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Abstract. We explore the integration of domain knowledge graphs into
Deep Learning for improved interpretability and explainability using
Graph Neural Networks (GNNs). Specifically, a protein-protein inter-
action (PPI) network is masked over a deep neural network for classifi-
cation, with patient-specific multi-modal genomic features enriched into
the PPI graph’s nodes. Subnetworks that are relevant to the classifica-
tion (referred to as ”disease subnetworks”) are detected using explainable
AI. Federated learning is enabled by dividing the knowledge graph into
relevant subnetworks, constructing an ensemble classifier, and allowing
domain experts to analyze and manipulate detected subnetworks using a
developed user interface. Furthermore, the human-in-the-loop principle
can be applied with the incorporation of experts, interacting through a
sophisticated User Interface (UI) driven by Explainable Artificial Intel-
ligence (xAI) methods, changing the datasets to create counterfactual
explanations. The adapted datasets influence the local model’s charac-
teristics and thereby create a federated version that distills their diverse
knowledge in a centralized scenario. This work demonstrates the feasi-
bility of the presented strategies, which were originally envisaged in 2021
and most of it has now been materialized into actionable items. In this
paper, we report on some lessons learned during this project.
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1 Introduction and Motivation

The European Project ”FeatureCloud (FC)” (Grant Agreement 826078) cre-
ated a novel Artificial Intelligence (AI) platform which is based on the idea



2 Holzinger et al.

of federated, decentralised learning where only model parameters are commu-
nicated. The FC AI App-store https://featurecloud.ai/ is the first plat-
form worldwide to enable federated learning of diverse AI models in a privacy-
preserving way [54]. The types of AI models used are quite diverse, including
linear regression, clustering, random forests, deep learning, etc. The fundamen-
tal idea is that every software developer or data scientist can federate their
AI model provided that the model fulfils some minimum requirements (see:
https://featurecloud.eu). Dockerization [57] supports seamlessly the trans-
ferability of the federated solution into different machines independent from
hardware requirements as much as possible.

In our work [63], we masked deep neural network learning with a protein-
protein interaction (PPI) network. In the context of this work, ”masking” refers
to incorporating a domain-knowledge graph (specifically, a PPI network) into
a deep neural network for classification. This means that the nodes and edges
of the PPI network are added to the input layer of the neural network and are
used to enrich the features of the data being processed by the neural network.
Features are key for learning, understanding and explaining and consolidated
features are more accurate and robust, which helps to make practical machine
learning applications more trustworthy [61]. It is a general problem that even
the most powerful learning methods suffer from the fact that it is difficult to
retrace, interpret and thus explain why a certain result was obtained, and that
they lack robustness. Even the smallest perturbations in the input data can have
dramatic effects on the output, leading to completely different results. This is
of great importance in virtually all critical domains where we suffer from poor
data quality, i.e., where we do not have available the i.i.d. data we would need
for ideal learning. However, in medicine, biology, and all life-critical domains, it
is about being able to trust the results and retrace them when needed [26], [27].

In our next step the classification has been made explainable, i.e. those sub-
networks are detected that were relevant for the classification (”disease sub-
networks”) - subgraphs are called “local spheres” in [29] and [52]. In order to
guarantee a representative baseline comparison to the above methodology, the
subnetwork detection was realised by means of a random forest [59]. Here, too,
the learning process is masked by a knowledge graph. Random forests are partic-
ularly relevant in medicine due to their good interpretability. In the work [60] we
enabled federated learning with the methods mentioned above. Here, the knowl-
edge graph is divided into relevant subnetworks using explainable AI, based on
which an ensemble classifier is constructed. This ensemble classifier can be effi-
ciently learned in a federated way. In addition, a user interface was developed [4]
that allows a domain expert to analyse and manipulate the detected subnetworks
(delete and add nodes) and finally reintegrate them into the ensemble classifier.
This paper is organized as follows: In section 2 we provide some background and
related work, in section 3 we provide an overview on our implementations, and
in section 4 we give a frank description of what we have learned, and in section
5 we conclude and provide some future outlook.
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2 Background and Related Work

There is nothing more practical than a good theory (Kurt Lewin, (1890–1947)).
In our work we pursued four central topics from the paper [29]: (i) Explainable AI
on GNNs, (ii) Federated Learning and Multi-Modality, (iii) Knowledge Graphs,
and (iv) Human-AI interaction. Consequently, we have aligned all of these topics
on the application of precision medicine.

