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1 Table of acronyms and definitions  
 
COPD Chronic obstructive pulmonary disease 

dbGaP Database of Genotypes and Phenotypes 

DP Differential Privacy 

EGA European Genome-phenome Archive 

eQTL Expression quantitative trait loci 

GEO Gene Expression Omnibus (online platform) 

GND Gnome Design SRL 

GTEx Genotype-Tissue Expression Program 

MUG Medizinische Universität Graz 

Patients In this deliverable, we use the term “patients” for all research subjects. In 
FeatureCloud, we will focus on patients, as this is already the most vulnerable 
case scenario and this is where most primary data is available to us. Admittedly, 
some research subjects participate in clinical trials but not as patients but as 
healthy individuals, usually on a voluntary basis and are therefore not dependent 
on the physicians who care for them. Thus, to increase readability, we simply 
refer to them as “patients”.  

RI Research Institute AG & Co. KG 

SBA SBA Research Gemeinnützige GmbH 

SDU Syddansk Universitet 

sFL FL and additive secret sharing 

SMPC Secure Multi-Party Computation 

SNP Single Nucleotide Polymorphisms 

TCGA Cancer Genome Atlas Program 

UHAM Universität Hamburg 

UMR Philipps Universität Marburg 

WP Work package 
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2 Objectives of the deliverable based on the Description of Action 
(DoA)  

 
Deliverable D8.5 “Feedback on public data performance” is related to task 4, “Evaluation” of WP7 
as described in the Description of Action. In that regard, we implemented various automatized 
measures for different applications in the FeatureCloud platform to evaluate the performance of 
federated methods. D8.5 also touches on task 4 of WP8 by comparing performance of different 
FeatureCloud applications in federated scenarios on publicly available medical or biological datasets 
while addressing real world challenges like data heterogeneity, imbalanced-ness, batch-effect, etc. 
 
WP7 - Integrated FeatureCloud health informatics platform and app store 
 

Objective 4:  
 

To implement automatized measures for evaluating the overall strategy of FeatureCloud by 
demonstrating that the performance of federated machine learning (in terms of accuracy) is 
comparable to the performance of traditional cloud-based approaches (Task 4) 

  
Task 4: Evaluation 

 
The federated machine learning paradigm will be validated and tested by using publicly 
available data, e.g. from The Cancer Genome Atlas and the Amsterdam Classification 
Evaluation Suite. We will first distribute this data over artificial hospitals with servers behind 
own firewalls. Afterwards, we will evaluate the prediction performance of the federated 
machine learning approaches against classical, non-federated tools (having centralized 
access to the full data in a traditional cloud solution). As a next step, original clinical trial data 
from WP8 (which was or will be anonymized and prepared for traditional cloud computing to 
comply with legal privacy requirements) will be used for second level testing. 

 
WP8 - Testing and evaluation in clinical translation  
 

Objective 3:  
 

To evaluate the technical performance of the FeatureCloud platform in terms of accuracy and 
translational power in clinical settings by re-analysing data previously processed in a 
traditional cloud-based approach and to provide feedback to WPs 4, 5 and 7 (Task 4) 

 
Task 4: Performance evaluation and translation into real-world clinical studies  

 
This task is tightly connected to task 4 of WP7. All partners will beta test the FeatureCloud 
platform, while coordinating partner UHAM and partner GND (WP7) will account for the 
feedback by suggesting and implementing changes to the software design. Original clinical 
data will be used for evaluating and improving the applicability of the FeatureCloud platform 
in real world settings of clinical study practice. Such data is available to UHAM already through 
previous and ongoing projects. Patients’ consent and ethical approval already exist. The 
consortium will use the FeatureCloud platform to analyse data from a set of at least three 
clinical datasets. Based on this data, all partners will evaluate data processing capabilities and 
provide feedback to UHAM, GND (WP7), and UMR (WP3) regarding usability and feature 
requests, and to consortium partners MUG and SDU (WPs 3 and 4) regarding the 
performance of the federated vs. the standard methodology (also see task 1). In addition, RI 
will provide feedback regarding privacy (see task 6). 

 



 

D8.5 - Feedback on public data performance 
  

 
 

 

 
 
This project has received funding from the European Union’s Horizon 2020 research 
and innovation programme under grant agreement No 826078. 

