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Abstract: Progress in statistical machine learningmade AI
inmedicine successful, in certain classification tasks even
beyond human level performance. Nevertheless, correla-
tion is not causation and successful models are often com-
plex “black-boxes”, whichmake it hard to understandwhy
a result has been achieved. The explainable AI (xAI) com-
munity develops methods, e. g. to highlight which input
parameters are relevant for a result; however, in the medi-
cal domain there is a need for causability: In the sameway
that usability encompasses measurements for the qual-
ity of use, causability encompasses measurements for the
quality of explanationsproducedbyxAI. Thekey for future
human-AI interfaces is to map explainability with caus-
ability and to allow a domain expert to ask questions to
understand why an AI came up with a result, and also to
ask “what-if” questions (counterfactuals) to gain insight
into the underlying independent explanatory factors of a
result. A multi-modal causability is important in the med-
ical domain because often different modalities contribute
to a result.

Keywords: explainableAI,Human-CenteredAI,Human-AI
interfaces

1 Introduction: Deep Learning
Success Examples in Medical AI

To reach human-level AI is the quest of AI researchers
since the emergence of this field [1]. Research in the last
decades has proved it to be very difficult and the progress
has been slow, despite great success in statistical machine
learning theory [2] and statistical learning practice [3]. Re-
cently, there have been many practical successes of deep
neuronal network learning [4] due to the availability of
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large amounts of training data sets and computational
power. In the health domain there are many different ar-
eas, where AI can help, e. g. in diagnostics and decision
making, drug discovery, therapy planning, patient mon-
itoring, risk management, areas dealing with “big data”
such as the analysis of *omics data, including genomics,
proteomics, metabolomics, and many others [5]. One par-
ticular relevant field is medical image analysis, including
AI-applications in pathology [6], radiology [7], dermatol-
ogy [8], ophthalmology [9], oncology [10], andmany other
medical application fields.

Let us look at a meanwhile classic work, presented in
2017 by the groupof SebastianThrun fromStanford,which
was sold under “Beyond human-level performance” [11]
and was popularized in the news in Europe as “AI is better
than doctors”. What did they do? They classified skin le-
sions using a single convolutional neural network (CNN),
trained it end-to-end from the derma images directly, and
used only pixels and disease labels as inputs. For pre-
training they used 1.3 million images from the 2014 Ima-
geNet challenge. Then, theyused 130 thousandclinical im-
ages consisting of approximately 2000 different diseases,
reaching 92% average classification performance, on par
with human dermatologists or even better. If we consider
that the algorithm does not get tired this is really an amaz-
ing result, considered by medical doctors as a very good
performance.However good these resultsmaybe, pressing
questions are raised: “Why can AI solve some tasks better
than humans?”, “Why does the AI achieve such results?”,
“Which underlying factors are contributing to the result?”,
or “What if I change, replace, disturb, remove input data?”,
or more technically: “What if the input data changes coun-
terfactually …?” This needs to consider and examine de-
sired properties of methods, including fidelity [12, 13], in-
terpretability [14], parsimony [15], and generalizability [16].

A very recent work from the Princess Margaret Can-
cer Center in Toronto in the field of histopathology [17]
goes one step in this direction: They also applied a CNN
to a repository of 840 thousand histopathological image
tiles and learned representations into a 512-dimensional
feature vector. The novelty here is that they showed that
machine-generated features correlate with certain mor-
phological constructs and ontological relationships gen-
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erated by humans. Why is this important for us? Because
highlighting such overlaps between human thinking and
machine “thinking” can contribute to what are currently
top issues in the machine learning community: i) to elimi-
nate bias and to improve algorithms robustness, and ii) to
make the results retraceable, hence explainable in order to
meet the quest of accountability of medical AI.

