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1 Table of acronyms and definitions  
 
AI Artificial Intelligence 

CLARUS InteraCtive ExpLainable PlAtform for GRaph NeUral NetworkS 

D Deliverable 

FC FeatureCloud 

FL Federated learning  

GND Gnome Design SRL 

GNN graph neural network 

HFL Horizontal FL  

IID independent, identically distributed  

LRP Layer-wise Relevance Propagation 

MS Milestone 

MUG Medizinische Universität Graz 

Patients In this deliverable, we use the term “patients” for all research subjects. In 
FeatureCloud, we will focus on patients, as this is already the most vulnerable 
case scenario and this is where most primary data is available to us. Admittedly, 
some research subjects participate in clinical trials but not as patients but as 
healthy individuals, usually on a voluntary basis and are therefore not dependent 
on the physicians who care for them. Thus, to increase readability, we simply 
refer to them as “patients”.  

PPI protein-protein interaction 

RI Research Institute AG & Co. KG 

SDU Syddansk Universitet 

UI User interface 

UHAM Universität Hamburg 

UMR Philipps Universität Marburg 

VFL Vertical FL 

WP Work package 

xAI explainable Artificial Intelligence 
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2 Objectives of the deliverable based on the Description of Action 
(DoA)  

The objective of this deliverable is based on the DoA, which incorporates mostly aspects from 
Objective 5 “to design, develop and evaluate end-user centred interfaces to enable the interaction 
of humans with the algorithms developed, and to enable to re-enact and to re-trace in order to explain 
and understand the results in the context of a medical problem”.  

In this technical report D4.7 “Integrated evaluation results for classifier ensembles in a federated 
approach”, MUG presents the work carried out within Task 6 “Ensemble Learning” to develop and 
evaluate classifier ensembles for federated learning, e.g., random forests and ensembles of classifier 
chains, conducted to achieve Objective 5, and to complete MS29 “Evaluation of classifier 
ensembles for federated learning”. In this report, we also describe CLARUS which is short for “An 
Interactive Explainable AI Platform for Manual Counterfactuals in Graph Neural Networks”. The 
evaluation of CLARUS can be found in D 4.8 “Explanation strategies, i.e. post-hoc vs. ante-hoc 
approaches”. 

3 Executive Summary  

MUG has achieved all goals of objective 5, task 6, fulfilled MS 29 and made all algorithms publicly 
available on GitHub. The main contributions are documented in the following scientific publications, 
all of which we made gold open access, freely available to the international research community:  

In (Holzinger et al., 2021), we described explainable graph-neural networks and the human-in-the-
loop with counterfactual explanations. This paper has been extremely well received by the 
international research community and is a highly cited paper in the Science Citation Index of the 
Web of Science. The visions and ideas that we presented have since been largely implemented 
within WP4 and we have them well documented in the following publications: In our work (Pfeifer et 
al., 2022), we mask deep neural network learning with a protein-protein interaction (PPI) network. 
Each patient represents a PPI graph whose nodes can be enriched with patient-specific multi-modal 
genomic features (e.g., mRNA, DNA methylation). Subsequently, the classification has been made 
explainable, i.e. those subnetworks are detected that were relevant for the classification (“disease 
subnetworks"). These subgraphs are the so-called “local spheres” as described in (Holzinger et al., 
2021) and in D4.5 “Framework for Local Sphere privacy aware federated learning on graphs”. To 
ensure a representative basis for comparison with the above methodology, the detection of 
subnetworks was implemented using a random forest (Pfeifer et al., 2022a), because random forests 
are highly relevant in medicine due to their better re-traceability, hence interpretability and 
explainability. Here too, the learning process was masked by a knowledge graph. Consequently, in 
our next work (Pfeifer et al., 2023) we enabled federated learning using the methods mentioned 
above. Here, the knowledge graph is decomposed (partitioned) into relevant subnetworks using 
explainable AI methods (Holzinger et al., 2022a), based on which an ensemble classifier is 
constructed. This ensemble classifier can be efficiently learned in a federated way. At the same time 
the resulting classifier in the form of an ensemble is more interpretable, because the classification 
performance of specific parts of the graph can now be inspected more efficiently. 