 
Page 7 of 24 

 

3 Executive Summary  
 
This deliverable covers multiple peer-reviewed publications utilizing FeratureCloud as a federated 
platform to replicate the best achievable results in the centralized training using federated learning. 
In this way we acquire feedback from the research community on public data to show the accuracy 
and performance of our federated algorithms. Performance has been evaluated by us using different 
cross-validation schemes, and subsequently by many independent reviewers of several publications 
in peer reviewed journals. In that regard, different methodologies were implemented in federated 
fashion and applied on various public datasets (See section 4). For instance, Flimma (see section 
4.1), as a federated version of Limma-voom was applied on Veteran (US Veterans’ Administration 
lung cancer study data), Lung (NCCTG lung cancer data), and Rossi (Criminal recidivism) datasets 
(See section 5.1). Besides, Partea conducts time to event analysis on COPDGene chronic 
obstructive pulmonary disease datasets (See section 4.2 and 5.2), and sPLINK is applied on the 
“TCGA-BRCA” [6] dataset from the Cancer Genome Atlas Program (see section 4.3 and 5.3).  
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4 Introduction (Challenge) 
 
FeatureCloud [1] as a platform for federated learning keeps raw data on the local device, while 
minimizing data collection and processing on a centralized server. This approach provides a variety 
of privacy advantages out of the box. The privacy concerns associated with the use of federated 
learning serve to motivate the desire to keep raw data on each local device in a distributed machine 
learning setting. There are challenges in applying federated learning to biomedicine or biology 
studies ranging from availability of sufficient high-quality data to the requirements of validating a 
locally trained model on data from external sources.  
 
Based on multiple peer-reviewed publications, we evaluated the performance FeratureCloud 
applications using different cross-validation schemes. We acquired feedback by many independent 
reviewers of several publications in peer reviewed journals which demonstrates that applying 
federated models in the FeatureCloud platform gives comparable results to centralized training. In 
that regard, we provide an overview of some of FeatureCloud applications that are published in peer-
reviewed journals to show how they address different challenges ranging from privacy enhancing 
technologies to data heterogeneity.  
 
Accordingly, applying various federated methods, while simultaneously utilizing secure multi-party 
computation (SMPC) or DP, on publicly available data from different fields, provides comparable 
results to the corresponding state of the art centralized approach according to the feedback from 
reviewers of multiple peer-reviewed publications. 
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5 Methodology 
 
In this section we elaborate on the evaluation strategy of applying FeatureCloud on publicly available 
data. In multiple peer-reviewed studies we have shown that prototypes trained by adopting federated 
learning strategies are able to achieve reliable performance [2, 3, 4], according to the feedback from 
the reviewers of the journals, thus generating robust models without sharing data and limiting the 
impact on security and privacy. The FeatureCloud consortium conducted research on public data 
from different biomedical domains and published the results in peer-reviewed journals. The public 
nature of the data used facilitates the reproducibility of results for the sake of comparison with 
alternative methodologies. In the following subsections, we describe the methodologies of these 
studies. Corresponding apps are available in the FeatureCloud App store.  
 
5.1  Flimma 
 

The process of identification of differentially expressed genes or transcripts is a critical task in 
molecular systems medicine, which involves comparing the gene expression profiles of two or more 
groups of samples to reveal genes with significant differences between the groups. High-throughput 
gene expression profiling technologies such as microarrays and RNA sequencing are used to identify 
differentially expressed genes. However, these technologies have their biases, and the results 
obtained from each platform may be different. Several bioinformatics tools have been developed to 
identify differentially expressed genes from such data. These methods differ in the assumptions 
about data distribution, data normalization strategies, and the test statistic used to detect 
differentially expressed genes. One significant challenge of differential expression studies is the lack 
of robustness due to the high technical and biological variability of the data. Many strategies can be 
used to address this, including increasing the sample size, which is non-trivial as data collection is 
expensive and time-consuming, sample availability may be limited, and existing data may not be 
shareable due to personal data protection laws. 
 