2.1 (i) Explainable AI on Graph Neural Networks

Graph Neural Networks (GNNs) extend neural network architectures to oper-
ate on graph-based data by defining learnable functions that extract features
and patterns from the graph structure to perform tasks such as node classifi-
cation, graph classification, link prediction, etc. [75]. GNN’s are very success-
ful and enable efficient integration of domain-knowledge graphs to make Deep
Learning interpretable and explainable [29]. Federated solutions thereof seem
to occur naturally in several applications such as distributed sensors for traffic
surveillance, a collaboration of hospitals for efficient solutions of complex medi-
cal tasks, distributed social media applications and so on. In the era of big data
both the size of the graph datasets as well as the GNN architectures grows,
making efficient and privacy-preserving information exchange and computation
a challenge. What is more, since the communicating parties, whether they are
servers or clients can be represented by a graph themselves, it is shown that
GNN architectures can support federation in turn [45].

As is generally the case with neural networks, also Graph Neural Networks
results are not easy to retrace and interpret. To address this shortcoming, in-
tensive work is currently being done worldwide on GNN methods that can be
explained. Examples include GNNexplainer, PGExplainer, and GNN-LRP. GN-
NExplainer [76], for example, provides local explanations for predictions of any
graph-based model. This can be used for both node classification and graph clas-
sification. PGExplainer [47] is a parameterized modification of GNNexplainer.
Unlike GNNexplainer, it provides model-level explanations that we find useful
for graph classification tasks. GNN-LRP [66] is derived from higher-order Taylor
expansions based on layerwise relevance propagation (LRP) [42]. It explains the
prediction by extracting paths from the input to the output of the GNN model
that make the largest contribution to the prediction. These paths correspond to
walks on the input graph. GNN-LRP was developed for node-level explanations
and has been modified to work for graph classification in a special arrangement
[11]. The presented work with a method called CF-Explainer [46] is particularly
interesting. Here, explanatory factors can be revealed using counterfactuals.

GCExplainer [50] stands in the forefront as the first GNN explainer that de-
tects the learned concepts of a GNN. The main idea is to perform clustering after
the last aggregation layer and to assume that each of the clusters corresponds to
a human-recognizable concept. Users have the opportunity to parameterize the
explanation process through the number of clusters and the neighbourhood size
of the explained component. This approach incorporates the human-in-the-loop
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[32], [25] and at the same time has been shown to achieve good concept purity
and completeness. Furthermore, it is the basis of current work that makes GNNs
explainable per design by first learning the concepts, then on that basis doing
a concept-based prediction [49]. Such explainable AI methods can facilitate the
discovery of disease-causing regions in networks, helping to uncover a subset of
candidate features organized in disease-relevant network modules.

This is exactly where the human-in-the-loop concept helps, as interaction
with explanations and the incorporation of conceptual knowledge can further
improve the learning algorithm.

2.2 (ii) Federated Learning and Multi-Modality

Federated learning (FL) is a ML approach in which the training data is decentral-
ized and distributed across multiple devices or locations, and the model training
process is performed locally on each device or location [52]. The updates to the
model are then aggregated centrally, resulting in a global model that incorpo-
rates the knowledge learned from each device or location. FL is of course useful
in scenarios where the data is sensitive, private, or subject to regulatory con-
straints, such as medical records or financial transactions. Instead of centralizing
the data and running the model training process on a single server or cloud plat-
form, federated learning allows the data to remain on the individual devices or
locations, and only the model updates are transmitted for aggregation. This pre-
serves the privacy and security of the data and reduces the risk of data breaches
or leaks. FL should not be mixed up with purely decentralized learning, where
local models do not automatically contribute to each other apart from manually
sampling the models and updating the hyperparameters [5]; and also not with
collaborative learning in various forms, where the goal is to share information
about internal model building between the involved parties in a peer-to-peer
manner, but keep the local training data confidential. A variant could also train
on decentralized features that purportedly model the same underlying instances
[33]. It has been known for some time that features for one modality are learned
better when multiple modalities are present at the time of feature learning. In
multimodal learning, information is from multiple sources. Often, several differ-
ent modalities contribute to a result. We are motivated by [28], [1], [15]. This
brings us directly to graphs and particularly knowledge graphs.

2.3 (iii) Knowledge Graphs

Knowledge graphs (KG) are a type of database that represents knowledge in
a structured, interconnected format, using a graph-based data model. It typi-
cally consists of a set of nodes (also called entities) that represent concepts or
things, and a set of edges (also called relationships or properties) that connect
the nodes and represent the connections or interactions between them. Many
phenomena from nature can be represented in graph structures, whether at the
molecular level (e.g. protein-protein interaction) or at macroscopic level (e.g.
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social networks) and various methods from network science [14] and compu-
tational topology [24] can be applied. Some of the most successful application
areas of machine learning and knowledge extraction in recent years can be seen
as learning with graph representations [74].