Finally, we have designed, developed and evaluated an end-user-centred interface to enable an 
expert end-user to re-enact and to re-trace the results (Beinecke et al., 2022). In this tool called 
“CLARUS” the domain expert can analyse the detected subnets, manipulate them (e.g., delete nodes 
and add nodes) in order to gain insight into the network behaviour, and could finally be integrated 
back into the ensemble classifier. The evaluation and usability study performed is reported in 
Deliverable D4.8 "Explanation strategies, i.e. post-hoc vs. ante-hoc approaches". A summary about 
the main results of task 6 has been published in (Holzinger et al., 2023). 
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4 Introduction (Challenge) 

One of the main challenges encountered in our task was to mask deep neural network learning with 
a protein-protein interaction (PPI) network. In the context of this task, “masking”' refers to 
incorporating a domain-knowledge graph (specifically, a PPI network) into a deep neural network for 
classification. The nodes and the edges of the PPI network are respectively added to the input layer 
of the neural network and used to enrich the features of the data processed by the deep neural 
network (Pfeifer et al., 2022b). This is important because features are key for (machine) learning, 
but also key for (human) understanding and explanation, therefore consolidated features are more 
accurate and robust and fosters trust in the results. Trustworthiness is ensured by both explainability 
and robustness (Holzinger, 2021). 

The first general challenge was that even the most powerful learning methods suffer from the fact 
that it is difficult to retrace, to interpret and thus to explain to a human expert (both the domain expert 
and the machine learning expert) why a certain result was obtained. 

The second general challenge was that the currently best algorithms lack robustness. Even the 
smallest perturbations in the input data can dramatically affect the output, leading to completely 
different results. This is of great importance in virtually all critical domains where we suffer from poor 
data quality, i.e., where we do not have available the independent, identically distributed (IID) data 
we would need for ideal learning. Therefore, robust and explainable, hence trustworthy solutions are 
essential for medical applications (Holzinger et al., 2022b). 

Here, the human-in-the-loop can be of great help, because the human expert can bring in 
(sometimes - of course not always) previous knowledge, experience and common sense (Holzinger 
et al., 2023),  (Mosqueira-Rey et al., 2023), (Wu et al., 2022), (Saranti et al., 2022), (Holzinger et al., 
2019a), (Holzinger et al., 2019b), (Lage et al., 2018), (Holzinger, 2016), (Kieseberg et al., 2015).  

These challenges have serious consequences for EU citizens and organisations, because AI - as 
currently known from the daily press - is a much-discussed topic in the European Union. Although 
AI systems currently remain under relatively controlled environments, it is expected that AI will be 
used on a much larger scale in the coming years. Therefore, the European Commission has 
committed to establishing principles for trustworthy AI and safe use of AI in the digital society (Hamon 
et al., 2020). Consequently, after our first step in making the classification robust, in our next step 
our classification has been made explainable, i.e. those subnetworks are detected that were relevant 
for the classification. We call them “disease subnetworks” and the subgraphs “local spheres'', see 
our previous reports and see (Holzinger et al., 2021) and (Malle et al., 2017).  

In order to guarantee a representative baseline comparison to the above methodology, the 
subnetwork detection was realised by means of a random forest (Pfeifer et al., 2022a). Here, too, 
the learning process is masked by a knowledge graph. Random forests are particularly relevant in 
medicine due to their good interpretability.  

In the work of Pfeifer et al., 2023, we enabled federated learning with the methods mentioned above. 
Here, the knowledge graph is divided into relevant subnetworks using explainable AI, based on 
which an ensemble classifier is constructed. This ensemble classifier can be efficiently learned in a 
federated way. In addition, a user interface was developed (Beinecke et al., 2022) that allows a 
domain expert to analyse and manipulate the detected subnetworks (delete and add nodes) and 
finally reintegrate them into the ensemble classifier. 
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5 Methodology (Theoretical Aspects) 
  
In our task we followed four central topics from  (Holzinger et al., 2021):  (i) explainable AI on graph 
neural networks (GNNs), (ii) federated learning and multi-modality, (iii) knowledge graphs, and (iv) 
human-AI interaction to enable to re-enact and to re-trace to explain and understand the results in 
the context of a medical problem. Consequently, we focused on all of these topics on the medical 
problem of precision medicine (Holzinger et al., 2014), (Rost et al., 2016), (Johnson et al., 2021). 
 
5.1  Explainable AI on Graph Neural Networks (GNNs) 

Graph Neural Networks (GNNs) have revolutionised neural network frameworks with their ability to 
function with point-cloud data sets forming graphs, aka networks, and proteins’ biological functions 
are defined by geometrical network structures (Sverrisson et al., 2021). GNN’s employ learnable 
functions to extrapolate features and patterns from the graph structure, thereby facilitating various 
tasks such as node classification, graph classification, and link prediction (Wu et al., 2020). GNNs 
have shown significant success, particularly in their ability to incorporate domain-knowledge graphs, 
thereby enhancing the interpretability and explainability of Deep Learning generally (Holzinger et al., 
2021). Federated applications of GNNs appear to be organically emerging in several and diverse 
areas, including distributed sensor networks for traffic surveillance, distributed social media 
applications, and inter-hospital collaborations for addressing complex medical challenges. In the 
current era, characterised by an abundance of big data, there are twin challenges: escalating graph 
dataset sizes and increasingly complex GNN architectures.  

