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1 Table of Acronyms and Definitions  
 
BRCA Breast Invasive Carcinoma 

CV Cross-Validation 

D Deliverable 

DL Deep Learning 

DNA Deoxyribonucleic Acid 

GWAS Genome-Wide Association Studies  

f federated 

FL Federated Learning 

GTEx Genotype-Tissue Expression (GTEx) project 

HTTPS Hypertext Transfer Protocol Secure 

ILDP Indian Liver Patient Dataset 

ML Machine Learning 

Patients In this deliverable, we use the term “patients” for all research subjects. In 
FeatureCloud, we will focus on patients, as this is already the most vulnerable 
case scenario and this is where most primary data is available to us. Admittedly, 
some research subjects participate in clinical trials but not as patients but as 
healthy individuals, usually on a voluntary basis and are therefore not dependent 
on the physicians who care for them. Thus, to increase readability, we simply 
refer to them as “patients”.  

RF Random Forest 

RI Research Institute AG & Co. KG 

RMSE Root-Mean Squared Error  

SBA SBA Research Gemeinnützige GmbH 

SHARE Survey of Health, Aging and Retirement in Europe 

SMPC Secure Multi-Party Computation 

SNP Single Nucleotide Polymorphism 

SVA Surrogate Variable Analysis  

TCGA The Cancer Genome Atlas 

UHAM Universität Hamburg 

WP Work package 
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2  Objectives of the Deliverable based on the Description of Action 
(DoA)  

 
This deliverable, evaluation of federated vs. non-federated machine learning, is tightly tied to the 
task 4 of WP 7, “Evaluation”, where we test federated machine learning using publicly available data 
and clinical trial data, comparing its performance to non-federated methods while ensuring data 
privacy and security. D7.6 is also related to the objective 4 of WP7, to implement automatized 
measures for evaluating the overall strategy of FeatureCloud by demonstrating that the performance 
of federated machine learning (in terms of accuracy) is comparable to the performance of traditional 
cloud-based approaches. 
 
 
3 Executive Summary  
 
This deliverable demonstrates the successful evaluation of federated applications in the 
FeatureCloud platform by comparing the results with corresponding non-federated models. 
Therefore, various applications like Flimma [1] (see sections 4.2), sPLINK [2] (see sections 4.1), 
Deep Learning [3] (see sections 4.3) are implemented as FeatureCloud apps (see sections 4.2.2, 
4.1.2) and tested on different data. In the deliverable, we exemplary show it for the following datasets: 
The Cancer Genome Atlas (TCGA) Breast Cancer (BRCA) dataset [4] (see sections 4.2.1, and 5.2), 
the SHIP dataset [5] (see sections 4.1.1 and 5.1), and Survey of Health, Aging, and Retirement in 
Europe [6] (see section 5.3).  
 
 
4 Introduction (Challenge) 
 
Federated Learning (FL) emerged as a solution for respecting user privacy laws while enabling 
access to a wide range of distributed data for machine learning and data analysis approaches. 
Federated models are supposed to yield comparable results to the state of the art centralized 
approaches in a federated fashion while addressing various challenges like data heterogeneity, 
imbalance data, and at the same time requiring additional privacy enhancing technologies. In that 
regard, we designed and implemented federated applications inside the FeatureCloud ecosystem to 
test the comparable results to non-federated models in the FeatureCloud platform. Accordingly, in 
this deliverable, we will demonstrate federated machine learning, deep learning, and data analysis 
models, i.e., applications in FeatureCloud App Store, that achieve state-of-the art results in federated 
fashion on a variety of fields and data domains. We will cover three major peer-reviewed 
publications, sPLINK [2], Flimma [1], and FeatureCloud [3], to demonstrate the FeatureCloud 
platform is able to provide a solid solution for privacy concerns in federated fashion. In fact, in our 
endeavor to compare non-federated machine learning against corresponding federated applications, 
in detail. Meanwhile, we consider different simulated data heterogeneity levels and imbalanced data, 
and privacy considerations, to showcase the capabilities of FeatureCloud solution to address crucial 
challenges in Federated Learning. 
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5  Methodology 
 
