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Abstract

Motivation: Limited data access has hindered the field of precision medicine from exploring its full potential, e.g.
concerning machine learning and privacy and data protection rules.
Our study evaluates the efficacy of federated Random Forests (FRF) models, focusing particularly on the heterogeneity
within and between datasets. We addressed three common challenges: (i) number of parties, (ii) sizes of datasets and
(iii) imbalanced phenotypes, evaluated on five biomedical datasets.

Results: The FRF outperformed the average local models and performed comparably to the data-centralized models
trained on the entire data. With an increasing number of models and decreasing dataset size, the performance of
local models decreases drastically. The FRF, however, do not decrease significantly. When combining datasets of
different sizes, the FRF vastly improve compared to the average local models. We demonstrate that the FRF remain
more robust and outperform the local models by analyzing different class-imbalances.
Our results support that FRF overcome boundaries of clinical research and enables collaborations across institutes
without violating privacy or legal regulations. Clinicians benefit from a vast collection of unbiased data aggregated
from different geographic locations, demographics and other varying factors. They can build more generalizable
models to make better clinical decisions, which will have relevance, especially for patients in rural areas and rare or
geographically uncommon diseases, enabling personalized treatment. In combination with secure multi-party
computation, federated learning has the power to revolutionize clinical practice by increasing the accuracy and
robustness of healthcare AI and thus paving the way for precision medicine.

Availability and implementation: The implementation of the federated random forests can be found at https://fea
turecloud.ai/.

Contact: dominik.heider@uni-marburg.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The digital revolution in healthcare, fostered by novel high-
throughput technologies and electronic health records (EHRs), tran-
sitions the field toward a big data era (Constable et al., 2015). Many
studies have proven machine learning (ML) to be advantageous for

disease diagnosis, prognosis and monitoring of diseases (Fatima and
Pasha, 2017). In cancer research, for instance, ML is used to gain
deeper insights and understanding of the genetic alterations that are
required for cells to develop various stages and severity of cancers
(Batra et al., 2017; Jeanquartier et al., 2016; Park et al., 2021a;
Wiwie et al., 2019) and thereby enable tailored prognoses and
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monitoring of diseases. Moreover, computational models on clinical
variables and EHRs are used to assess individualized health risks,
for instance, to identify high-risk patients for sepsis in intensive care
units (Calvert et al., 2019) or the analysis of longitudinal data for
the early detection of heart failure (Zhao et al., 2019). In particular,
the combination of big data and artificial intelligence (AI) offers
new opportunities to transform healthcare toward precision medi-
cine. Given data for large patient cohorts, we can learn computa-
tional models that can predict medical phenotypes such as disease or
treatment outcome and extract relevant features (biomarkers), e.g.
from expression data. The PAM50 and MammaPrint gene signature
panels are examples that aim to include the most pertinent breast
cancer marker (Laenkholm et al., 2018; Slodkowska and Ross,
2009). They are currently used as medical diagnostics tools for
breast cancer subtyping, guiding individualized breast cancer treat-
ment worldwide. However, both panels are based on small sample
sizes (<5k) and a large number of genes (>20k). Thus, studies raised
concerns regarding the predictive clinical value of such gene panels
(Bösl et al., 2017). The main bottleneck in many studies is the small
number of samples compared to many features. This so-called small-
n-large-p problem results in a computational issue termed the ‘curse
of dimensionality’. The Cancer Genome Atlas (TCGA) is the by far
most comprehensive repository for clinical cancer omics data world-
wide (Weinstein et al., 2013). It contains whole-genome gene ex-
pression data for almost five thousand breast cancer patient samples
linked to clinical outcomes. However, these few thousand samples
stand against more than 19 thousand features that an AI may pick
and combine to predict the outcome. Moreover, this small number
of patients is unexpected since, in the European Union (EU) alone,
there are about 350 thousand new breast cancer cases per year
[International Agency for Research on Cancer (IARC)]. Due to the
small sample size, there is a risk for model overfitting and a signifi-
cantly reduced robustness for medical diagnostics.

Moreover, systematic biases within clinical trials, in particular
toward white Western participants, have led to medical treatments
that were not generally suitable for all ethnic groups (Schork, 2015).
As the above breast cancer examples illustrate, modern omics tech-
nologies generate massive amounts of data. In addition, a variety of
regularization-based methods, e.g. ridge regression or lasso, aim to
address small-sample size issues. However, few studies were robust-
ly replicated under heterogeneous clinical conditions, and thus, sole-
ly fractions of their results are utilized as prognostic and predictive
markers in clinical practice. Big data in healthcare is clearly in its in-
fancy, even in fields such as oncology that are most advanced in
omics and one of the best-researched areas of precision medicine.