Privacy issues are also a significant concern in differential expression studies. The statistical analysis 
of expression data may require relevant clinical metadata, which may be identified when combined. 
Recent works suggest that patient genotypes can be predicted from RNA-seq data, making patients 
identifiable through expression profiles or so-called “expression quantitative trait loci” (eQTL) data 
obtained from open-access sources. To control the exchange of sensitive molecular profiling data, 
databases, such as dbGaP or EGA [21], restrict access to authorized users affiliated with 
organizations willing to guarantee the legal and secure use of personal data. Alternatively, 
researchers can combine the results of several studies using meta-analysis techniques such as 
Fisher’s method, Stouffer’s method, RankProd, or the random effects model. However, the main 
disadvantage of meta-analysis tools is that their underlying assumptions about the distribution of p-
values or effect sizes may not be realistic, and they may ignore possible differences between cohorts 
or data processing steps that may significantly impact the results. 
 
Privacy-aware techniques such as federated learning (FL), differential privacy (DP), homomorphic 
encryption (HE), and secure multi-party computation (SMPC) have recently moved into the focus of 
research for tasks involving privacy-sensitive patient data. FL implies collaborative model training by 
multiple participants without disclosing private data to any other party. DP perturbs the data or results 
by adding noise to them. HE performs computation on the encrypted data from the participants. 
SMPC computes secret shares from the data and shares them with the computing parties. FL is a 
promising alternative to SMPC and HE in terms of performance and scalability. The privacy of 
federated methods can be enhanced by applying HE or SMPC on the shared model parameters. 
 
Flimma [2] (federated limma) is a novel federated privacy-aware tool for the identification of 
differentially expressed genes. It represents a federated implementation of the popular differential 
expression analysis workflow limma voom. Flimma is based on HyFed [16], a hybrid FL framework, 
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which applies additive secret sharing-based SMPC method to avoid disclosing the local model 
parameters to the server. It provides several advantages over the existing approaches for gene 
expression analysis, including enhancing the privacy of the data in the cohorts since the expression 
profiles never leave the local execution sites, and only aggregated parameters are revealed to the 
server and the other local sites. Flimma is particularly robust against heterogeneous distributions of 
data, making it a powerful alternative for multi-center studies where patient privacy is a key concern. 
 
5.1.1   Datasets 
 

The Flimma tool implements a federated version of the limma voom workflow and is a privacy-aware 
tool for differential expression analysis. Flimma is designed to operate on distributed cohorts without 
disclosing sensitive data, and it uses a hybrid federated approach where the local parameters of the 
clients are hidden from the server, and only global parameters resulting from the aggregation are 
disclosed. Flimma has been tested on two real-world datasets: a breast cancer expression dataset 
from the Cancer Genome Atlas Program (TCGA [6]) and a skin dataset from the Genotype-Tissue 
Expression Program (GTEx [17]). Flimma is robust to technical batch effects, and it models the batch 
effects of datasets by adding m−1 binary covariates to the linear model, where m is the number of 
datasets. Meanwhile, Flimma is applied to three additional publicly available breast cancer cohorts 
from the Gene Expression Omnibus (GEO): GSE129508 [7], GSE149276 [8], and GSE58135 [9]. 
 
Analyzing a federated model on public data is important because it enables researchers to test and 
validate the performance of the model on data that is not from the same source as the original data. 
This can help to identify any biases or limitations in the model, and it can also help to improve the 
generalizability of the model. In the case of Flimma, it is not clear from the context which public 
datasets it was analyzed on. However, the authors of the paper note that one limitation of their work 
is the absence of a gold standard for the evaluation of differential expression analysis results. 
Therefore, analyzing Flimma on public datasets could be a useful way to evaluate its performance 
and compare it to other methods for normalization and differential expression analysis. 
 
The Genotype-Tissue Expression (GTEx) program is a comprehensive data resource and tissue 
bank that aims to study the relationship between genetic variation and gene expression across 
multiple human tissues and individuals. The GTEx program has created a reference dataset to study 
genetic changes and gene expression, and has generated a large dataset that includes over 10,000 
bulk RNA-seq samples. The GTEx program has also established a comprehensive catalog of genetic 
variants that affect gene expression across multiple tissues, called expression quantitative trait loci 
(eQTLs). 
 
The skin dataset from GTEx is part of the larger GTEx dataset, which includes RNA-seq data from 
54 different tissue sites. The skin dataset includes RNA-seq data from skin tissue samples collected 
from donors in the GTEx program. The skin dataset can be used to study gene expression patterns 
in skin tissue, as well as the relationship between genetic variants and gene expression in skin 
tissue. 
 