In this deliverable, we will provide an overview of a series of applications (based on peer-reviewed 
publications) that are integrated in the FeatureCloud platform for conducting federated collaboration 
to deliver results in various federated settings that are comparable to non-federated results. In the 
following subsections, we will demonstrate how sPLINK, Flimma, and in general FeatureCloud 
applied different methods while considering privacy issues in various fields (Table 1). We will 
summarize some of the applications that are implemented in the FeatureCloud ecosystem and 
manage to achieve results that are comparable to non-federated results, but in a federated fashion. 
 
For evaluation of applications in the FeatureCloud platform, we have implemented a series of 
evaluation apps that calculate metrics based on model predictions that can, for example, be used to 
compare the federated vs non-federated results. As it is mentioned in Table 1, the apps Evaluation 
(Classification), Evaluation (Regression), and Evaluation (survival) are available in the App Store. 
Some applications have built-in model evaluation steps, such as the deep learning application.  

 
5.1   sPLINK 
 
sPLINK is a hybrid federated tool for privacy-aware, i.e., the raw data is not shared with third parties 
[2], genome-wide association studies (GWAS). sPLINK is initially implemented based on the HyFed 
[14] framework. HyFed (https://github.com/tum-aimed/hyfed) is a hybrid federated framework for 
privacy-preserving machine learning. It is designed to enhance the privacy of federated learning 
while maintaining the utility of the global model. HyFed provides developers with a generic API to 
develop privacy-enhanced algorithms and supports both simulation and federated operation modes. 
 
sPLINK consists of four main components: a web application for configuring study parameters, a 
client for computing local parameters and sharing them, with additional noise added, a compensator 
for aggregating noisy values, and a server for computing global parameters. Unlike PLINK, sPLINK 
ensures privacy by keeping private data within each site and not revealing local parameter values to 
other parties. It is computationally efficient and supports multiple association tests. sPLINK offers 
advantages over meta-analysis approaches in terms of usability and robustness against data 
heterogeneity. It is easier to use, as clients only need to accept an invitation and select their datasets. 
It also produces consistent results even with imbalanced phenotype distributions or heterogeneous 
confounding factors, unlike meta-analysis tools that may lose statistical power in such scenarios. 
sPLINK uses Secure Multi-Party Computation (SMPC) for further enhancing the privacy while 
managing to deliver comparable results to centralized analysis and meta- analysis. 
 
As it is shown in Figure 1, (1) The coordinator creates a new project through the WebApp component 
and (2) invites a set of cohorts to join the project; (3) the cohorts join the project and select the 
dataset using the client component. The project is started automatically, when all cohorts joined. The 
computation of the test results is performed in a an iterative manner, where the clients (4) obtain the 
global parameters from the server, (5) compute the local parameters, mask them with noise, and 
share the noise and noisy local parameters with the compensator and server, respectively; (6) the 
compensator aggregates the noise values and sends the aggregated noise to the server; the server 
calculates the global parameters by aggregating the noisy local parameters and the negative of the 
aggregated noise; (7) after the computation is done, the cohorts and coordinator can access the 
results. All communications are performed in a secure channel over HTTPS protocol. The cohorts 
can use Linux distributions, Microsoft Windows, or MacOS to run the client component. 
  

https://github.com/tum-aimed/hyfed
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Table 1. List of applications that were implemented and used in the FeatureCloud platform: All 
applications delivered comparable results to best achievable results by their non-federated 
counterparts [2]. 