The aggregation of clinical data including omics and EHRs
across institutes, nation- and global-wide, could address these previ-
ous limitations of sample size and systematic biases and subsequent-
ly move the field toward more accurate precision medicine.
However, a global exchange harbors risks to data safety of sensitive
patient information and EHRss stored in critical healthcare infra-
structure. Essentially data exchange amongst institutions over the
internet is posing a roadblock hampering big-data-based medical
innovations.

In 2016, the EU passed the General Data Protection Regulation
(GDPR) which sets rules for storing and sharing data in and outside
the EU (The Council of the European Union, 2016). One main state-
ment of the GDPR is the protection of a person’s identity such that
it cannot be traced back by third parties directly or even indirectly.
Furthermore, anonymization is often not sufficient since a person’s
identity could be revealed by a singling out (a process of elimination)
or through unique combinations of attribute values (Sweeney et al.,
2013). Moreover, keeping data centralized, on a shared server or a
cloud, for instance, increases the risk of cyberattacks. Thus, existing
biomedical information is aggregated in separate data silos restrict-
ing access to data and hindering it to exploit its full potential by ML
(Rieke et al., 2020). Nevertheless, according to the GDPR, a ‘protec-
tion by design’ technology can be used if it ensures personal privacy
at all times. A system that meets these requirements needs to com-
bine advanced distributed architectures such as federated learning
(FL) and methods for secure multi-party computation (SMPC) such

as differential privacy or homomorphic encryption. The develop-
ment of the latter has been thoroughly studied (Fang and Qian,
2021; Zapechnikov, 2020). Consequently, we focus on the perform-
ance evaluation of FL methods compared to the local and central-
ized model and address different challenges of biomedical datasets
in various clinically relevant applications.

1.1 Federated learning
FL techniques are categorized into horizontal FL (overlapping fea-
ture space), vertical FL (overlapping sample space), as well as feder-
ated transfer learning (neither feature nor sample space are
overlapping) (Park et al., 2021b; Yang et al., 2019b). This study
focuses on horizontal FL and aims to overcome the barrier of
exchanging raw patient data and move toward large-scale medical
data mining. Which, in combination with SMPC methods, can min-
imize cyber risk. These techniques seek to build a generalized global
model without access to a shared dataset (Gan et al., 2017) and
therefore require a fundamentally different architecture (see Fig. 1).
In the past decade, a variety of federated algorithms have been
developed for a multitude of applications (Yang et al., 2019a).
Several linear methods, such as distributed regression, were devel-
oped. Here an encrypted posterior distribution of coefficients
updates a global model (Sundhar Ram et al., 2012; Wang et al.,
2013). Moreover, Nasirigerdeh et al. (2020) developed sPLINK, a
federated GWAS tool. Other approaches implement distributed en-
semble learning methods, such as federated decision trees (Strecht
et al., 2014), distributed boosting such as SecureBoost framework
(Cheng et al., 2019; Lazarevic and Obradovic, 2001) or federated
Random Forests (FRF) like FederatedForest (Liu et al., 2019) to
mention just a few. Subsequently, federated architectures are rapidly
integrated into research and commercial areas such as on mobile
applications to minimize data traffic (Kone�cn�y et al., 2016a,b;
McMahan et al., 2016).

1.2 Related work in clinical research
Until now, very few studies applied FL to medical and health scen-
arios. The first analyses focused on federated linear approaches. For
instance, Lorenzi et al. (2017) implemented a multi-centric, sequen-
tial and meta-partial least squares approach to model associations
between genetic markers and anatomical surface features in
Alzheimer’s Disease.

Other studies and initiatives use federated approaches, for ex-
ample, to find clinically similar patients (Lee et al., 2018), predicting
hospitalizations due to cardiac events (Brisimi et al., 2018), ICU stay
time or mortality (Roy et al., 2019). More recently, the sPLINK tool
enables federated genome-wide association studies as a robust alter-
native to meta-analysis (Nasirigerdeh et al., 2020). The FedHealth,
a federated transfer learning framework, has been developed for
wearable healthcare devices (Chen et al., 2020). Most recently, a
FRF was applied in a collaborative clinical research network to
model effective prognosis prediction (Li et al., 2020). Moreover,
newly established consortia, such as the FeatureCloud initiative
(https://featurecloud.eu), the German Cancer Consortium’s Joint
Imaging Platform (https://dktk.dkfz.de/en) or the Medical
Institutions Collaborate to Improve Mammogram Assessment AI,
aim to enable decentralized research across medical and research
institutions by using FL architectures.