Despite all these successes, one of the most pressing
problems is in robustness, i. e. in overcoming the “brittle-
ness” of current AI systems, because true human-level AI
requires computational approaches that are able to deal
with “common sense” situations [18] and to “think” and
“act” like humans. Many advances have resulted from
using deep neural networks trained end-to-end in such
tasks. Despite their biological inspiration and the impres-
sive results mentioned before, these systems differ from
human intelligence enormously. Besides lacking robust-
ness and generalization, current approaches are unable to
build causal models in order to support deep understand-
ing [19]. Consequently, to make such approaches even
more successfulwe need furtherwork tomake them robust
[20], [21], understandable [22], and interpretable for a hu-
man expert [14]. The aim is to take advantage of the respec-
tive benefits of both statistical machine learning methods
and model-based approaches, or more precisely: The aim
is to integrate existing a-priori knowledge and human ex-
perience into statistical learning methods, thereby com-
bining them synergistically in a hybrid approach to exploit
the full benefits of data-driven methods without ignoring
already acquired knowledge an human expertise. Here, a
human-in-the-loop can be (sometimes, of course not al-
ways) helpful as we will discuss in section 3. Before that,
we briefly discuss some basics of explainability and caus-
ability.

2 Explainability and Causability

The field of explainable AI is meanwhile very popular [23],
[24], [25], [26], and the explainable AI (xAI) community is
very active in developing various methods to help mak-
ing such “black box” approaches, as outlined in the in-
troduction, retraceable, understandable, and human in-
terpretable.

It is important to note that results are interpretable
when they classify objects on the basis of features that
a human can understand [27]. Current approaches to ex-
plaining the decisions of deep learning for medical tasks
have focused on visualising the elements that have con-
tributed to each decision, which can be done e. g. via in-

teractive heatmaps [28], [29]. Such “mechanical explana-
tions” to highlight which input is relevant to an obtained
output can be reached by using variousmethods: The sim-
plest method works with gradients as multi-variable gen-
eralization of the derivative, where the neural network is
seen as a function and the explanation relies on the func-
tion’s gradient, which is available from the backpropaga-
tion algorithm [30]. Another possibility is to use decompo-
sition methods (luckily our world is compositional), e. g.
pixel-wise relevancepropagation [31], layer-wise relevance
propagation [32], or deepTaylor decomposition [33],which
also works on graph-based data [34]. Other methods in-
clude deconvolution by reversing the effects of convolu-
tion and bringing out from two functions a third function
which is then the product of both, guided backpropaga-
tion, and the use of so-called concept activation vectors
[35], [36], [37], [38].

All these methods are excellent pre-processing steps,
however, in a way that a medical expert can understand
the causality of a learned representation and use it for
medical decision support the xAImethodsneed tobedevel-
opedeven further. Let usnote that xAI (or “explainability”)
deals with the implementation of methods to enable re-
traceability, transparency, and interpretability of so-called
“black‐box”methodologies. The currently best performing
methods, as we have seen in the best-practice examples in
the introduction above, are of such kind. Unfortunately,
it is not an option just to say “stop explaining black-box
machine learning models for high stakes decisions and use
interpretable models instead” as stated by Cynthia Rudin
[14], because this wouldmean not to use the currently best
performing methods.

However, in the biomedical domain there is a need to
go beyond xAI. To reach a level of “explainable medicine”
there is a crucial need for causability [39]. In the sameway
that usability encompasses measurements for the qual-
ity of use, causability encompasses measurements for the
quality of explanations, e. g. theheatmapsproducedby ex-
plainable AI methods. Causability can be seen as a prop-
erty of “human intelligence”, whereas explainability can
be seen as the property of a “artificial intelligence”.

The key to effective human-AI interaction and con-
sequently the success of future human-AI interfaces lies
in an efficient and consistentmapping of explainability
with causability [40].

This “mapping” is about establishing connections and
relationships between existing areas, so not about draw-
ing a new map, but rather to identify similar areas in
two completely different “maps”. Effective and efficient
mapping is necessary, but obviously not sufficient for un-
derstanding an explanation: Whether an explanation has
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beenunderstooddepends on other factors, including prior
knowledge and expectations on the human side. Obvi-
ously, the effectiveness of an “explanation interface” de-
pends on whether (and to what extent) the result of an ex-
planation produced by an explainable AI method was un-
derstood by the human expert.

As we can imagine this is not trivial, because future
Human-AI interfaces should allow a constant feedback,
whether and to what extent something has been under-
stood, or not. In a human-to-human interaction, this feed-
back is very much provided by facial expressions. Conse-
quently, concepts of “emotion” [41], [42], “emotion detec-
tion” [43] and “emotional interfaces” [44] will become an
important part of future conversational interfaces for ex-
plainable AI [45] and dialog systems [46]. Such features
will become important for these future “explanation in-
terfaces” or however we will call them. One very impor-
tant aspect is to include a key component that has been
used as a standard communication tool between doctors
for centuries: language, i. e. to produce descriptive sen-
tences based on domain ontologies to clarify the decision
of deep learning classifiers, hence to augment the results
with short quantified sentences of natural language [47].