These challenges necessitate 1) efficient and 2) privacy-conscious mechanisms for both information 
exchange and computation. An intriguing facet of the current digital medical landscape is that the 
entities involved in communication, be they servers or clients, can themselves be represented as 
graphs. It has been demonstrated that GNN architectures can support federation in this context (Liu 
et al., 2022), (Fu et al., 2022), (Zhang et al., 2022a). Consequently, the full potential of GNNs extends 
beyond their primary role in data analysis, and includes significant contributions to enhancing 
federated solutions. 

Unfortunately, as with neural networks in general, GNN results are not easy to understand and 
interpret. To address this shortcoming, intensive work is currently being done worldwide on GNN 
explainability methods. Examples of these are GNNexplainer, PGExplainer, and GNN-LRP, which 
we carefully examined in the progress of our work:  

GNNExplainer (Ying et al., 2019) provides local explanations for predictions of any graph-based 
model. This can be used for both node classification and graph classification.  

PGExplainer (Luo et al., 2020) is a parameterized modification of the GNNexplainer. Unlike the 
GNNexplainer, the PGExplainer provides model-level explanations that we find useful for graph 
classification tasks.  

GNN-LRP (Schnake et al., 2020) is derived from higher-order Taylor expansions based on layer-
wise relevance propagation (LRP), which is a standard methodology for many applications 
(Lapuschkin et al., 2016). GNN-LRP explains predictions by extracting paths from the input to the 
output of the GNN model that contribute most to the prediction. These paths correspond to walks on 
the input graph. GNN-LRP was developed for node-level explanations and has been modified to 
work in a special arrangement for graph classification (Chereda et al., 2021).  Of particular interest 
is the work presented using a method called CF-Explainer (Lucic et al., 2022). Here, explanatory 
factors can be revealed using counterfactuals. 
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GCExplainer (Magister et al., 2021) is the first GNN explainer that recognizes the learned concepts 
of a GNN. The main idea is to perform clustering after the last aggregation layer and assume that 
each of the clusters corresponds to a human recognizable concept. The user thus has the possibility 
to parameterize the explanation process by the number of clusters and the size of the neighbourhood 
of the explained component. This approach involves the human-in-the-loop and thus has been 
shown to achieve good concept purity and completeness (robustness) (Bodén et al., 2021), 
(Holzinger et al., 2019a), (Lage et al., 2018).  

Moreover, it forms the basis for recent work that makes GNNs explainable by design (explainability) 
by first learning the concepts and then making a concept-based prediction based on that learning. 
This is beneficial in that the opaque reasoning of Graph Neural Networks leads to loss of confidence. 
Existing explanatory tools for graph networks attempt to address this problem by providing post-hoc 
explanations (see our report D4.8), but they fail to make the model itself more interpretable. To 
address this gap, a concept encoder module is used for concept discovery for graph networks. This 
approach makes graph networks explainable by first discovering graph concepts and then using 
them to solve the task (Magister et al., 2022).  

For medicine, something like this is ultra-important because such methodology can facilitate the 
discovery of disease-causing regions in networks and help uncover a subset of candidate features 
organised in disease-relevant network modules that are otherwise difficult or impossible to find. 

This is exactly where the human-in-the-loop concept helps, as interaction with explanations and the 
incorporation of conceptual knowledge can further improve the learning algorithm. 
 
5.2  Federated Learning with GNNs 
 
Federated learning (FL) is an ML approach in which the training data is distributed across multiple 
devices or locations, and the local model training process is performed locally on each device or 
location (Malle et al., 2017).  
 
FL is of course useful in scenarios where the data is sensitive, private, or subject to regulatory 
constraints, such as medical records or financial transactions. Instead of centralising the data and 
running the model training process on a single server or cloud platform, federated learning allows 
the data to remain on individual devices or locations, and only the model updates are transmitted for 
aggregation. This preserves the privacy and security of the data and reduces the risk of data 
breaches or leaks.  
 
FL should not be mixed up with purely decentralised learning, where local models do not 
automatically contribute to each other apart from manually sampling the models and updating the 
hyperparameters (Bellavista et al., 2021); and also not with collaborative learning in various forms, 
where the goal is to share information about internal model building between the involved parties in 
a peer-to-peer manner but keep the local training data confidential.  
 
The local model training process influences and is influenced by a global collaborative training that 
involves the aggregation of predefined entities (weights, performance indicators, embeddings, 
Explainable AI information) of the local models for the construction of an aggregated global model 
that is shared and used among the clients.  
 