Application Type Description 

Ada boost Machine learning Classification model based on boosting trees 

CACS forest Machine learning 
 

Random forest classifying patients into their 
CACS 

Cox PH model Survival analysis Survival regression based on the “lifelines” library 

Cross-validation Preprocessing Local splits for a k-fold cross-validation 

Deep learning Analysis Deep neural networks implemented in PyTorch 

Evaluation 
(Classification) 

Evaluation Evaluation with various classification metrics 
(e.g., accuracy) 

Evaluation 
(Regression) 

Evaluation Evaluation with various regression metrics (e.g., 
mean squared error) 

Evaluation (survival) Evaluation Evaluation of survival or time-to-event predictions 

Flimma Differential 
expression 

Differential expression analysis based on limma-
voom 

Graph-guided random 
forest 

Machine learning Random forest classification, regression, and 
survival based on graphs 

Kaplan-Meier  Estimator Survival analysis, Survival function estimation, 
and log-rank test 

Linear regression Machine learning Regression model 

Logistic regression Machine learning Classification model 

Nelson-Aalen estimator 
 

Survival analysis Hazard function estimation and log-rank test 

Normalization Preprocessing Standardizing input data 

One-hot encoder Preprocessing One-hot encoding for categorical variables 

Random forest Machine learning Classification and regression model based on 
decision trees 

Random survival forest Survival analysis Survival prediction based on scikit-survival 

SVD Machine learning SVD for dimensionality reduction 

sPLINK GWAS fGWAS based on PLINK 

Survival SVM Survival analysis Survival prediction based on scikit-survival 
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Figure 1. Architecture of sPLINK [2] 
 
5.1.1   Datasets 
 
sPLINK is applied on the SHIP dataset [5], accessible to researchers after completing a web-based 
request form and approval, the COPDGene dataset (http://www.copdgene.org/.), publicly available 
through dbGaP accession number phs000179.v1.p1., and the FinnGen [13] dataset, available for 
researchers by requesting access to the FinnGen Sandbox environment. 
 
The SHIP dataset [5] refers to the Study of Health in Pomerania, a population-based cohort study 
conducted in Northeast Germany. The dataset includes information on various health-related factors, 
including genetics, lifestyle, and medical history. The FinnGen dataset is a large-scale research 
project that aims to identify genetic variants associated with various diseases and health-related 
traits in the Finnish population. It includes genomic data from over 500,000 individuals and is 
available for researchers by requesting access to the FinnGen Sandbox environment after 
completing training on how to deal with personal data and passing an exam  
about data security. 
 
Table 2. Description of datasets used in sPLINK [2]. SNP, Single Nucleotide Polymorphism. 

Dataset  # Samples  # SNPs  Adjustments  Phenotype 

SHIP 3699  ∼5M  Sex, age, smoking 
status, 
daily alcohol 
consumption 

SLA b, dichotomous (75th 
percentile, 934 cases, 2765 
controls) 
SLA, quantitative, 
Mean ± SDc 1.23±0.3 

COPDGene 5343 ∼600K Sex, age, smoking 
status, 
pack years of 
smoking 

COPD e, dichotomous, 
(2811 cases, 2532 controls) 
FEV1 f, quantitative, 
Mean ± SD 2.993±0.635 

FinnGen 135,615 ∼ 1M Sex and age  Hypertension, dichotomous, 
(34,257 cases, 
101,358 controls) 

 

http://www.copdgene.org/
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Table 3. The SHIP case study [2].  

Association test Chi-square Logistic 
regression Linear regression 

Split1 Sample size 229 | 712 | 941  229 | 712 | 941  941 

# of SNPs 5070067 5070067 5070067 

Split2 Sample size  276 | 768 | 1044   276 | 768 | 1044  1044 

# of SNPs 5062964 5062964 5062964 

Split3 Sample size  245 | 761 | 1006   245 | 761 | 1006  1006 

# of SNPs 5070192 5070192 5070192 

Split4 Sample size  184 | 524 | 708   184 | 524 | 708  708 

# of SNPs 5077381 5077381  5077381 

Aggregated Sample size 934 | 2765 | 
3699  

934 | 2765 | 
3699  

3699  

# of SNPs 4878280 4878280 4878280 

 
5.1.2   sPLINK FeatureCloud App 
 

sPLINK is published as a certified app in FeatureCloud App Store (see Figure 2.), where it is 
documented how it can be used with sample data and in a federated collaboration. sPLINK app 
supports three algorithms: Chi-square, Linear Regression, and Logistic Regression.  
 