The GTEx program has generated a large dataset that includes over 10,000 bulk RNA-seq samples 
from multiple human tissues and individuals. The RNA-seq data in the GTEx dataset is generated 
using Illumina HiSeq platform and is available in gene-level expression format. The GTEx dataset 
also includes genotype data from approximately 948 post-mortem donors and RNA-seq data from 
approximately 17,382 samples across 54 tissue sites and 2 cell lines. Full gene expression datasets 
are available for download through the GTEx Portal, while genotypes and RNA-seq bam files are 
available via the database of Genotypes and Phenotypes (dbGaP). 
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5.1.2   Method  
 

Flimma is designed to operate on distributed cohorts without the disclosure of sensitive data and 
employs a hybrid federated approach to enhance data privacy. The workflow of Flimma includes 
several steps, including filtering genes with insufficient counts, performing UQ normalization, fitting 
linear regression models, and computing p-values, fold-changes, and moderated t statistics for each 
gene. Flimma is implemented as a federated version of the limma voom workflow, and each Flimma 
client accepts a matrix of read counts and a design matrix specifying class labels and covariates for 
each sample. Flimma is publicly available and is a promising alternative to meta-analysis methods 
for multi-center gene expression projects. 
 

 
 

Figure 1. The scheme of Flimma: M denotes local intermediate parameters, N denotes local noise. 
K is the total number of participants [2]. 
 
Flimma is a privacy-aware tool for differential expression analysis that uses a hybrid federated 
approach to enhance data privacy. Flimma is based on HyFed [5], a hybrid federated learning (FL) 
framework that applies additive secret sharing-based secure multi-party computation (SMPC) to 
avoid disclosing the local model parameters to the server. 
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Figure 2. The scheme of the Flimma workflow. Steps that were reimplemented in a federated fashion 
are shown in blue. The names of the functions used in the limma voom workflow are shown on the 
right of the flowchart [2]. 
 
 
5.2  PARTEA 
 

PARTEA (Privacy-Aware Real-Time Event Analysis) is an advanced framework that combines the 
principles of privacy protection and real-time event analysis. PARTEA is designed to address the 
challenges of analyzing time-dependent data while ensuring the privacy of sensitive information. In 
privacy-aware time-to-event analysis, the focus is on studying the time it takes for certain events to 
occur while respecting the privacy of individuals or organizations involved. This type of analysis is 
often relevant in various domains such as healthcare, finance, and social sciences, where 
understanding the time-to-event relationships is crucial for decision-making and prediction. 

PARTEA employs sophisticated algorithms and techniques to analyze time-to-event data in real-
time, extracting valuable insights without compromising privacy. It utilizes privacy-preserving 
methodologies like differential privacy, secure multiparty computation, or anonymization techniques 
to protect the identities and sensitive attributes of individuals or entities involved in the analysis. 

By combining privacy protection with real-time event analysis, PARTEA enables researchers, 
analysts, and organizations to derive meaningful and timely insights from time-dependent data while 
upholding privacy regulations and ethical considerations. This framework opens up new avenues for 
research, decision-making, and innovation, ensuring the balance between data-driven analysis and 
privacy preservation in a rapidly evolving digital landscape. 
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Figure 3. Hybrid federated learning workflow using additive secret sharing. Each institution 
calculates its local statistics and creates a secret for each participant (1). The global aggregation 
server receives the secrets and distributes them to the corresponding participants (2). Each local 
client decrypts the secrets and sums them up (3). The sum is shared with the global aggregation 
server (4), which sums them up again, revealing the final global aggregation (5). Created with 
Biorender.com [3]. 
 