The characteristics of this model are based on the exchanged information, the aggregation function 
(which can be fixed or learned), the global loss function, and the topology of the inter-client network 
with or without a central server. In Figure 1, two main approaches for distributed collaborative 
Federated Learning with GNNs are presented (see also Table 1).  
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On the one hand, there is the centralised approach with one central server and several clients that 
contain local GNNs trained in isolation each with their local datasets. The central server is there to 
aggregate predefined entities of the local GNN models and send them back to the local clients so 
that they can use an aggregated GNN.  
 
In this case, the central server has the responsibility of containing information about the clients (their 
identifier and other meta-information) and the aggregation; if the server is compromised by hardware 
failure or attack, then the federation cannot be accomplished. Clients can communicate with each 
other in principle, but not in the context of federation. 
 
The second approach is decentralised, where no central server exists, nor is there a client that has 
different functionality from the others. All clients can exchange information with each other in general; 
nonetheless, the topology of their network is not always fully-connected. Each of the clients must 
contain information about the topology of the client network and ideally know when a client is 
compromised, deleted or added to the network; this can be achieved with self-attention during the 
global training (Liu et al., 2022). The decentralised approach is not going to be affected as much if 
one of the clients has a hardware failure or is compromised, but that means that this deficiency might 
also be unnoticed for a longer period. 
 
Both those approaches have advantages and disadvantages with respect to privacy and non-IID- 
distributed data among the clients, which can be summarised in the following table: 
 
Table 1. Advantages and disadvantages of centralised vs. decentralised Federated Learning for 
GNNs (Liu et al., 2022). 

 
Federated GNN use cases consist - as also described in section (4) - of the distribution of nodes, 
features (Hu et al., 2018) or subgraphs; this also depends on the task that is accomplished. It has 
been known for some time that features for one modality are learned better when multiple modalities 
are present at the time of feature learning. In multimodal learning, information is from multiple 
sources. Often, several different modalities contribute to a result. We are motivated by (Holzinger et 
al., 2019c), (Acosta et al., 2022), (Ektefaie et al., 2023), which brings us directly to knowledge graphs.  
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Figure 1. Federated centralised vs. federated decentralised GNNs (Liu et al., 2022). 
 
Federation itself has evolved to be a broad topic; although the main principles are firm, different 
implementations realise the same goals. What is similar in all instantiations is that there is data 
isolation to some degree and that the information being exchanged should be minimal and privacy-
preserved (i.e. encrypted). Furthermore, the IDD scenario is rather the exception than the norm; 
several frameworks need to simulate it before the actual deployment (Ortega et al., 2018). 
Nonetheless, collaboration has proven to be fruitful in most cases, since no one dataset contains all 
representative information about a task and ML solutions lack the ability of systematic generalisation 
and out-of-distribution (OOD) prediction even when trained with rich and diverse datasets. 
 
In the more concrete case of Federated GNN, there are mainly three possibilities (He et al., 2021), 
as also shown in Figure 2. In the graph-level FL, each client has its graph dataset and potentially 
also a GNN. In the subgraph-level FL, each of the clients has one part of the graph and in the node-
level FL nodes of one graph are distributed among clients. 
 

 
Figure 2. Three settings of GNN federation (He et al., 2021) 
 
This is following the principles of Horizontal FL (HFL) and Vertical FL (VFL). In the first case, the 
features of the graphs of all clients are quite similar, but their sample characteristics (data 
distribution) differ substantially. The opposite occurs in the second case. Both of them are viable 
scenarios of FL and need to be addressed either with centralised or decentralised FL. In the 
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centralised strategy, it is typical that there are several synchronous or asynchronous events 
containing parts of the dataset (as shown in Figure 1, and one server is responsible for the federation 
(which is also called aggregation). In the decentralised case, many clients exchange information with 
each other; this is more robust as far as privacy attacks are concerned but has substantial 
communication and organisational overhead. 
 
Regardless of the client-server topology, there is an inter-client graph that can either be known a 
priori or can be discovered through self-attention mechanisms (this can also be helpful in the case 
where new clients enter the client-server topology). There are several ways to implement federation 
for all four combinations of FL possibilities, which in some centralised cases even needs alternating 
local and global optimization. Each of them has different convergence guarantees (if any) and 
individual countermeasures for the expected privacy attacks. 
 
What is more, the client-server topology or the inter-client graph (in the decentralised case), have 
also a graph structure. Although the basic aggregation procedure (both in centralised and 
decentralised versions) is the averaging weighted by the number of samples in each client 
(McMahan et al., 2017), there are other types of more sophisticated federations. Inspired by the 
ideas of learned aggregation functions of GNNs themselves, more sophisticated handling of weights 
and biases were invented, as seen in Figure 3. 

 
Figure 3. FedGraphGNN learned aggregation procedure for federation, as presented in (He et al., 
2021). 
 