While different FL algorithms have been designed and applied to
clinical data in pilot studies, these rarely examine the various chal-
lenges frequently emerging in biomedical dataset analyses. Medical
data is somewhat different in many aspects from other branches in
data mining. In particular, the heterogeneity within and between
medical datasets regarding ethical, legal or social confounders, but
also imbalances with phenotype prevalence or cohort sizes (Cios and
Moore, 2002).

1.3 Approach
Here we use one of the most typical representatives of federated en-
semble learning (FEL) algorithms, the FRF, to public data, treated as
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confidential and distributed, to evaluate whether horizontal FL can
outperform the local models and has the same predictive and prog-
nostic power as classical, data-centralized approaches. In particular,
we focus on challenges such as the heterogeneity within and among
datasets. Moreover, we emulated three common challenging scen-
arios among clinical research, (i) a different number of participating
parties and their datasets; (ii) different sizes of datasets; and (iii) dif-
ferent class imbalances within datasets, and evaluated the corre-
sponding model performances.

1. Different number of participants or sites contributing to the glo-

bal model: Depending on the available patients and resources, a

single study can sometimes only obtain a small number of sam-

ples. Sharing data among multiple collaboration partners can

obtain a larger dataset and potentially a better model. Thus, it is

critical to evaluate whether we can improve the local perform-

ance when using a combined federated model for prediction,

particularly when the data is distributed amongst an increasing

number of sites.

2. Different number of samples per site: Depending on the available

patients and resources, silos may have a varying number of sam-

ples among the contributed datasets and subsequently differen-

ces in the predictive power of trained submodels. Therefore, it is

crucial to investigate whether and to what extend the combined

federated model can compensate for the dataset imbalance and

if a size-dependent weighting is beneficial.

3. Different balances in the predicted phenotype: An additional

challenge in medical data science are biases, i.e. an unevenly dis-

tributed target phenotype within the datasets. Thus, it is essen-

tial to analyze how such biases can affect the performance of the

local and combined model.

2 Materials and methods

2.1 Datasets
For the performance analysis of FRF we used five different clinical
[Indian liver patient data (ILPD), hepatocellular carcinoma (HCC)]
and biomedical [breast cancer diagnosis (BCD), lung tumor diagno-
sis (LTD)] datasets, as well as a cross-silo [breast cancer dataset

from TCGA (BCTCGA)] dataset. To cover a wide variety of clinical-
ly relevant applications, we included different input and output vari-
ables, such as disease classification, subtyping, as well as survival as
target or output and a variety of predictive or input variables, such
as clinical data, laboratory, imaging, as well as genetics data was
used. (See Table 1 for number of samples, features and class imbal-
ance.) The following paragraphs give a short description of these
public datasets.

2.1.1 ILPD

The ILPD set includes data from 583 liver patients (Ramana et al.,
2012). Experts classified the positive instances as patients with a
liver disease. The features are clinical measurements as well as age
and sex.

2.1.2 HCC

All patients suffer from chronic liver diseases. Positive instances are
patients who were diagnosed with HCC (Best et al., 2016). The
dataset consists of clinical and biometric features.

2.1.3 BCD

The BCD dataset was retrieved from the hospital of the University
of Wisconsin (Wolberg and Mangasarian, 1990). The predictive fea-
tures were collected from a digital image of a fine needle aspirate of
a breast mass. Characteristics for each cell nucleus in the images are
measured. The dependent variable is the categorization of breast
cancer in benign and malignant (positive class) tumors.

2.1.4 LTD

The LTD dataset GSE30219 consists of gene expression data of lung
tumor patients (Rousseaux et al., 2013). A patient is classified as
positive if the survival time was higher than 30 months.

2.1.5 BCTCGA

As a cross-silo example for the application of FL algorithms we
selected a Breast Cancer dataset from TCGA (BCTCGA). The data-
set contains expression profiles of human breast tumors of patients
from the TCGA-BRCA cohort (Liu et al., 2018) originating from 19
different institutes. While the breast cancer samples classify into 4–6
subtypes, for evaluation purposes, we focus on a binary

Fig. 1. Principle of FRF deployed in clinical research and practice
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classification of the most frequent subtype luminal A versus other
subtypes. Since the data originate from different institutes, we will
use this dataset to evaluate the performance of FRF in a cross-silo
setting.