5.2.1  Dataset 
 

Partea uses three different datasets to experiment on: 
 

● Veteran (US Veterans’ Administration lung cancer study data) [18]: This dataset contains 
information on 137 patients with lung cancer who were treated at the Veterans’ Administration 
Medical Center in West Los Angeles between 1969 and 1971. The dataset can be accessed 
through the following link: https://biostat.app.vumc.org/wiki/Main/DataSets 

 
● Lung (NCCTG lung cancer data) [18]: This dataset contains information on 168 patients with 

advanced non-small cell lung cancer who participated in a clinical trial conducted by the North 
Central Cancer Treatment Group (NCCTG) between 1980 and 1983. The dataset can be 
accessed through the following link: https://biostat.app.vumc.org/wiki/Main/DataSets 

 
● Rossi (Criminal recidivism data) [19]: This dataset contains information on 432 male 

offenders who were released from prison in Michigan between 1965 and 1974. The dataset 
includes variables such as age, race, marital status, prior criminal record, and whether or not 
the offender was employed at the time of release. The dataset can be accessed through the 
following link: https://www.rand.org/pubs/reports/R1057.html 

 
5.3  sPLINK 
 

sPLINK, in the context of genome-wide association studies (GWAS), refers to a hybrid federated tool 
that serves as a robust alternative to traditional meta-analysis. GWAS involves studying the genetic 
variations across a large number of individuals to identify associations between specific genetic 
variants and diseases or traits. 
 
Meta-analysis is a commonly used approach in GWAS, where data from multiple studies are 
combined to increase statistical power and detect genetic associations that may not be significant in 
individual studies. However, meta-analysis requires sharing individual-level genetic data, which can 
raise privacy concerns and encounter legal or ethical barriers. 
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sPLINK (secure PLINK) offers a privacy-preserving solution for conducting GWAS by leveraging 
federated learning techniques. Federated learning allows collaboration and analysis across multiple 
institutions or datasets without sharing raw data. In the context of sPLINK, each participating 
institution retains control of its data while contributing aggregated statistics or model updates to the 
overall analysis. 
 
By using sPLINK, researchers can perform joint analysis on GWAS datasets without directly 
accessing or sharing sensitive genetic information. This hybrid federated approach ensures privacy 
protection and addresses the challenges associated with data sharing in large-scale genetic studies. 
Additionally, sPLINK maintains the statistical power of traditional meta-analysis, making it a 
promising alternative for conducting robust and privacy-aware GWAS. 
 

 
 

Figure 4. Comparison of sPLINK (c), aggregated analysis (a), and meta-analysis (b) approaches: 
Aggregated analysis requires cohorts to pool their private data for a joint analysis. The meta-analysis 
approaches aggregate the summary statistics from the cohorts to estimate the combined p-values. 
In sPLINK, the cohorts calculate the model parameters (M) from the local data and global model, 
generate noise (N), and make the parameters noisy (M) in an iterative manner. The aggregated 
noise and noisy parameters are in turn aggregated to update the global model or build the final 
model. sPLINK combines the advantages of the aggregated analysis and meta-analysis, i.e., 
robustness against heterogeneous data and enhancing the privacy of cohorts’ data. Yellow/blue 
color indicates case/control samples. 
 
5.3.1  Dataset 
 

sPLINK experiments with the COPDGene dataset (http://www.copdgene.org/) [20],. This is a publicly 
available dataset that contains genetic and clinical data from individuals with chronic obstructive 
pulmonary disease (COPD) and controls without COPD. It is available through the dbGaP accession 
number “phs000179.v1.p1”. 

http://www.copdgene.org/
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6 Results 
 

After conducting federated analysis on public data using the FeatureCloud platform, we analyzed 
the results in terms of comparing the performance of the federated application with the centralized 
model considering various real world scenarios and challenges. The detailed performance analysis 
which considers the feedback from the reviewers of the journals, is explained in the following 
subsections for three different peer-reviewed publications [2, 3, 4]. 
 
6.1  Flimma 
 

Flimma experimented with the GTEx dataset by applying its federated privacy-aware tool for 
differential expression analysis on the dataset. The GTEx dataset used in Flimma includes 1277 skin 
expression profiles with sun exposure as the target class label and patient age and sex as covariates. 
Flimma tested its power by modeling the multi-party setting through randomly partitioning the dataset 
into virtual cohorts while introducing different levels of imbalance with respect to target class labels 
and covariate distributions. Flimma simulated three realistic scenarios leading to different levels of 
sample distribution heterogeneity between local cohorts to assess its power. 
 