 
Figure 2. sPLINK app in the FeatureCloud App Store 

For more information on how to use sPLINK with different algorithms, e.g., Chi-Square or Linear 
Regression, please visit the public GitHub repository at: https://github.com/FeatureCloud/fc-sPLINK 

https://github.com/FeatureCloud/fc-sPLINK
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5.2   Flimma 
 
Flimma [1] is a privacy-aware tool for differential expression analysis that implements a federated 
version of the limma-voom workflow. It operates on distributed cohorts without revealing sensitive 
data and uses a hybrid federated approach to hide local parameters from the server. Flimma was 
tested on two datasets, including a breast cancer expression dataset from TCGA [4] and a skin 
dataset from GTEx (https://gtexportal.org/home/datasets). It is robust to technical batch effects and 
models batch effects by adding binary covariates to the linear model. 
 

 
Figure 3. Gene expression analysis in case of multi-center studies. Bold arrows show the exchange 
of raw data, dashed arrows the exchange of model parameters or summary statistics. Gray areas 
highlight different physical locations [1]. 
 
 
As Figure 3. shows, Flimma used SMPC as a privacy enhancing technique for boosting privacy. 
 
 
5.2.1   TCGA-Breast Cancer (BRCA) Dataset 
 
The TCGA-Breast Cancer (BRCA) [4] dataset is a publicly available dataset that contains genomic, 
molecular, and histologic information on breast cancer. The dataset was extended to include 
additional histologic type annotations for a total of 1,063 breast cancers, and was analyzed to define 
transcriptomic and genomic profiles of six rare, special histologic types: cribriform, micropapillary, 
mucinous, papillary, metaplastic, and invasive carcinoma with medullary pattern. The dataset 
includes RNA-seq data, DNA copy number data, somatic mutation data, and histologic features data. 
The RNA-seq data was generated using Illumina HiSeq platform and is available in gene-level 
expression format. The dataset has been used to classify breast cancer into 12 consensus groups 
based on integrated genomic and histological features. 

https://gtexportal.org/home/datasets
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The DNA copy number data can be used to identify regions of the genome that are amplified or 
deleted in breast cancer. The somatic mutation data can be used to identify mutations that drive 
breast cancer development and progression. The histologic features data can be used to study the 
relationship between the molecular features of breast cancer and its histologic characteristics. 
 
The TCGA-BRCA dataset has been used in various studies to identify new breast cancer subtypes 
and to understand the molecular mechanisms underlying breast cancer development and 
progression. For example, the dataset has been used to identify six rare, special histologic types of 
breast cancer and to define their transcriptomic and genomic profiles. The dataset has also been 
used to classify breast cancer into 12 consensus groups based on integrated genomic and 
histological features. These studies have improved our understanding of breast cancer and may lead 
to the development of new therapeutic approaches for this disease. 
 
5.2.2   Flimma App in FeatureCloud App Store 
 

 
Figure 4. Flimma app 
 
Flimma is an open source app which is available with documentation and sample data on GitHub: 
https://github.com/FeatureCloud/fc-flimma, and in the FeatureCloud App Store:  
https://featurecloud.ai/app/flimma 
 
  

https://github.com/FeatureCloud/fc-flimma
https://featurecloud.ai/app/flimma
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5.3   FeatureCloud  
 
In this section we will cover applications that were implemented within FeatureCloud [3]. In general, 
the platform was tested using four different applications to achieve comparable results to centralized 
analysis in a federated fashion, considering federated learning challenges, e.g., data heterogeneity, 
imbalanced data, etc. 
 