2.2 Federated Random Forests
In this study, we use FRF, one of the most common representatives
of FEL algorithms. RF models are particularly suited for these scen-
arios. On the one hand, they have been widely used and proven to
be very efficient in accurately modeling biomedical data for various
tasks (Boulesteix et al., 2012). On the other hand, these models have
the advantage that they are easily parallelizable and executable on
computing clusters or graphics card servers (Riemenschneider et al.,
2017). Subsequently, this parallelization is easily extendable to dis-
tributed modeling on distantly located datasets and recombination
of resulting local models. In contrast to a centralized approach, only
the model, not the data, is transferred amongst partnering sites,
leading to a substantial decrease in communication overhead.
However, a significant challenge of many federated approaches is
communication efficiency, since many FL algorithms, such as deep
neural networks, require frequent communication for the exchange
of model parameters throughout the training phase (McMahan
et al., 2016). In contrast, FRF is trained separately for each data silo
and solely requires two communication steps per model update. Let
N be the number of distinctly stored datasets, also called silos, Di

with i 2 f1; . . . ;Ng. Traditional ML would merge all datasets D ¼
D1 [ . . . [DN and build a classical joint data-centralized RF model
MCentralized on D to benefit from insights of the entire dataset. In a
federated scenario, the datasets Di cannot be shared amongst enti-
ties, and neither D nor MCentralized can be generated. Therefore, the
goal is to build a combined RF model MCombined integrating know-
ledge from all datasets Di without sharing the actual data (Yang
et al., 2019a) (see Fig. 1). At first, each entity locally performs a sep-
arate ML on its private data to fit a local RF model MLoci

.
Subsequently, these local models MLoc1

; . . . ;MLocN
are aggregated at

a central node and integrated to a combined model MCombined.
Thereby, solely the abstract models are exchanged, and the private
data remains locally. The overarching goal of this study is to evalu-
ate in detail the competitiveness of combined RF models compared
to the locally trained and the classically trained data-centralized RF
model on different biomedical datasets and with respect to various
data realities.

2.3 Evaluation of challenges in healthcare data
To benchmark the performance of FRF in comparison to a data-
centralized approach, we will utilize different datasets and aspects
of data heterogeneity (ILPD, HCC, BCD, LTD). Therefore, we emu-
late three common challenging scenarios among clinical research: (i)
a different number of participants or sites contributing to the global
model, (ii) different number of samples within the shared datasets
and (iii) different balances in the phenotype to be predicted, and
evaluated the corresponding model performances. Finally, we will
evaluate the performance of the federated RF model in a cross-silo
example (BCTCGA).

1. Different number of participants or sites contributing to the glo-

bal model: To analyze the effects of the distribution of resources

amongst an increasing number of sites, we evaluate all models

on the same sized data and split these into an increasing number

of participants. To cover a broad spectrum of scenarios, we split

the data into 2–100 separate silos. Finally, we compare the per-

formance of the local models, a federated combined model and a

data-centralized model trained on the entire training dataset.

2. Different number of samples per site: To investigate the effects

of data-size imbalance between contributing participants, we

split the data into two silos of varying complementary sizes, e.g.

5% and 95% or 25% and 75%. Subsequently, we compare the

performance of the local (small and big) model with a non-

weighted and weighting combined model.

3. Different balances in the predicted phenotype: To evaluate how

the federated ML models perform compared to the local and the

data-centralized approach when the class balance of the data dif-

fers, we select silos from each dataset that corresponds to a spe-

cific class imbalance.

2.4 Evaluation procedure
Figure 2 gives an overview of the evaluation procedure described in
the following.

1. Split dataset into training and test data

For the Monte Carlo cross-validation, we separated each dataset
into training (90%) and test (10%). For a robust evaluation of
the performance, this split procedure and all following steps are
repeated at least 100 times. Subsequently, the data-centralized
RF model is trained on the entire training set, while steps two
and three generate the local and combined models, respectively.
Finally, the performances of the classical models, the local mod-
els and the combined models are evaluated on the corresponding
test datasets within each cycle. The following section describes
the preparation for different heterogeneity assessed scenarios.

2. Generate distributed datasets

To simulate the different scenarios with distributed heteroge-
neous datasets, we performed the following three procedures.

a. Different number of sites:

The original training dataset D is randomly split in same-sized
silos Di 2 fD1; . . . ;DNg with N 2 f2;5; . . . ;100g. Each silo
Di represents one participant. For each silo, one local model Mi

is trained. Then, the algorithm generates 100 decision trees for
each local RF model to create the combined model.

b. Different number of samples per site:

The training dataset D is split in two silos D1 and D2 with
jD1j < jD2j. The splitting thresholds were set in 5% steps
so that the different splits: D1 contains 5,10,. . .,40, 45% of
the training data (small dataset) while D2 respectively con-
tains 95, 80,. . ., 60, 55% (big dataset). In addition, we inves-
tigate if weighting the models based on their sample size
influences the combined models. For the non-weighted scen-
ario, each local model contributes the same number of deci-
sion trees to the combined RF. In the weighted model, each