In Flimma's experiments, the GTEx dataset was split into virtual cohorts to simulate a federated 
scenario. The dataset was partitioned randomly while introducing different levels of imbalance with 
respect to target class labels and covariate distributions. Flimma simulated three realistic scenarios 
leading to different levels of sample distribution heterogeneity between local cohorts. This allowed 
Flimma to test its power in a multi-party setting and assess its ability to operate on distributed cohorts 
without disclosing sensitive data. 
 
6.1.1  Imbalanced Scenario 
 

Flimma and meta-analysis approaches are compared on skin data from GTEx. Flimma's power is 
assessed by partitioning the datasets into virtual cohorts with varying class label imbalance and 
covariate distributions. They simulated realistic scenarios to represent heterogeneity in sample 
distribution between local cohorts. The limma voom results on the pooled datasets is considered as 
gold standard. In summary, Flimma obtained the same results as limma voom in all tests. Across all 
experiments, the maximal absolute difference for log-transformed p-values and log-fold-change 
values computed by Flimma and limma voom did not exceed 0.1. In contrast, the results of the meta-
analysis methods diverged from the results of limma voom, and this effect was especially 
pronounced in imbalanced scenarios. 
 

 
Figure 5. The comparison of negative log-transformed p-values computed by Flimma and meta-
analysis methods (y-axis) with p-values obtained by limma on the aggregated dataset (x-axis) in 
three scenarios on GTEx skin datasets. Pearson correlation coefficient (r), Spearman correlation 
coefficient (ρ), and root-mean squared error (RMSE) calculated for each method are reported in the 
legend [2]. 
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6.1.2 Performance on Top-ranked genes 
 

One of the key indicators in performance comparison of Flimma with Meta-analysis approaches is 
identification of a small number of significantly differentially expressed genes. By investigating the 
performance of the methods regarding the various numbers of selected top differentially expressed 
genes after sorting by p-value, it is shown that Flimma perfectly reproduced the results of aggregated 
limma voom in all scenarios and outperformed all meta-analysis approaches. Fisher’s and Stouffer’s 
methods demonstrated almost perfect performance in the balanced scenario, but their performance 
decreased in the imbalanced ones. 
 

 
Figure 6. The dependency of the F1 score on the number of top-ranked genes considered to be 
differentially expressed. Genes were ranked in order of their negative log-transformed p-values 
decreasing and the number of top-ranked genes varied between 20 and 300 for GTEx Skin dataset 
with step 5 [2]. 
 
6.1.3  Performance in presence of batch effects 
 

One of the common real world challenges of Federated Learning applications is batch effect which 
refers to unwanted technical variation in gene expression data that arises from sources other than 
the biological differences of interest, such as differences in sample processing, RNA extraction, 
labeling, hybridization, and scanning. Batch effects can obscure true biological signals and generate 
spurious correlations between gene expression and sample attributes, leading to biased and 
unreliable results in downstream analyses. Therefore, batch effect correction is a critical step in the 
analysis of gene expression data, especially when integrating data from multiple experiments or 
platforms. Batch effect correction methods should be carefully applied since they could further 
introduce or amplify undesired effects in the data. Therefore, the quality assessment of the data 
integration process is crucial. 
 
To demonstrate the robustness of Flimma towards experiential batch effects, it is applied on three 
additional publicly available breast cancer cohorts from GEO: GSE129508 [7], GSE149276 [8], and 
GSE58135 [9]. These datasets were independently collected and sequenced at three different 
laboratories and subjected to various experimental biases related to sample preparation, library 
construction, and sequencing platform (Additional file 7: Table S6). However, it is assumed that 
collaborating partners can agree to use the same quantification pipeline and therefore obtained 
uniformly (in silico) preprocessed raw read counts from ARCHS4 [10]. 
 
In contrast to “TCGA-BRCA”, cohort-specific batch effects in the GEO datasets were much more 
pronounced. Principal component analysis revealed that the differences between samples from 
different cohorts were much larger than the differences between subtypes within the same cohort 
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(Fig. 6). In this case, effective adjustment for batch effect before testing for differential expression is 
crucial [11]. This can be done in two ways, either via subtracting the variation explained by batch 
from the data or via the inclusion of additional variables accounting for batch effects to the model. 
Flimma implemented the second approach, as it is preferable for downstream statistical analysis 
[12]. Below, it is demonstrated that this approach effectively handles the batch effects in our breast 
cancer data sets and gives almost identical results. Several methods for batch effect correction exist, 
but not all of them are compatible with limma voom because the latter is computing count-based 
statistics. A recently published modification of the state-of-the-art batch-effect correction method 
ComBat [13], namely ComBat-Seq [14], is developed specifically to handle read count data. Hence, 
Flimma utilized the results of limma voom obtained on the centralized GEO cohort after the removal 
of laboratory-specific effects by ComBat-Seq as a gold standard in the following experiments. 
 