Summarizing, humans will continue to play a special
role in the AI pipeline in the foreseeable future, comple-
menting capabilities of AI due to their genuine human
abilities. The backbone of this approach is interactive ma-
chine learning [48], [49], [50] which adds the component
of human expertise to AI processes by enabling them to
re-enact and retrace the results on demand, e. g. let them
check it for plausibility.

3 Towards Future Human-AI
Interfaces for Multi-Modal
Causability

We can recapitulate that in themedical domainwe need to
include a human-in-the-loop for several reasons: to com-
plement AI with human expertise and conceptual knowl-
edge, to augment the human with AI, and also to keep the
human in control for social, ethical and legal reasons [51].
For all these reasons there is a pressing need for the de-
sign, development, and evaluation of new effective and ef-
ficient Human-AI interfaces. This challenges the Human-
computer interaction (HCI) community: Design guidelines
for human-AI interaction are already underway [52]. More-
over, general principles and design guidelines for interac-
tive techniques have been discussed in the HCI commu-

nity for decades [53], which are now becoming important
again. Lastly, the quest for effective Human-AI interfaces
was boosted recently by the xAI program of DARPA, where
they explicitly emphasized the importance of interactive
“explanation interfaces” [54] and where they emphasized
that understanding (sensemaking) must be facilitated by
interactive guided explanations. This is motivated by the
fact that for a biomedical expert using AI, it is very im-
portant to be able to investigate the independentunderly-
ing factors which influenced the machine aided decision-
making process, taking into account that we cannot al-
ways disentangle dependent factors. That said, decision
paths defined by biomedical experts will capture only a
subset of the features available to train machine learn-
ing models in medical AI. From this reduced feature set
(multi-*omics and clinical parameters), it can be benefi-
cial to build reference classificationmodels based on deci-
sion trees which may reflect the biomedical decision pro-
cess. Suchdecision trees can then act as a referencemodel,
but most importantly, as a benchmark for the reliability of
“black-box” AI models. We need to carefully study the ac-
curacy of such reference models and to investigate their
generalizability regarding heterogeneous patient profiles.
In this context, disease subtypes can be derived. For this
purpose, the development of new and the application of
existing multi-view clustering algorithms [55] can be very
helpful.

A very useful approach to combine various data in or-
der to create comprehensive views of diseases or biological
processes is Similarity Network Fusion (SNF) developed by
Wang et al. [56]. This method solves the integration prob-
lem by constructing networks of samples for each avail-
able data type and fusing these into one single network
that represents the underlying data. The increasing com-
plexity of the biomedical domain and the introduction of
new technologies enable investigations in arbitrarily high
dimensional spaces, practically having millions of differ-
ent properties (including genomics and proteomics, but
also images, patient history, etc.). No single data type can,
however, capture the complexity of all these factors which
are relevant to understand a phenomenon, i. e. a disease.
This calls for integrative methods that combine data from
multiple technologies and provide a comprehensive and
relevant system view [57], [5], [58].

An ideal method must be able to “answer” a biologi-
cal or medical question, i. e. to identify important features
and predict outcomes, by harnessing heterogeneous data
across several dimensions of biological variation. Very
useful in this context isNeighbourhood basedMulti-*omics
clustering (NEMO) [59]. NEMO can be applied to partial
datasets without performing data imputation and works
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in three phases: First, an inter-patient similarity matrix is
built for each *omics data; then the matrices of different
*omics data are integrated into one single matrix; finally
this network is clustered. A very recent approach is Path-
way Graph Kernel based Multi-Omics Approach for Patient
Clustering (PAMOGK) [60], that integrates multi-*omics
patient data with existing biological knowledge on path-
ways. A graph kernel evaluates patient similarities based
on a singlemolecular alteration type in the context of such
a pathway, and to support multiple views, a multi-view
kernel clustering is used. Ameasurement for the predictive
power is the Area under the Curve (AUC). In the context of
explainability/causability, however, only parts of the AUC
are informative. This is mostly due to the fact that we are
often confronted with imbalanced data in the biomedical
domain [61]. Known alternatives such as the partial AUC
cannot be fully interpreted, because they ignore some in-
formation about actual negatives. However, the recently
developed concordant (partial-) pAUC is more useful [62]
andmayhelp tounderstandand interpret parts of theAUC.