Table 1. Datasets used to evaluate the performance of FL methods

Name No. of samples Disease Classes No. of variables

ILPD 583 Liver disease Positive: 416/negative: 167 10 numeric

HCC 685 Hepatocellular carcinoma Positive: 282/negative: 403 7 numeric

BCD 569 Breast cancer Malignant: 212/benign: 357 30 numeric

LTD 293 Lung tumor Survival time > 30 month: 178/<30 month: 115 22 600 numeric

BCTCGA 1069 (19 sites) Breast cancer Luminal A: 494/Other subtypes: 575 20 500 numeric
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decision tree gets a weight assigned for the consensus deci-
sion relative to the number of the respective training samples

c. Different balances in the predicted phenotype:

We sample the datasets such that the percentage of the posi-
tive instances equals 10%, 20%, 30%, 40%, 50%, 60%,
70%, 80% and 90%. At first, a test dataset is sampled with
the respective percentage. Then, depending on the balance,
the remaining dataset was down-sampled such that the ratio
and equal training sizes are guaranteed. Subsequently, the
training set is split into two silos maintaining the ratio of
positive and negative samples. Finally, we sampled the same
number of decision trees for the combined model.
For all scenarios, the number of sampled decision trees was
determined in such a way that jMCentralizedj ¼ jMCombinedj.

3. Combination of models

As ensemble classifiers, RFs are easy to combine and therefore
well suited for the federated setting. Let Di with i 2 f1; . . . ;Ng
be distinctly stored datasets. The data-centralized model
MCentralized is a RF that was trained by the entire dataset
D ¼ D1 [ . . . [DN. In the federated approach, for each silo Di,
a local model MLoci

is built. Each model equals a set of k deci-
sion trees MLoci

¼ fmLoci ;1; . . . ;mloci ;kg. To create the federated
combined model, a subset of decision trees is randomly sampled
from each local model. The number of sampled decision trees
depends on the specific scenario. To create the federated com-
bined model, all subsets of decision trees are merged into a
single combined model MCombined ¼ fmLoc1 ;1; . . . ;mloc1 ;k; . . . ;
mLocN ;1; . . . ;mlocN ;kg. However, each analysis ensures that the
number of decision tree models in the data-centralized and com-
bined model is equal jMCentralizedj ¼ jMCombinedj ¼ 100. Finally,
all chosen decision trees are merged into a combined model
MCombined.

4. Evaluation of cross-silo example

Equally to the previous analysis, we used Monte Carlo cross-
validation to evaluate the cross-silo FRF. Thus, the BCTCGA
dataset is separated into training (90%) and test (10%). For a
robust evaluation of the performance, this split procedure and
all following steps are repeated more than 100 times.

Subsequently, the data-centralized RF model is trained on the
entire training set, while a local model is trained on the data
corresponding to a specific institute in the dataset. Finally, the
performances of the data-centralized models, the local models
and the combined models are evaluated on the corresponding
test datasets within each cycle.

5. Performance evaluation on test sets

We evaluate the performance of the jMCentralizedj model, all
MLoc1

; . . . ;MLocN
models and the jMCombinedj model for all rep-

etitions of the generated and cross-silo scenarios. In addition,
the performance was evaluated by the receiver operating curve
(ROC). Therefore, the sensitivity and specificity are calculated
and plotted for each positive-class-probability-cut-offs of the
model. Subsequently, the area under the ROC (ROC-AUC) is
integrated and serves as a quality measure of the model.
However, the ROC-AUC does not adequately evaluate data-
sets that show strong imbalance in the phenotype. Thus we
additionally analyze the performance using the precision-recall
curve (PR) and the area under the PR curve (PR AUC) accord-
ingly in these circumstances

The Python source code that allows for reproducing the results,
the datasets and plots can be found in the following public GitHub
repository of the project: https://github.com/jm9e/FL_Pipeline.
Moreover, a detailed description of all required libraries can be
found in the requirements.txt file inside the public Git repository.