The whole aggregation functionality can be solved by a GNN that takes as input the topology along 
with weights, gradients or even embeddings (provided they've been sent encrypted) as node and 
edge features, and returns new parameters in each federation round. Whether the topology is known 
beforehand or is changing, GNN-assisted FL is an emerging area of research (Liu et al., 2022). In 
many real-world application cases, the assumption is that clients that are  “close” have similar data, 
thereby their local GNNs will probably also have similar parameters. In this case, the result of the 
trained GNN is practically the federation function, which goes beyond FedAVg (McMahan et al., 
2017) and (Asad et al., 2020) possibilities. 
 
5.3  Knowledge Graphs 
 
Knowledge graphs (KG) are a type of database that represents knowledge in a structured, 
interconnected format, using a graph-based data model. It typically consists of a set of nodes (also 
called entities) that represent concepts or things, and a set of edges (also called relationships or 
properties) that connect the nodes and represent the connections or interactions between them. 
Many phenomena from nature can be represented in graph structures, whether at the molecular 
level (e.g. protein-protein interaction) or at the macroscopic level (e.g. social networks) and various 
methods from network science (Dehmer et al., 2017) and computational topology (Holzinger, 2014) 
can be applied. Some of the most successful application areas of machine learning and knowledge 
extraction in recent years can be seen as learning with graph representations (Veličković, 2023). 
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In a knowledge graph, each node and edge can have additional attributes or metadata associated 
with it, providing additional information or context about the node or edge. This metadata can include 
labels, descriptions, categories, or other semantic information. Knowledge graphs are often used to 
represent information from diverse sources and domains in a multi-modal manner. They can be used 
to represent both factual knowledge (such as the properties of objects or events) and conceptual 
knowledge (such as the relationships between abstract concepts). Knowledge graphs are also used 
as a foundation for various applications, such as natural language processing, semantic search, 
recommendation systems, and data integration. They enable efficient querying and reasoning about 
complex, heterogeneous data, as well as support the development of intelligent agents that can 
reason and learn from the knowledge represented in the graph (Hamilton et al., 2018). KG's are very 
useful for explainability and explainable AI methods based on counterfactual queries to the trained 
GNN models are very promising. 
 
5.4  Human-in-the-loop 
 
Theoretical aspects of CLARUS:  
 
CLARUS is currently not yet federated, but has the potential that every client has this CLARUS 
platform and  this would then fulfil the federated human-in-the-loop. 
 
Human-in-the-Loop (Holzinger, 2016) refers to the process of involving a human expert interactively 
in the machine learning (ML) process to provide feedback, guidance, or even corrections to the 
model. The human is an integral part of the ML pipeline, interacting with the model/algorithm to 
improve its performance and ensuring that it aligns with the desired goals and values. This approach 
is useful in scenarios where the data is complex, ambiguous, or subject to change, and where the 
model's performance can benefit from human expertise or even from the experts' subjective 
judgement. This is because sometimes - of course not always - the human expert has domain 
knowledge, experience and contextual understanding, in German ”Hausverstand”' - what the best AI 
algorithms are lacking today. An additional benefit is that the human-in-the-loop approach can also 
improve the transparency, interpretability, and fairness of machine learning models, as it allows for 
human oversight and intervention in cases where the model produces biased or undesirable results. 
However, the human-in-the-loop approach, on the other hand, has drawbacks as it can be time-
consuming, expensive, and potentially introduce bias or subjectivity into the modelling process, so it 
is important to carefully design and evaluate the interaction between the human and the model. 
 
The aforementioned explainable AI methods can facilitate the discovery of disease-causing regions 
within the networks thereby contributing to uncovering a subset of candidate features organised in 
disease-relevant network modules. Such methods can be used for validation of their applicability to 
the biomedical domain, fostering better decision-making through interacting with explanations via 
the human-in-the-loop approach, and there are numerous successful examples (Teso & Kersting, 
2019), (Brueckert et al., 2020), (Schramowski et al., 2020), (Baur et al., 2020), (Bodén et al., 2021). 
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6 Results 
 
6.1  Knowledge Graph 
 
GNNs provide a crucial benefit of enabling the integration of knowledge graphs (Ji et al., 2021). This 
implies that both ontologies and PPI networks can be effectively incorporated into the algorithmic 
pipeline, as highlighted in previous research (Staab & Studer, 2010), (Kulmanov et al., 2020), (Liu et 
al., 2009), (Jeanquartier et al., 2015). 
This also enables the integration of human experience, conceptual knowledge, and contextual 
understanding into machine learning architectures, which is a notable advantage. This so-called 
“human-in-the-loop” or “expert-in-the-loop” approach can, in some cases, lead to more robust, 
reliable, and interpretable results (Holzinger, 2016), (Holzinger et al., 2019), (Hudec et al., 2021). It 
is worth noting that the inclusion of a domain expert does not guarantee success in every instance. 
However, the incorporation of such expertise can contribute to the attainment of the most critical 
goals of the AI community, namely, the development of robust, explainable and trustworthy solutions 
(Holzinger et al., 2022b). These objectives are essential in ensuring the practical and ethical 
applications of AI in various fields and are meanwhile mandatory e.g. in the European Union. In WP4 
knowledge graphs are a key element to make machine learning more interpretable. 
 
