, therefore in Section 3, we established a hierarchy of
the approaches in terms of trivially reconstructable data and
parameters.

Several articles discuss privacy-preserving PCA or power iteration
in a federated setting via encryption and secure multiparty computa-
tion techniques (Al-Rubaie et al., 2017; Cho et al., 2018; Pathak and

Table 7. Results of the federated test runs using MNIST data

Dataset Algorithm Sites Time[s] Iter. MB

MNIST P-COV 5 27 1 10 555

3 20 1 21 118

AP-STACK 5 20 1 649

3 25 1 325

QR-PCA 5 23 1 11 242

3 30 1 5626

SUB-IT 5 1208 1000 296 073

3 1090 1000 148 180
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Raj, 2011; Rathee et al., 2018; Won et al., 2016) or differential priv-
acy (DP; Balcan et al., 2016; Hardt and Price, 2014; Imtiaz and
Sarwate, 2018; Wang and Morris Chang, 2019). A few articles (Liu
et al., 2020; Won et al., 2016) assume that the aggregated covariance
matrix is private. The authors of Pathak and Raj (2011) assume that
the aggregated eigenvector updates are private. Generally speaking, if
the aggregated parameters are considered private, since the methods
generally only require additive aggregation, secret sharing by shard-
ing the data or using fixed-point arithmetic, can be added with rela-
tively little overhead (Cramer et al., 2015). A protocol that does not
use the clear-text covariance matrix has been proposed by Al-Rubaie
et al. (2017) who use a garbled circuit protocol that allows to com-
pute the eigenvectors securely based on the homomorphically aggre-
gated covariance matrix. The latter approach is quite time intensive
on small datasets in simulation (Rathee et al., 2018) introduces
improved primitives required for PCA using homomorphically
encrypted centralized data. The empirical evaluation unfortunately
does not include data at the scale of high-dimensional biological data
(d¼20 is the largest dimensions) and a realistic number of iterations
(i¼5 is the total number of iterations). The extension to the feder-
ated setting provides an additional challenge. The protocol in Cho
et al. (2018) requires the participants to shard their data and send
them to two external parties. The communication overhead is quite
large. The high dimensionality of the data is an obstacle for DP as the
noise scales with the number of variables. Since the number of varia-
bles is large, these approaches cannot be used without severe degrad-
ation of the results. Furthermore, the choice of a good � is not easy in
practice. A major obstacle in the adoption of these techniques is the
lack of ready-to-use libraries implementing the methods. We expect
the technical challenges to be resolved in the near future, through
more efficient protocols and ready-to-use implementations.

However, even if it is possible to retrieve the eigenvectors privately,
most of the downstream analyses in bioinformatics use the projec-
tions of the data onto the eigenvectors. Therefore, even differentially
private eigenvectors are not sufficient to ensure privacy. (Due to the
use of the data for the projection, this operation does not fall under
the closure under post-processing.)

4.5 Choice of an appropriate algorithm
In the following section, we will give guidelines for the choice of
an appropriate algorithm which we summarize in Figure 3. Due
to the various considerations in a federated study, not every algo-
rithm is appropriate for every setting. Nonstar-like architectures
can achieve Oðlog2ðnÞÞ communication steps when using single-
round approaches with n the number of clients. In terms of data
disclosure and storage requirements, which amounts to the entire
covariance matrix, the methods are equal. Since the aggregation
method in QR-PCA is a QR factorization for which secure aggre-
gation is not immediately possible, P-COV should be preferred
when secure aggregation is required. If an approximate eigen-
vector is sufficient, AP-COV and AP-STACK are useful.
However, only AP-COV allows secure aggregation because AP-
STACK uses SVD as its aggregation method. Furthermore, AP-
COV and AP-STACK depend on a high number of samples to
achieve good results and may fail catastrophically in practice
when data are limited or confounded. SUB-IT is exact and only
discloses Vk to the aggregator given a limited number of itera-
tions. Our practical implementations show that all methods can
achieve reasonable run times. The potential data leakage induced
by subspace iteration remains an open question and will be sub-
ject to further research.