 
Figure 7. PCA projections computed and plotted by proBatch R package [15] of samples from three 
GEO cohorts (A, B) colored accordingly.[2] 
 
Flimma models the batch effects of datasets by adding m−1 binary covariates to the linear model, 
where m is the number of datasets. Despite the strong batch effects in the GEO data, Flimma 
returned nearly the same fold-changes and BH-adjusted p-values as limma voom run on the same 
data after batch effect removal by ComBat-Seq (Fig. 7). Moreover, our results suggest that the 
approach used by Flimma gives better results than batch effect correction based on one or several 
first principal components. 
 

 
Figure 8. Comparison of the results obtained by Flimma on uncorrected GEO data with the results 
of limma voom after batch effect removal by ComBat-Seq [2]. 
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6.2  Partea 
 
Partea performed analysis on three public benchmark datasets, commonly used in time-to-event 
analysis: veterans administration lung cancer Research data [39] (veterans, 137 samples), NCCTG 
lung cancer data [40] (lung, 168 samples). Each dataset was  randomly and evenly split into 3, 5, 
and 10 splits to simulate different federation scenarios with different numbers of sites and sample 
sizes. Partea calculates survival functions for each federation scenario using hybrid approaches of 
FL and additive secret sharing and compares it with the central survival function estimated from the 
prior art lifeline. 
 
6.2.1  Survival function 

Partea compared two approaches, FL and sFL (FL and additive secret sharing), for calculating 
survival functions in federated scenarios. Results were compared to the central analysis using 
lifelines. Both FL and sFL approaches produced identical survival functions to the central analysis 
across different datasets and scenarios. The survival curves were presented in Figure 9. The study 
demonstrated that FL and sFL approaches provide equivalent results to the central analysis due to 
shared statistical methods. 

 
Figure 9. Evaluation of the survival function on benchmark datasets. For both the hybrid approach 
of FL and additive secret sharing (sFL, yellow) and the federated-only approach (FL, blue), identical 
survival functions are achieved compared to lifelines’ Kaplan-Meier estimator (lifelines, red) for all 
four datasets and the various number of participants [3]. 
 
6.2.2  Differentially private survival functions 
 
Partea [3] also incorporated differentially private (DP) survival functions and compared them to non-
DP survival functions. The aim was to determine the privacy loss metric epsilon for future time-to-
event analyses. The evaluation was independent of the federated computation and yielded identical 
results. Simulations were conducted with different epsilons (3, 2, 1, and 0.75) on each dataset 
(Figure 10). The log-rank test was used to compare the differentially private and non-differentially 
private functions. Smaller epsilon values resulted in greater differences between the DP and non-
DP survival functions, particularly for smaller sample sizes. Epsilons of 3 and 2 generally showed no 
significant differences, while epsilon values of 1 and 0.75 occasionally led to significant differences. 
The findings were consistent with previous research on DP. Three predefined epsilons (3, 1 and 
0.75) were suggested for future use based on the analysis and sample sizes. 
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Figure 10. Comparison of DP survival functions against the non-DP baseline. The non-DP survival 
function (red) is used as a baseline against 1000 runs of DP survival functions for different epsilons 
and datasets. The resulting DP survival functions (blue) become noisier with decreasing epsilon. 
Note that the influence of the noise increases with decreasing sample size [3]. 
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6.2.3  Cox proportional hazards model 

Partea used the Cox proportional hazards model to evaluate a federated scenario. The researchers 
compared the resulting logarithmized hazard ratio (HR) and its 95% confidence interval (CI) for 
different covariates. Both the federated-only approach and the hybrid approach yielded nearly 
identical hazard ratios and corresponding CIs across multiple datasets and participant numbers. A 
comprehensive breakdown of the comparison for each covariate and dataset can be found in Fig. 
11. 