Although the above mentioned models perform well,
weare far frombeingable touse themwithindaily biomed-
ical practice as long as the underlying decision paths are
not made visible, and most importantly, understandable
and interpretable for the end-user, becausewe still are con-
frontedwith the “black-box problem” [63]. Here we should
note that the decision-making process can be seen as a se-
quence of steps in which the biomedical expert selects a
path through a network of plausible events and actions.
This goes back to the seminal work of Shortliffe et al. [64]:
Nodes in this tree-shaped network are of two kinds: “de-
cision nodes”, where the expert can select from a set of
actions, and “chance nodes”, where the outcome cannot
be directly controlled by the expert, but is a probabilis-
tic response of the patient to some action taken. For ex-
ample, a physician may choose to perform a certain test
(decision node) but the occurrence or non-occurrence of
complications may be largely a matter of statistical likeli-
hood (chance node). By analyzing a difficult decision pro-
cess before taking any action, it may be possible to delin-
eate in advance all pertinent decision nodes and chance
nodes alongwith all plausible outcomes, plus the paths by
which these outcomes might be reached. To address this
shortcoming, one possibility is to relate the multi-modal
models, which are built on stochastic procedures only, to
a biomedical expert’s referencemodel. This requires inves-
tigatingwhether and towhat extend the correspondingde-
cision paths are reflected and/or covered. This can be done
via “what-if” (counterfactuals) requests to the system, but
also with additional state-of-the-art approaches that are
widely used by the xAI community to date, for example,

popular model-agnostic approaches such as DALEX [65],
LIME [66], or, more recently, optiLIME [67]. All these ap-
proaches can be used for both global explainability (for
model understanding) and for local explainability (for pre-
diction understanding). Every explainer creates a numer-
ical summary and a visual summary and allows for com-
parison of multiple models. To enhance the understand-
ability for the domain expert, this can be augmented via
short quantified sentences on natural language [47]. A big
advantage of the counterfactual generation is that it can
be considered as a post-hoc procedure which can act in-
dependent from any classifier [68]. The resulting counter-
factuals can be modelled as a graph, where features are
defined as nodes and the edges as combination of such
features, which we call “counterfactual paths”. Initially,
such a counterfactual graph may be generated in a purely
data-driven manner. The distance between the counter-
factuals (weighted edges) can be defined as in [69]. In an
ideal setting, the automatic generation of the counterfac-
tual paths is fully reflected by the leaf nodes of the medi-
cal decision trees [70]. To facilitate the human interaction
with the multi-modal machine learning model opens new
ways of interactive Human-AI interface, supporting both
explainability and causability. Here, the guiding idea is
that the biomedical experts are empowered to ask ques-
tions (“why are the cells smaller and closer together”) and
also counterfactual “what-if” questions (“what if the cells
are slightly bigger”). Here a chance is to derive simple-to-
understand decision trees derived from the graph, which
itself can be derived by a decision forest classifier compris-
ing multiple trees derived from the counterfactual classes.
Recent work has shown how to efficiently reduce such a
decision forest to a single decision tree [71], [72] fromwhich
counterfactuals can be easily observed based on the leaf
nodes. Here. the human in the loop will have the opportu-
nity to study this consensus decision tree. and the domain
expert will be able to adopt the modifications to the coun-
terfactual graph accordingly (feedback-loop). It is neces-
sary to visualize relevant input features as well as the un-
derlying explanatory factors, the “decision network”. This
is of course a non-trivial task because such a visualiza-
tion has to be optimized to a) the human visual percep-
tion capability, b) the prior knowledge of the human, and
c) the context of the workflow. This calls for flexible in-
terfaces, taking into consideration existingmethods, algo-
rithms and tools [73], [74], from a) post-hoc interpretable
models and systems, which aim to provide local explana-
tions for a specific decision and making it reproducible
on demand (instead of explaining the whole model be-
haviour), over b) ante-hocmodels, which are interpretable
by design which includes so called glass-box approaches
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[50]. Of course, a lot of further research in the real-world
is needed regarding the technical parameters’ robustness
and explainability.