6.2  Disease Subnetwork Detection 
 
In a publication about GNNSubNet (Peifer et al., 2022b), we presented a novel method for disease 
subnetwork detection using protein-protein interaction (PPI) networks and explainable GNNs. Our 
method leveraged the PPI knowledge to enable more reliable and biologically meaningful learning 
trajectories compared to classical deep learning approaches. The nodes of the induced PPI network 
are enriched by biological features from various modalities, such as gene expression and DNA 
methylation. We applied our proposed method to patients with kidney cancer and demonstrated its 
ability to detect disease subnetworks. The developed methodology is implemented within our GNN-
SubNet Python package, freely available on GitHub (https://github.com/pievos101/GNN-SubNet). In 
addition, we enhance ensemble learning based on the detected networks. This makes the classifier 
more robust, but also more interpretable (Pfeifer et al., 2023). Ensemble-learning with GNNs is 
implemented within our Ensemble-GNN Python package (https://github.com/pievos101/Ensemble-
GNN).  
 
Moreover, as a reliable baseline, in terms of classification performance and overlay interpretability, 
we have developed the software package DFNET (https://github.com/pievos101/DFNET) (Pfeifer et 
al., 2022a), which implements a network-guided random forest to derive an ensemble classifier 
based on any induced knowledge-graph. However, in a federated case, a local random forest would 
need to share the exact split values of its nodes. This is of much concern and  was one of the reasons 
why we further developed federated solutions based on deep GNNs. The shared parameters among 
clients in that deep learning setting are more secure in terms of privacy.   
 
6.3  Explainability 
 
The classification of Part 1 has been made explainable, i.e. those subnetworks detected that were 
relevant for the classification (“disease subnetworks”) - subgraphs aka “local spheres”. For this 
purpose, we have developed a modified version of the GNNexplainer (Ying et al., 2019) to compute 
global explanations. This is realised by sampling patient-specific input graphs while optimising a 
single-node mask. From these values, edge weights are calculated and assigned to the edges of the 
PPI knowledge graph. Finally, a weighted community detection algorithm infers the relevant 
subnetworks. 
 

https://github.com/pievos101/GNN-SubNet
https://github.com/pievos101/Ensemble-GNN
https://github.com/pievos101/Ensemble-GNN
https://github.com/pievos101/DFNET


 
D4.7 - Integrated evaluation results for classifier 
ensembles in a federated approach 
  

 
 

 

 
 
This project has received funding from the European Union’s Horizon 2020 research 
and innovation programme under grant agreement No 826078. 

 
Page 15 of 25 

 

Furthermore, model-agnostic counterfactual explanations and their associated counterfactual paths 
can be generated using our cpath software library (https://github.com/pievos101/cpath). The 
underlying algorithm subsequently samples nodes from the induced knowledge graph and 
permutes/shuffles the associated features. The procedure is repeated until a certain number of 
outcome classes swap to the other class. The path to that swap is stored. Multiple such paths build 
a counterfactual graph, which can be explored to better understand the black-box model in place. A 
scientific paper is in progress; the corresponding software, however, is already available from GitHub 
under an MIT licence.  
 
6.4  Explainable Federated Learning with GNNs 
 
In recent work (Pfeifer et al., 2022c), we have enabled federated learning with the methods 
mentioned above.  
 
During this project, we have learned that biomedical knowledge graphs can still be too large to be 
explored by a domain expert. To address this shortcoming we have developed a novel approach 
where the knowledge graph is divided into relevant subnetworks using explainable AI, based on 
which an ensemble classifier is constructed. This ensemble classifier can be efficiently learned in a 
federated way, and at the same time is more interpretable.  
 
The main idea of the ensemble federation is depicted in Figure 4 and Figure 5. Each client contains 
several graphs and each of those graphs represents a patient. The values of the nodes and edges 
are different in general (as depicted by the different colours of the nodes in the upper part of Figure 
4), but the structure of the graphs is the same. Those graphs can be classified by a GNN and the 
GNN-SubNet method (Pfeifer et al., 2022b) can compute a set of relevant subgraphs for this 
classification. GNN-SubNet concentrates on providing the relevant structure or topology only; 
therefore the subgraphs are depicted with white in the middle of Figure 4. The concrete values of 
the nodes and edges are transferred in a third step though from the original graphs (upper part of 
Figure 4) to the concrete subgraphs that have the topology of the relevant subgraphs and values 
overtaken from the original graph (lower part of Figure 4). By creating a new dataset for each 
discovered relevant subgraph where its structure is repeated and the values are taken from the 
original graph of all the patients in the client, a separate GNN is trained. The predictions of all those 
GNNs are input to a majority vote procedure that - in its non-federated version - has an acceptable 
local performance. 
 