5.3.1   Federated Random Forest (RF) 
 
We used the popular Random Forest (RF) classifier and RF regressor as the second algorithm for 
our evaluation. As an ensemble algorithm, RF can be easily federated in a naive manner [7]. Our 
implementation trains multiple classification or regression decision trees on the local primary data of 
each participant. The fitted trees are then transmitted to the coordinator and merged into a global 
RF. To account for the different number of samples for each participant, each of them contributes a 
portion of the merged RF proportional to the number of samples. To achieve a similar behavior as 
the centralized implementation, the size of the merged RF is kept constant, meaning that increasing 
the number of participants in turn decreases the number of required trees per participant. The 
federated computation occurs in three steps, each involving data exchange as follows: (1) 
participants indicate the number of samples and receive the total number of samples; (2) participants 
train the required number of trees, and the aggregator merges them into a global RF; and (3) 
participants receive the aggregated model to evaluate its performance on their data and share the 
results to obtain a global summary. As the aim is not to achieve the highest possible accuracy but to 
compare the federated version with the non-federated version, the hyperparameters were set to the 
default values of “sklearn”, namely, 100 decision trees, Gini impurity minimization as the splitting 
rule, and feature sampling equal to the square root of the features. Pre-pruning parameters such as 
maximum depth, minimum samples per node, and other constraints were not applied. 
 
5.3.2   Federated Deep Learning (DL) 
 
The federated deep learning (DL) application is based on the federated average algorithm [8]. In the 
training phase, an update of the weights and biases performed iteratively, where each iteration 
comprises the parameter aggregation performed in three steps as follows: 
 
(1) the local weights and biases are computed by every participant individually and shared with the 
coordinator, (2) the coordinator averages the parameters and broadcasts them back to participants, 
and (3) the participants receive the new values of weights and biases and update the weights and 
biases of their model accordingly. The local weights and biases update is performed with the back-
propagation algorithm, applied to data batches of a specified size. The neural network model 
architecture and training were implemented using the PyTorch library. The application enables the 
implementation of any DL architecture and provides a centralized version of a PyTorch code. The 
application also enables federated transfer learning to be applied to a pretrained model, whose 
specified layers are trained in the same federated fashion. 
 
5.3.3   Federated Linear and Logistic Regression 
 
For the implementation of the linear and logistic regression applications, the methods introduced by 
Nasirigerdeh et al [2] have been adapted from GWAS to a general ML use case. For linear 
regression, the local XTX and XTY matrices are computed by each participant individually, where X 
is the feature matrix and Y is the label vector. Then, they are sent to the coordinator, who aggregates 
the local matrices to the global matrices by adding them. Using these global matrices, the coordinator 
can calculate the beta vector (slope and intercept) through the federated method, and the beta 
vector, i.e., the estimated parameters via federated learning generally have very similar values to 
the estimated ones in centralized training Logistic regression was implemented as an iterative 
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approach (similar to the deep learning app). On the basis of the current beta vector, the local gradient 
and Hessian matrices of each participant are calculated and shared with the coordinator in each 
iteration. The coordinator aggregates the matrices again by adding them, updates the beta vector, 
and broadcasts it back to the participants. This process is repeated until convergence or the 
maximum number of iterations (prespecified for each execution) is achieved. Internally, the scikit-
learn model API has been used to implement the applications [29,30]. In the performance evaluation, 
we used the default scikit-learn hyperparameters for the linear regression models. For logistic 
regression, the penalty was set to none; the maximum number of iterations was set to 10,000; and 
the “lbgs” solver was used to fit the models. These linear and logistic regression apps are each 
implemented as independent applications as this way they can be easily integrated into different 
workflow architectures with the FeatureCloud platform.  
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6  Results 
 
6.1   sPLINK 
 
In this section, we will provide an overview of the verification and comparison of sPLINK with the 
aggregated analysis conducted using PLINK, as well as with other existing meta-analysis tools (e.g., 
METAL and GWAMA). The analysis is performed on three different datasets: the SHIP dataset, 
COPDGene dataset, and FinnGen dataset. 