4 Conclusion

Thanks to the great progress in statistical learning, we are
experiencing an AI renaissance. Available and practical
useable deep learning approaches achieve a performance
that is beyond human level performance – even in the
medical domain. This is a great success and there is no
question that AI will become very important for medicine.
Especially, when considering what humans are not able to
do – but AI can. Nevertheless: correlation is not causation
and contemporary AI models have become so complex
that they are considered as “black-box” approaches. This
makes it hard for domain experts to understandwhy a cer-
tain result has been achieved. The xAI community has de-
veloped a variety of methods for making such approaches
transparent. This constitutes a promising first step, but
while xAI deals with the implementation of transparency
and traceability in statistical black‐box machine learning
methods in the medical domain, there is a pressing need
to go beyond xAI: to reach a level of explainable medicine
we need causability, which encompasses measurements
for the quality of explanations produced by xAI methods
(e. g. heatmaps). Here, very important is the human in the
loop, because (sometimes) a human expert is necessary
to add contextual understanding and experience. This, in
turn, requires new interactive human-AI interfaces, es-
pecially in the medical domain, in which many different
modalities contribute to a result. To support future “ex-
plainablemedicine”, we therefore needmulti-modal caus-
ability. That said, we need interactiveHuman-AI interfaces
which enable a domain expert to ask questions to under-
stand why a machine came up with a result, and to ask
“what-if” questions (counterfactuals) to gain insight into
the underlying independent explanatory factors of a re-
sult. Overall, intensive researchanddevelopment onan in-
ternational level will thus be necessary in to make AI even
more successful and to use medical AI effectively for the
benefit of human health.
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Glossary

Bias inability of an algorithm to represent the true rela-
tionship; High bias can cause an algorithm tomiss the
relevant relations between features and output.

Causal inference the process of drawing a conclusion
about a causal connection based on the conditions of
the occurrence of an effect. Inmedicinewe call the sci-
ence ofwhy things occur etiology (the study of the cau-
sation of pathologies).

Causability is a property of a human (natural intelli-
gence) and a measurement for the degree of human
understanding. Future human-centered AI interfaces
must ensure a mapping between explainability and
causability, i. e. between explanations generated by
an xAImethod and the prior knowledge of the human.

Counterfactual a hypothesis that is contrary to the facts
(similar to counterexample), or a hypothetical state of
the world, used to assess the impact of an action in
the real-world, or a conditional statement inwhich the
conditional clause is false, as “what-if” – this is very
important to enable a human expert to ask such ques-
tions in human-centered AI interfaces.

Counterexample an exception of a proposed general
rule or law and appears as an example which dis-
proves a general statement made.

Explainability motivated by the opaqueness of so called
“black-box” approaches, the ability to provide an
explanation on why a machine decision has been
reached, technically by highlighting the factors which
contributed to the classification result.

Explanation set of statements to describe a given set of
facts to clarify causality, context and consequences
thereof; it is a core topic of knowledge discovery
involving “why” questions, and “what-if” questions
(counterfactuals).

Explicit Knowledge can be explained, e. g. by articulat-
ing it via natural language etc. and can be sharedwith
other people.
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EuropeanGeneral Data ProtectionRegulation (EUGDPR)
Regulation EU 2016/679 – see the EUR-Lex
32016R0679, will make black-box approaches diffi-
cult to use, because they often are not able to explain
why a decision has been made.

Ground truth generally information provided by direct
observation (i. e. empirical evidence) instead of pro-
vided by inference. For us it is the gold standard, i. e.
the ideal expected result (100% true).

KANDINSKY-Patterns an exploration environment used
as “a swiss knife for the study of explainabil-
ity ” [76]– see https://www.youtube.com/watch?v=
UuiV0icAlRs

Robustness a characteristic of a biological system (also
called biological or genetic robustness is the persis-
tence of a certain characteristic or trait in a system un-
der perturbations or conditions of uncertainty.

Tacit Knowledge Knowledge gained frompersonal expe-
rience that is even more difficult to express than im-
plicit knowledge.
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