The federation is depicted in Figure 5 and follows a decentralised strategy. The clients use local 
GNNs of their peers in the inter-client network, that were created with similar logic but were trained 
with graphs having different topologies - since the relevant subgraphs for each client are expected 
to vary in general. There is no exchange of the discovered relevant topologies of each client, only 
the GNN parameters are transferred - which is as far as privacy is concerned less revealing. The 
majority vote over all those GNNs provided a better performance over each client's test set, but not 
over a test set that was isolated from all clients, as shown in (Pfeifer et al., 2023). The scenario of 
non-IDD data has to be simulated in future work, by including imbalanced distribution of data and 
potentially explicitly defining different feature distributions in the clients (Ortega et al., 2018). 
 
Lastly, the discovered relevant topologies can also be subject to changes driven by human users 
through the CLARUS UI, changing the ensemble subgraphs of the local GNNs, and by that the whole 
federation process. 
 
The described method for ensemble-based federated learning on graphs  is implemented within our 
Python package Ensemble-GNN, freely available on GitHub. Moreover, the Ensemble-GNN 
software is integrated within the  FeatureCloud platform (see https://github.com/pievos101/fc-
ensemble-gnn). 

https://github.com/pievos101/cpath
https://github.com/pievos101/Ensemble-GNN
https://github.com/pievos101/fc-ensemble-gnn
https://github.com/pievos101/fc-ensemble-gnn
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Figure 4. The use of GNN-SubNet in one client, containing a set of graphs for classification. This 
method extracts a list of relevant subgraph structures (topologies) and uses them by filling the 
corresponding values of nodes and edges from the original graphs. The newly created datasets are 
used to train local GNNs and make predictions which are aggregated by majority voting (Holzinger 
et al., 2023). 
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Figure  5. Depiction of the federated learning of Ensemble-GNN. The late fusion of exchanged 
GNN's predictions through voting is the way the federation is driven by the result of the xAI method 
(Holzinger et al., 2023). 
 
 
6.5  Centralised Federated Learning with xAI and Human-in-the-Loop 
 
The main goal of the federation is to create an AI model that distils knowledge from diverse datasets, 
that share some pre-defined commonalities either in the feature space (Horizontal FL) or in the data 
space (Vertical FL). One characteristic example in the medical domain is the existence of medical 
records for different patients in different hospitals. Provided that the data are gathered to diagnose 
the same disease, one can fairly assume that all hospitals gather similar information. Nevertheless, 
one cannot completely exclude a situation where a hospital or a doctor decides to gather more or 
different information than the others. This creates a situation where the number of input features of 
the AI model is not the same among all hospitals. Furthermore, the number of samples 
(corresponding to one case or one patient) of each hospital is different; particularly for the cases 
where a small dataset is gathered one would like to have a more powerful AI model, which is not 
possible unless one has enough data. 
 
Due to privacy constraints, it is not possible to share information between the hospitals in general. 
Due to the General Data Protection Regulation (GDPR), personal data cannot be shared. 
Nonetheless, it is less risky to send information about the AI models, such as weights, gradients, or 
embeddings although it has been shown that one can extract valuable information even from those, 
in the case of a successful attack (Geiping et al. 2020), (Hatamizadeh et al., 2023), (Chen et al., 
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2022). Since there are ways to counteract those attacks (Huang et al., 2021), (Zhang et al., 2022b), 
(Eloul et al., 2022), this research work concentrates on the simulation of the information exchange 
containing GNN weights, gradients and embeddings, and the aspects of privacy are handled by 
colleagues in the FeatureCloud Project (WP8 “Testing and Evaluation in Clinical Translation”) - as 
they are taken over for the other AI models in the FeatureCloud App Store as well. 
 
The basic model of centralised federation applied in the Counterfactuals platform is presented in 
Figure 6. It is composed of several clients, each of them operating independently from each other, 
and one central server. Each of the clients contains its dataset and its own GNN model, although 
there must be some pre-agreement between them as far as the similarities and differences of the 
datasets are concerned. It is expected that the size of the graph and the number of the features of 
each dataset can also vary; for this task which encompasses graph classification, different graph 
sizes are not a problem - as long as the type of nodes and edges is the same, meaning that the 
features have to be equal (up to their values). The platform does not support heterogeneous graphs 
yet; this is a prerequisite for federating graph datasets of different types of nodes and edges. For the 
basic federation scheme to work, all clients and the server have to have the same GNN architecture. 
 