3 Results

3.1 Different number of sites
Our analysis of the effects of increasing data distribution amongst a
growing number of data silos (2–100) showed a similar pattern for
all datasets. Exemplarily, Figure 3 depicts the performance evalu-
ation of the ILPD and HCC datasets. As expected, for an increasing
number of sites and subsequently decreasing number of samples, the
performance (AUC) of the local models decreases drastically while
the variance amongst runs increases. The performances of the com-
bined model remain fairly stable and hardly vary from the data-
centralized baseline model. However, certain limits apply when the

Fig. 2. Evaluation procedure comparing data-centralized ML models with the federated approaches. Therefore, for each clinical dataset, three different heterogeneity scenarios

are evaluated, (i) a different number of silos, (ii) different sizes of silos and (iii) different balances of classes, i.e. prevalences. Subsequently, both the local, combined and data-

centralized models are trained on these datasets. Finally, their performance is evaluated and compared. *Note that the data-centralized model is trained on the imbalanced

data for the class imbalance evaluation to achieve a fair comparison
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local models do not have a sufficient number of samples
(no: of sample < 10), seen in particular for smaller datasets like
LTD but also ILPD and BCD for a large number of sites. Solely, the
HCC dataset does not show any differences, most likely due to its
large size and the small number of variables. However, amongst all
datasets, the test performance (AUC on the separate test data) of the
combined model is substantially better than the performance of the
local models. The performance analysis of BCD and LTD and
detailed information about variance and significance can be found
in Supplementary Material.

3.2 Different number of samples per sites

(unbalancedness)
We evaluate the effects of an unevenly balanced number of samples
amongst the different sites. Thus, the training data was separated
into two data silos (D1 and D2) containing a specific percentage of
the training data. For instance, the ‘Small Dataset Model’ is trained
on a small dataset comprising D1 ¼ 5% while the ‘Big Dataset
Model’ is trained on a large dataset comprising the remaining D2 ¼
95% of the data; accordingly all other splits are evaluated: ‘Small
Dataset Models’ D1 ¼ f5;10; . . . ; 45;Balancedg and ‘Big Dataset

Models’ D2 ¼ f95;90; . . . ; 65;Balancedg. Subsequently, the algo-
rithm sampled and combined the local models in a weighted or
unweighted fashion. Finally, the performances of the local (D1 ver-
sus D2) and combined models are compared to the data-centralized
model.

Figure 4 exemplarily shows the performance of the analysis on
the ILPD and LTD datasets. In general, the local models based on
smaller datasets with fewer samples perform worse than those
trained on larger datasets, resulting in an increasing and decreasing
curve. Thus, the performance differs strongest where silo sizes are
most different (see left part of the Fig. 4). Moreover, the combined
models tend to successfully compensate for the lower performance
of the local models based on the smaller datasets. The comparison
of the weighted combined and unweighted combined models shows
different results based on the overall sizes of the example datasets.
For instance, for smaller datasets, such as LTD and BCD, the
weighted combined models show a clear advantage on two local
models that are based on large differences in sample sizes. However,
for larger datasets, such as ILPD and HCC, the size-dependent
weighting of the different local models does not have a strong effect
on combined model performance. This effect is most likely due to
the fact that even the smaller local models are based on sufficiently
large data.

3.3 Different imbalances in the predicted phenotype
To evaluate the influence of a bias in phenotype, we simulated dif-
ferently imbalanced participant data. For instance, a dataset

Fig. 3. Influence of increasing distribution of samples amongst a growing number of

data silos (2–100) on the performance of a combined model. A local model is

trained on each silo of the training data, respectively. Subsequently, the local models

are merged into a combined model. This Figures depicts the performance on the

ILPD and HCC datasets for both the local and combined models in red and blue, re-

spectively. Both show different overall performances but demonstrate the same

effects. Moreover, there is no significant difference between data-centralized and

combined models. For comparison, the performance of the data-centralized model

and the corresponding quantiles are indicated by horizontal black lines

Fig. 4. Influence of unevenly sized data per site. On the one hand, the plots show the

performance of the local models build on the small (green) and large (orange) silos

of the data. On the other hand, the performance of the weighted and unweighted

models are shown
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containing 10% positive and 90% negative cases. Respectively, the
percentage of positive samples corresponded to 10, 20,. . ., 80, 90%.
To analyze the effect of the phenotype imbalance on the model’s
goodness of fit, we calculated both AUC and area under the PR
AUC. For comparison, we also included the phenotype-balanced
data (50% versus 50%). Figure 5 exemplarily depicts (i) the AUC
and (ii) PR AUC performances for the ILPD dataset. In general, both
the local and combined AUC performance variance increases with
increasing imbalances for both negative and positive phenotypes,
particularly for local models trained on a small number of positive
samples. Consequently, the local and combined models are more
stable (minor variance) and show better performance when the data-
set almost balanced. Since the PR AUC focuses on the positive cases,
the area under the PR AUC performance for all models improves
with an increasing number of positive instances in the imbalanced
dataset. Overall, the performance of the combined models consist-
ently increases compared to the corresponding local models.