In the SHIP dataset, which includes records of 3,699 individuals with serum lipase activity as the 
phenotype, sPLINK and PLINK are compared for logistic regression, chi-square test, and linear 
regression. The dataset is split into four parts using PLINK V1.9 [15] to simulate different cohorts, as 
shown in Table 3, and both tools calculate the same statistics for the association tests. The difference 
of SNP p-values between sPLINK and PLINK is found to be negligible, with a maximum difference 
of 0.162 attributed to floating-point precision inconsistencies. The correlation coefficient of p-values 
from both tools is high (0.99), indicating consistency. We investigate the overlap of significantly 
associated SNPs between sPLINK and PLINK. We consider a SNP as significant if its p-value is less 
than 5×10−8 (genome-wide significance). PLINK and sPLINK recognize the same set of SNPs as 
significant (Figure 5, d–f). Notably, the identified SNPs, e.g., rs8176693 and rs632111, lying in genes 
ABO (intronic) and FUT2 (3-UTR), respectively, have also been implicated in a previous analysis of 
this dataset [16]. 

 
 
Figure 5. Δlog10(p-value) between sPLINK and PLINK as well as the set of SNPs identified by 
sPLINK and PLINK as significant for logistic regression (a, d), linear regression (b, e), and chi-square 
test (c, f), respectively. For most of the SNPs, the difference is zero, indicating that sPLINK gives the 
same p-values as PLINK. The negligible difference between p-values for the other SNPs can be 
attributed to differences in floating point precision. The spikes in some genomic positions are due to 
the strong association of the corresponding SNPs, which result in higher absolute error. sPLINK and 
PLINK also recognize the same set of SNPs as significant. [2]. 
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Next, sPLINK is compared with PLINK, METAL, and GWAMA using the COPDGene dataset, which 
has an equal distribution of case and control samples, and the FinnGen dataset, which is much 
larger. In both cases, different phenotypes and confounding factors are considered. The comparison 
aims to assess the performance and accuracy of sPLINK in relation to other meta-analysis tools. 

 
Figure 6. The significant SNPs overlapped between sPLINK and PLINK for the SHIP case study 
considering Bonferroni significance threshold, which is ≈ 1 × 10−8 in our case. sPLINK and PLINK 
identify the same set of SNPs as significant [2]. 

Overall, the results indicate that p-values computed by sPLINK in a federated manner are 
comparable to those obtained from aggregated analysis using PLINK. Additionally, sPLINK shows 
promising results when compared to existing meta-analysis tools in different datasets, suggesting its 
effectiveness as an alternative for genetic association analysis. 

6.2   Flimma 
 
Flimma produces results in the form of a list of differentially expressed genes, along with their 
corresponding effect sizes, standard errors, t-statistics, and p-values. The results can be visualized 
using various methods such as volcano plots, heatmaps, and gene set enrichment analysis. Flimma 
also provides a statistical framework for assessing the significance of differential expression across 
multiple cohorts while accounting for batch effects and other sources of heterogeneity. Overall, 
Flimma provides a powerful and robust alternative to traditional meta-analysis methods for multi-
center gene expression studies while enhancing patient privacy. In the following, we describe results 
in selected scenarios. 
 
6.2.1   Imbalanced Scenario 
 
Flimma has been tested on datasets with different levels of imbalanced data, where the fractions of 
target classes and the distributions of some covariates differed among cohorts. Flimma has been 
shown to perform well in both mildly and strongly imbalanced scenarios, where cohort sizes were 
unequal and related as 1:2:4 and 1:3:9, respectively. In addition, Flimma has been tested on the 
TCGA-BRCA dataset, where an imbalance of luminal and basal subtype frequencies was introduced. 
The results showed that Flimma was able to handle imbalanced data well and produced similar 
results to limma-voom in all tests. 
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Figure 7. The comparison of negative log-transformed p-values computed by Flimma and meta-
analysis methods (y-axis) with p-values obtained by limma on the aggregated dataset (x-axis) in 
three scenarios on GTEx skin datasets. Pearson correlation coefficient (r), Spearman correlation 
coefficient (ρ), and root-mean squared error (RMSE) calculated for each method are reported in the 
legend [1]. 
 