 
 
Figure 6. Federated Learning Overview: Each hospital has its own dataset with different 
characteristics, but also some similarities with the others. 
 
As also seen in Figure 6, it is expected that in the first round, all clients train their own local GNN, 
each of them with their dataset. The weights of the first GNN are described by W_1, the ones of the 
second W_2 and so on. At some particular point which can either be a) periodic or b) asynchronous, 
the weights of one or more of those GNNs are sent to the server. There, they will be averaged, as 
described in the research work (McMahan et al., 2017), and the resulting weights W are going to be 
sent back to each of the clients. The GNN of each client can use the weights W and replace its 
weights with it, or not. 
 
Typically after the adoption of W weights one detects lower performance in each of the individual 
client GNNs, which is expected since those weights are not tailored to the distribution of the local 
dataset. Nevertheless, the adoption of those weights prepares the GNN for adequate generalization 
in cases where similar patients/diseases (whatever the graph represents) as the ones presented to 
other clients, occur in the future - even if there are not as many as the ones the other models from 
other clients have been trained to. One example scenario would be as follows: a patient coming to 
hospital 1 that has similar characteristics with several patients of the other hospitals will highly likely 
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not have a good diagnosis with the first GNN, if he/she is different from the patients already 
registered in hospital 1. Even re-training with this one new data sample in the dataset will not be 
enough to influence the weights of the first GNN towards a direction where this (more or less) outlier 
will need for producing a correct prediction in the output. What is more, there are cases reported 
where the central GNN model weights W were proven to be better - as far as performance goes - 
than the local GNN model (He et al., 2021). The reasons for that are currently unknown, they could 
be probably uncovered through xAI methods and they are a very interesting direction for future work. 
 
One fundamental difference of the approach with the use of the xAI Counterfactuals platform is that 
the model parameters change only after retraining; this is decided by a human user and it does not 
occur because some new patient or new disease information has entered or was removed from the 
local dataset. Those two processes both occur asynchronously. Two strategies can be developed: 
either the weights are gathered periodically (even if for some local clients they haven't changed at 
all - one can ”catch” it with a request) or each time a client retrains, after the retrain is finished, the 
weights can be sent to the server and a new average can be computed. 
 
The scenario of different hospitals needs to be simulated; to achieve this, the dataset that we already 
work with (PPI) needs to be split in a way that simulates non-identically independent (non-IDD) 
distributed data (Ortega et al., 2018). That means that the balance of each of the client datasets 
needs to differ. Since the task is a binary classification, it must be ensured that there are local 
datasets containing f.e. 70% of their data belonging to class 0 and 30% of their data belonging to 
class 1, but also other ones having f.e. 60% of their data belonging to class 1 and 40% of their data 
belonging to class 0. The logic of creating this imbalance and the number of clients should be 
configurable. This is the most fundamental type of non-IDD simulation for the data distribution; in a 
future step, there is the need to synthetically generate non-IDD topology data (Liu et al., 2022). 
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7 Conclusion 

MUG has successfully accomplished the objectives set forth, meeting expectations for Objective 5, 
Task 6, and delivering on MS 29. All developed algorithms have been shared openly on GitHub for 
the benefit of the international research community. 

Critical contributions have included the description and development of explainable graph-neural 
networks and the human-in-the-loop concept involving counterfactual explanations. These 
developments have been recognized and frequently cited by the international research community, 
leading to widespread implementation of these visions and ideas within related work. 

Innovative work has also been conducted in the field of deep neural network learning, specifically in 
relation to protein-protein interaction (PPI) networks. By masking the learning process with a PPI 
network, patient-specific multi-modal genomic features could be included, thereby improving the 
classification process. This process was rendered explainable by detecting relevant subnetworks for 
the classification, also known as "disease subnetworks". 

For a more robust comparison, subnetwork detection was also performed using a random forest 
methodology. This approach was chosen for its importance in the medical field due to its 
interpretability and explainability, and the learning process was masked by a knowledge graph. 

Building upon this work, federated deep learning on graphs was enabled by decomposing the 
knowledge graph into relevant subnetworks. This approach allowed the construction of an ensemble 
classifier that could be learned in a federated manner. The resulting ensemble classifier offers 
greater interpretability by allowing for more efficient inspection of the classification performance of 
specific parts of the graph. 

Finally, an end-user-focused interface, known as "CLARUS," was designed and developed. This tool 
allows expert users to re-enact and re-trace results, analyse detected subnets, and manipulate them 
to gain insights into network behaviour. The usability and evaluation study of this tool has provided 
further valuable insights, and it has been integrated back into the ensemble classifier. All major 
outcomes and findings have been summarised and shared openly with the international research 
community.  
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