See Supplementary Section S3 for dataset HCC, BCD and LTC.

3.4 Cross-silo example—breast cancer TCGA data
To access the applicability of our analysis in a cross-silo scenario, we
applied our FRF approach on a publicly available breast cancer TCGA
dataset that originated from 19 different hospitals and institutions. The
results depicted in Figure 6 show that, as previously observed, the

combined model succeeds the performance of the models trained on
the local institution-specific datasets. However, the results do not show
significant improvement based on weighting the local models based on
their sample size. Moreover, while the difference between the com-
bined and data-centralized models is rather small, the combined model
shows better performance than the local models.

4 Discussion

In clinical practice, studies are often limited to small local datasets
due to a small number of patients or limited resources per hospital.
While clinical studies using ML are usually successfully done on suf-
ficiently large public data or larger cohorts, a lack of access to suffi-
cient data due to privacy regulations hinders the transition to
clinical applications. The distributed architecture of FL can address
such challenges and comprises a paradigm shift from centralized
data approaches. To clarify whether FL methods such as FRF can
compete with classical approaches, we performed a thorough bench-
mark of the efficacy of FRF on five standard biomedical datasets,
including clinical information, laboratory results, image-based
parameters and gene expression data; and compared the results of
the combined FRF model with the local and data-centralized ML ap-
proach. Data generated by biomedical research is different in many
aspects compared to data from other domains. The heterogeneity
within and between datasets, in particular concerning ethical, legal
or social confounders, as well as imbalances with phenotype preva-
lence or cohort sizes, pose challenges for ML and AI in general (Cios
and Moore, 2002). In this study, we evaluated three common chal-
lenging scenarios among clinical research, (i) a different number of
participants or sites (here called silos), (ii) a different number of
samples per site (unbalancedness) and (iii) different imbalances of
phenotypes, and evaluated the corresponding model performances
(AUC and precision-recall AUC). In addition, we validated our ap-
proach on a real-world cross-silo example based on a public distrib-
uted breast cancer dataset comprising expression profiles of patients
from 19 different healthcare institutions.

Our results on the number of sites scenario (I) consistently show
on all datasets that FRF enables to build a more powerful combined
model based on the combination of local models trained on preexist-
ing distributed data silos. The combined FRF models outperform the
local models in all distribution scenarios on all example datasets.
Strictly speaking, the performance advantage increases the smaller
the size of local datasets. Thus, we conclude that for most clinical
applications, the use of FRF architectures can aid in overcoming the
obstacles of privacy and data governance challenges amongst partic-
ipating institutions and improve overall phenotype prediction such
as disease classification or treatment recommendations.

Fig. 5. Comparison of the performance of the federated local and combined models

with the data-centralized model on differently imbalanced datasets. The first box

plot visualizes the AUC of models trained 10–90% positive samples respectively.

The second box plot depicts the corresponding area under the PR curve

Fig. 6. Comparison of the performance of the cross-silo federated local and com-

bined models with the data-centralized model on a cross-silo distributed breast can-

cer dataset
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Our analysis of unbalancedness scenario (II) reveals that com-
bined models tend to successfully compensate, in particular, the
lower performance of the local models based on the smaller datasets.
Moreover, in scenarios of small sample sizes and significant size dif-
ferences between the data silos, weighting functions (here propor-
tional number of trees per dataset size) on the combined model
represents a clear advantage in terms of prediction quality. Solely
examples of extreme unbalances showed a small but significantly
decreased accuracy on the combined model compared to the model
trained on the larger dataset. However, the performance was com-
parable when using size-dependent weighting for the combined
model. In conclusion, FRF are further recommended to improve pre-
diction performance for circumstances of small datasets and extreme
unbalancedness. In addition, the results show that weighing func-
tions can aid in compensating for the extreme unbalancedness.

The investigation of FRF for the varying imbalances of pheno-
types scenario (III) reveals that combined models are consistently
more robust toward particular biases within the parameter distribu-
tions. Thus in clinical applications that frequently show challenges
of unbalanced parameters, the employment of FRF can additionally
result in more robust predictions.

Moreover, in most scenarios (I, II and III), the combined models
have shown to be comparable to the classic data-centralized model.
However, exceptions apply mainly to models of extremely small
sample sizes (mostly scenarios I), leading to small but significant dif-
ferences (no: of sample < 10). Thus, while we can generally expect
a performance improvement of the combined models in comparison
to local models, it might in extreme cases not compare to a global
data-centralized model, which, however, is often not feasible under
privacy and legal perspectives.