 
6.2.2   Performance on Top-ranked Genes 
 
Flimma investigates the performance of different meta-analysis methods in identifying top-ranked 
genes that are significantly differentially expressed. The identification of top-ranked genes is 
important for research tasks such as biomarker discovery, where a small number of genes with large 
effect sizes are of interest. Flimma compares the performance of different meta-analysis methods in 
identifying top-ranked genes by altering the number of selected “top” differentially expressed genes 
after sorting by p-value. The results show that the gene rankings produced by all meta-analysis 
methods were comparable to the ranking produced by the aggregated limma-voom, and that Flimma 
performed well in identifying top-ranked genes across all scenarios tested. 
 

 
Figure 8. The dependency of the F1 score on the number of top-ranked genes considered to be 
differentially expressed. Genes were ranked in order of their negative log-transformed p-values 
decreasing and the number of top-ranked genes varied between 20 and 300 for GTEx Skin dataset 
with step 5 [1]. 
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6.2.3   Performance in Presence of Batch Effects 
 
Flimma addresses batch effects by including additional variables in the linear model to account for 
batch effects. This approach is known as the surrogate variable analysis (SVA) method. SVA 
estimates hidden factors that are correlated with batch effects and includes them in the linear model 
to adjust for these effects. Flimma also uses a modified version of the empirical Bayes method to 
estimate gene-specific variances, which helps to improve the accuracy of differential expression 
analysis in the presence of batch effects. Additionally, Flimma has been shown to be robust to batch 
effects, as demonstrated by its performance on publicly available breast cancer cohorts from GEO 
(https://maayanlab.cloud/archs4/) that were independently collected and sequenced at different 
laboratories and subjected to various experimental biases related to sample preparation, library 
construction, and sequencing platform. 
 
Table 4. RMSE, precision, and recall comparison [1]. 

The number of cohorts 3 5 7 10 14 

RMSE Flimma 0.0008 0.0007 0.0008 0.0017 0.0012 

Fisher 0.94 1.82 2.53 3.86 5.37 

Stouffer 1.47 2.21 2.87 4.26 5.68 

REM 2.73 3.68 4.75 7.21 8.50 

RankProd 5.16 8.19 11.32 18.92 23.50 

Precision Flimma 1.00 1.00 1.00 1.00 1.00 

Fisher 0.85 0.88 0.90 0.93 0.95 

Stouffer 0.85 0.88 0.91 0.93 0.95 

REM 0.93 0.94 0.95 0.97 0.97 

RankProd 0.92 0.87 0.90 0.93 0.95 

Recall Flimma 1.00 1.00 1.00 1.00 1.00 

Fisher 0.92 0.95 0.95 0.96 0.97 

Stouffer 0.89 0.93 0.94 0.96 0.97 

REM 0.93 0.96 0.97 0.98 0.98 

RankProd 0.87 0.96 0.96 0.96 0.97 

https://maayanlab.cloud/archs4/
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Figure 9. PCA projections [1] 

 
Figure 9. shows the PCA projections computed and plotted by the proBatch R package of samples 
from three TCGA-BRCA cohorts. The samples are colored according to cohort and cancer subtype. 
The figure suggests that there is a clear separation between the different cohorts and cancer 
subtypes, indicating that gene expression patterns differ significantly between them. This 
observation supports the use of Flimma's federated approach for differential expression analysis, as 
it allows for the analysis of distributed cohorts without revealing sensitive data. 
 