Figure 11. Evaluation of the Cox proportional hazards model on benchmark datasets. For each 
dataset, Partea compared the logarithmized hazard ratio and corresponding 95% CI of our 
algorithms for 3, 5, and 10 clients with the results of the centralized lifelines model. For all covariates 
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(distinguished by colors), the federated-only (3, 5, 10) and hybrid approach (S3, S5, S10) 
resulted in almost identical results compared to the centralized calculation using lifelines [3]. 

6.3  sPLINK 

sPLINK [4] is compared with existing meta-analysis tools (PLINK, METAL, and GWAMA) 
using COPDGene dataset. COPDGene had 5,343 samples with an equal distribution of cases and 
controls for COPD analysis. sPLINK's performance was evaluated in terms of single 
nucleotide polymorphisms (SNP) analysis, considering confounding factors such as sex, age, 
smoking status, and pack years of smoking in COPDGene. The comparison aimed to assess 
sPLINK's effectiveness in genetic association studies, providing insights into its performance 
compared to other tools. 

Figure 12. Scenario I-V: The case-control ratio is the same for all splits in the balanced scenario (I) 
while the splits have different case-control ratios in the imbalanced scenarios (II–V). All three splits 
have the same sample size in the COPDGene dataset as well as the balanced scenario in the 
FinnGen dataset. For the imbalanced scenarios in the FinnGen dataset, the splits have different 
sample sizes [4]. 

The study simulated cross-study heterogeneity on the COPDGene dataset using six different 
scenarios (Figure 12: scenarios 1-5, and Figure 13: scenario 6). These scenarios involve varying 
degrees of balance or imbalance in case-control ratios and distribution of confounding factors. The 
dataset was partitioned into three splits, and summary statistics were obtained for each split to 
conduct meta-analyses using sPLINK and other meta-analysis tools [4]. 

Results showed that sPLINK had a high correlation (close to 1.0) of p-values with the aggregated 
analysis for all scenarios, indicating consistent results regardless of phenotype or confounding factor 
distributions. In contrast, the correlation coefficient for other meta-analysis tools decreased with 
increasing imbalance or heterogeneity, suggesting reduced accuracy. 
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Figure 13. Scenario VI (Heterogeneous Confounding Factor) for the COPDGene case study: The 
phenotype distribution is the same and balanced; the values of smoking status and age are 
homogeneously distributed; the distribution of sex and pack years of smoking are slightly and highly 
heterogeneous across the splits, respectively [4]. 

sPLINK correctly identified all significant SNPs in all scenarios, while other meta-analysis tools 
missed significant SNPs, especially in highly imbalanced scenarios. False positives were minimal, 
with sPLINK having no false positives in any scenario, and other meta-analysis tools introducing 
zero or one false positive, depending on the scenario. Overall, sPLINK demonstrated robust 
performance in capturing significant SNPs and maintaining accurate results even in scenarios of 
cross-study heterogeneity, outperforming other meta-analysis tools. 
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Figure 14. The Pearson correlation coefficient (ρ) of -log10 (p-value) between each tool and 
aggregated analysis (a, b) and the number (c) and the percentage (d) of SNPs correctly identified 
as significant (true positives) by each tool. F and R stand for fixed-effect and random-effect, 
respectively [4]. 
 
7 Open issues 
 

No open issues. 
 
8 Conclusion 
 

In this deliverable we demonstrate how federated learning and in specific FeatureCloud works on 
publicly available dataset. In a series of peer-reviewed publications on various domains, approaches 
and datasets, according to the feedback from multiple reviewers of peer-reviewed journals, 
FeatureCloud acheives comparable results with centralized training while respecting privacy 
concerns by utilizing privacy enhancing technologies like Secure Multiparty Computation (SMPC) 
and differential privacy. FeatureCloud conducted such experiments while providing a platform and 
app store that presents publicly available applications to reproduce the results or extending the 
experiments on new fields by the community. Overall, Three approaches, Flimma (on Veteran(US 
Veterans’ Administration lung cancer study data), Lung(NCCTG lung cancer data), and 
Rossi(Criminal recidivism) datasets), Partea (on COPDGene chronic obstructive pulmonary disease, 
and sPLINK on the “TCGA-BRCA” dataset, yield encouraging results on different criteria.  
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