Finally, when reviewing the results of the cross-silo dataset, both
the unweighted and the weighted combined models (both AUC <
90%) show slightly worse performance than the data-centralized
model (AUC > 92.5%). In this cross-silo scenario, the weighting
function shows a slight improvement. However, for all simulated-
distributed and cross-silo datasets, the combined models show a sig-
nificant improvement compared to the performance of the corre-
sponding local models. Thus, we can conclude that both medical
research and studies and clinical practice would greatly benefit from
the application of FRF.

5 Conclusion

With recent developments in AI and ML, tremendous opportunities
for medical research are at our fingertips. However, up to now, lim-
ited sample sizes, biased datasets and limited data access, for in-
stance, due to privacy and legal regulations, have hindered the field
from exploiting the full potential of computational methodology.
This limitation is particularly the case for ML-based on patient in-
formation, covered by data protection rules such as the GDPR.
Therefore, we require a paradigm shift from centralized data lakes
toward tailored ML architectures such as distributed or FL
approaches integrated with SMPC, and encryption techniques to ad-
here to these privacy requirements. Such systems ensure that the ac-
tual data never leaves the owner and thus can be integrated with
existing infrastructure and data silos. Thus, they can overcome men-
tioned boundaries, ease collaborations across institutes without tedi-
ous paperwork and lengthy processes since no data exchange is
needed, and therefore initiate the transition from research to clinical
practice.

While some FL methods exist and are already used in business
health applications and mobile apps (Kone�cn�y et al., 2016b;
McMahan et al., 2016), the deployment of the current state-of-the-
art methodology to clinical settings is still in its infancy.

In the current study, we focus on the evaluation of horizontal
FRF. This federated ML method seeks to build a generalized en-
semble model without access to a shared data basis (Gan et al.,
2017). Therefore, we assume that the comparison results between
federated and data-centralized models will be consistent with
datasets that underwent secure data conversions such as homo-
morphic encryption.

The results consistently confirm for all scenarios, simulated (num-
ber of data silos, unbalancedness, imbalanced phenotypes) and cross-
silo datasets, that the combined models show a significant improve-
ment compared to the performance of the corresponding local models.
When local models are built on datasets of decreasing sample size, the
performance of the combined models cannot compete with a data-
centralized model. The quality improvement compared to the local
model is particularly strong. Thus, we conclude that in circumstances
where privacy and legal regulations prohibit a data-centralized ap-
proach, the employment of an FRF will, with high probability, lead to
more robust and generalizable prediction models.

The application of FL methods such as FRF can potentially
benefit various stakeholders. Data remains under the govern-
ance of healthcare and research institutions and is stored com-
plying with data protection rules such as the GDPR. Such laws
comprise the right of a patient to revoke a use-consent. Saving
the data locally guarantees the possibility of deleting data
(including all trained models), thereby lowering patients’ reluc-
tance to become data donors. ML and clinical researchers can
benefit from potentially vast collections of relevant biomedical
data. Data collected by institutions from different geographic
locations, of demographics and other varying factors, allow less
biased (compensating, e.g. socio-economic and ethnic con-
founders) and more generalizable models. Subsequently, such
models trained on a national or global scale have a strong po-
tential to perform well on clinical decisions regardless of the
treatment location, which will have relevance, especially for
patients in rural areas. Moreover, a broad application of FL
methods will be relevant, particularly for rare or geographically
uncommon, diseases that are likely to be diagnosed faster and
more accurate (Rieke et al., 2020).

In addition to the general advantages of FL, due to their tree-based
structure, FRF models are well equipped to evaluate variable import-
ance and therefore are particularly suited to enhance the interpretabil-
ity of subsequent combined models. Studies have shown that
explainability and causality of such models, alongside model accuracy
and robustness, is the most crucial factor for acknowledgment and ac-
ceptance of ML technologies in clinical practice (Holzinger, 2021;
Janzing and Schölkopf, 2017; Schwarz and Heider, 2019). Thus, in the
future, we will focus on explainability and the optimization of the FRF
models to account for the heterogeneity and noisiness of biomedical
data. Furthermore, these methods routinely have to account for in-
homogeneous data sites (Kargupta et al., 2000). These challenges are
frequently found in medical data records.

In summary, we believe that federated ML-based architectures like
FRF have the potential to increase the accuracy and robustness of
healthcare AI, revolutionize both clinical research and practice, and
pave the way for the precision medicine of the 21st century by building
more accurate predictive models enabling more focused personalized
treatment (Hamburg and Collins, 2010; Rieke et al., 2020).

Data availability

All data is publicly available as described in material and methods.
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