 
6.3   FeatureCloud 
 
To evaluate the FeatureCloud, multiple workflows operating on different data sets were created. 
Except for DL, each workflow consists of a cross-validation (CV) application (10-fold CV), a 
standardization application, a model training application, and a final evaluation application. DL is 
evaluated on a 20% test set, as this is more common for big data to reduce the training time. 
Individual applications are data-type agnostic and are suitable for various applications. Classification 
analyses were performed on the Indian Liver Patient Dataset [9] with 579 samples and 10 features 
and the Cancer Genome Atlas Breast Invasive Carcinoma [10] data set with 569 samples and 20 
features. For regression analyses, they were evaluated on the Diabetes [11]1 data set with 442 
samples and 10 features and the Boston [122] house prices data set with 506 samples and 13 
features, both in the form provided by scikit-learn. Finally, for DL regression, we used a large data 
set from the Survey of Health, Aging, and Retirement in Europe [6], with 12 questionnaire variables 
and the target 12-item critical assessment of protein structure prediction quality of life score. After 
dropping samples with “Refusal” and “Don’t know” type values in those 12 variables and non-
available 12-item critical assessment of protein structure prediction quality of life score, we were left 
with 42,894 (91.79%) out of 46,733 samples. 
 
For each workflow, the central dataset is split into 5 participants with uneven data distribution. 
Participants 1, 2 and 3, and 4 and 5 each had 10% (4,289), 15% (6,434), and 30% (12,868) of the 
samples, respectively. The F1-score is used to evaluate the classification models and the root mean 
squared error for the regression models, as both are common metrics used to evaluate ML models. 

 
1 https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_diabetes.html  
2 https://scikit-learn.org/1.0/modules/generated/sklearn.datasets.load_boston.html  

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_diabetes.html
https://scikit-learn.org/1.0/modules/generated/sklearn.datasets.load_boston.html
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Figure 10. Performance evaluation of federated artificial intelligence methods. The box plots show 
the results of a 10-fold cross-validation for the different classification and regression models and 
data sets in multiple settings. Only the deep learning model was evaluated on a test set. The 
centralized results are shown in orange, the corresponding federated results in blue, and the 
individual results obtained locally at each participant in gray. Each model was evaluated on the entire 
test set (dark gray) such as the centralized and federated models and on the individual (local) parts 
of the test set (light gray). The federated logistic and linear regressions perform in identical fashion 
to their centralized versions, and the federated random forest and deep learning models perform in 
similar fashion to their centralized versions. BRCA: Breast Invasive Carcinoma; ILDP: Indian Liver 
Patient Dataset; SHARE: Survey of Health, Aging and Retirement in Europe. 

The results showed that for logistic regression, linear regression, and random forest (RF) regression 
and classification models, the FeatureCloud workflow achieved performance identical or comparable 
to that of the centralized one, implemented with scikit-learn. However, due to the aggregation method 
and randomness in RF, identical results were not expected, and sometimes the federated RF 
performed even slightly better than the centralized approach. 

The federated deep learning (DL) model trained in 300 epochs produced a very close root mean 
squared error compared to the centralized model. Additionally, the federated models were compared 
to individual models trained and evaluated by each participant using local test data. On average, the 
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local evaluation performance was worse than the federated models for classification. However, for 
regression models, the locally evaluated models sometimes outperformed the centralized model, 
although they didn't generalize well beyond the small test sets of individual participants. 

The DL model evaluated on a larger test set performed more reliably than individual client models, 
which could have significantly worse results than the federated or centralized models. This 
emphasizes the effectiveness of FL, as it leverages more training and test data, leading to more 
generalized models. The passage also mentions that the RF application in FeatureCloud yields 
comparable results even when the data is non-independent and not identically distributed, 
outperforming the use of individual client data alone. 

7 Conclusion 

To summarize, the federated applications in the FeatureCloud App Store were tested in different 
domains to evaluate the performance against non-federated machine learning and data analysis 
models. We managed to not only achieve comparable results to centralized analysis in a federated 
fashion, but also designed federated scenarios to consider various federated challenges like data 
heterogeneity, imbalanced data in general. Besides, we applied privacy enhancing technologies like 
Secure aggregations techniques like SMPC on top of federated mechanisms to further enhance 
privacy preservation in FeatureCloud apps and platforms. Overall, the presented results in peer-
reviewed publications demonstrate capabilities of FeatureCloud platform to provide a solid solution 
for privacy concerns in federated fashion. 
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