Fig. 2. Comparison of centralized PCA/SUB-IT (A), combined local projections (B) and AP-STACK (C) on Psoriasis data (GEO accession numbers in the figure). The pattern

for the exact PCA is markedly different from both the naı̈ve combinations PCA and the approximate PCA. Contrary to approach (A), (B) and (C) are not suited to detect the

batch effects present in the data. (D) The exact and resampled projections jointly. (E) A local view of one study. The client can get an understanding of how their samples fit

into the global context
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4.6 Other recommendations
In addition to choosing an appropriate algorithm, we suggest to care-
fully consider the information that is required for downstream analy-
ses. Notably, restricting the number of eigenvectors k keeps the
amount of communicated data and the number of communication
steps low. It is possible to retrieve further eigenvectors should this be
required later on. Before the use of the federated tools, it should be
considered whether all local datasets need to be cleaned from obvious
outliers and it should be assessed whether the populations at the clients
are eligible for joint analysis. The inspection for outliers and their re-
moval are necessary, because outliers have a disproportional effect on
the PCA. In practice, the presence of outliers in the PCA can warrant a
recomputation of the PCA and lead to unnecessary information dis-
closure if the outliers could have been detected beforehand. On the
other hand, local outliers may not be outliers globally. In this case, the
sampling approach can be chosen, where instead of using the original
data, artificial data points are generated. The artificial data points act
as representatives and allow the clients to assess global patterns in the
data without seeing data from other clients. For instance, a client may
have a very small number of points belonging to a cluster, so they ap-
pear as outliers locally. In the global context, they lie within a larger
cluster and should not be removed. Using the artificial points this can
be verified without breaching confidentiality. Users should evaluate,
whether it is deemed a privacy breach, if the other participants know
that there are client-specific groups, which could be vulnerable. A local
PCA can also be performed to assess the information content of the
components, including the computation of the eigengap, an indicator
for the convergence behavior of subspace iteration (the larger the eigen-
gap, the quicker the convergence). Overall, the users need to assess
what the desired outcome of the analysis is, e.g. the detection of batch
effects or groups, or the creation of lower-dimensional data, and con-
sider whether the summary statistics communicated in this context
could create privacy breaches. The nature of biomedical analyses is to
gain a general understanding of the data. PCA can be a way to gain
this understanding, but it discloses a high amount of information in the
process (the variable means, variances, the covariance matrix and/or
the eigenvectors, and if applicable the projections). The answer to
whether this is acceptable cannot be given in a general way.

5 Conclusion

In this article, we identified existing methods for federated PCA,
evaluated them using a realistic non-iid setting as well as random

data distributions and provide a practical illustration of its applica-
tion using transcriptomics data. Importantly, we implemented the
methods and benchmarked their run time, providing valuable infor-
mation for the applicability of the algorithms in a real setting.
Additionally, we provided easy to follow guidelines for the future
users to select the most appropriate algorithm and highlight import-
ant considerations before conducting a federated analysis.

The nature of PCA requires a high amount of information to be
exchanged in the process of computation. The intermediate parame-
ters can be masked by the use of appropriate secure computation
methods. However, the final result is likely to be broadcast to the
participants of a federated study. Given that the goal of the analysis
is to gain a general understanding of the data, a privacy breach
would manifest, if it was possible to infer sufficient information on
individuals in the datasets from the shared results. Therefore, in the
future it needs to be investigated under which conditions the com-
munication of certain information (such as the projections) should
be prohibited; or if perturbation methods must be used at the cost of
accuracy. Data analysts will need to weigh the privacy versus the
utility of the analysis in a case-by-case manner.
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GSE74697. The MNIST data set can be downloaded from http://yann.lecun.-

com/exdb/mnist/.
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