In a knowledge graph, each node and edge can have additional attributes or
metadata associated with it, providing additional information or context about
the node or edge. This metadata can include labels, descriptions, categories,
or other semantic information. Knowledge graphs are often used to represent
information from diverse sources and domains in a multi-modal manner. They
can be used to represent both factual knowledge (such as the properties of ob-
jects or events) and conceptual knowledge (such as the relationships between
abstract concepts). Knowledge graphs are also used as a foundation for various
applications, such as natural language processing, semantic search, recommenda-
tion systems, and data integration. They enable efficient querying and reasoning
about complex, heterogeneous data, as well as support the development of intel-
ligent agents that can reason and learn from the knowledge represented in the
graph [21]. KG’s are very useful for explainability and explainable AI methods
based on counterfactual queries to the trained GNN models are very promising.
A major advantage of counterfactual generation is that it can be viewed as a
post-hoc method and thus can act independently of any classifier [68]. Here,
counterfactuals can be modeled as a graph in which features (e.g., genes) are
defined as nodes and edges refer to combinations of features (called ”counterfac-
tual paths”). First, the counterfactual graph is generated in a purely data-driven
manner. Given a test set that includes a sufficient number of patients, this al-
gorithm then traverses the feature space and subsequently swaps the features.
Specifically, for each patient, the feature values are swapped with the values of
the nearest neighbor, which is labeled with a different class. In this procedure,
the feature values are swapped until the patient’s outcome class changes. The
path leading to this change is reflected in the counterfactual graph as a subnet-
work or, more precisely, a walk through the counterfactual graph. The feature
values used in this walk are stored in a node feature vector. The distance between
counterfactuals (weighted edges) is defined in a similar way as in [51].

2.4 (iv) Human-in-the-loop

Human-in-the-Loop [25] refers to the process of involving a human expert
interactively in the machine learning (ML) process to provide feedback, guid-
ance, or even corrections to the model. The human is an integral part of the ML
pipeline, interacting with the model/algorithm to improve its performance and
ensuring that it aligns with the desired goals and values. This approach is useful
in scenarios where the data is complex, ambiguous, or subject to change, and
where the model’s performance can benefit from the human’s expertise or even
from the experts subjective judgment. This is because sometimes - of course not
always - the human expert has domain knowledge, experience and contextual
understanding, in German ”Hausverstand” - what the best AI algorithms are
lacking today. An additional benefit is that the human-in-the-loop approach can
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also improve the transparency, interpretability, and fairness of machine learning
models, as it allows for human oversight and intervention in cases where the
model produces biased or undesirable results. However, the human-in-the-loop
approach on the other hand has drawbacks as it can be time-consuming, expen-
sive, and potentially introduce bias or subjectivity into the modeling process,
so it is important to carefully design and evaluate the interaction between the
human and the model.

The aforementioned explainable AI methods can facilitate the discovery of
disease-causing regions within the networks thereby contribute to uncover a sub-
set of candidate features organized in disease relevant network modules. Such
methods can be used for validation of their applicability to the biomedical do-
main, fostering better decision making through interacting with explanations
via the human-in-the-loop approach, and there are numerous successful exam-
ples [73], [9], [67], [3], [7].

Explainable AI methods should be based on counterfactual queries to the
trained GNN models. A major advantage of generating counterfactuals is that it
can be viewed as a post-hoc process that can act independently of any classifier.
This, of course, requires modeling the resulting counterfactuals as a graph in
which features (e.g., genes) are defined as nodes and edges refer to combinations
of features. We call such an approach ”counterfactual paths”. First, the counter-
factual graph is generated in a purely data-driven manner. Given a test set that
includes a sufficient number of patients, an algorithm then traverses the feature
space and subsequently swaps the features. Specifically, for each patient, the fea-
ture values are swapped with the values of the nearest neighbor, which is labeled
with a different class. In this process, the feature values are exchanged until the
patient’s outcome class changes. The path leading to this change is reflected in
the counterfactual graph as a subnetwork or, more precisely, a walk through the
counterfactual graph. The feature values used in this walk are stored in a node
feature vector. If necessary, counterfactuals can be generated using amplification
techniques. For example, the distance between counterfactuals (weighted edges)
can be defined in a manner similar to [51].

The above methodology is applicable as a model-agnostic tool for structure-
less vector spaces, and is therefore particularly suitable for embedded vector
spaces. However, for an input structured by graphs, a counterfactual sampling
method exchanges feature values on trajectories of the input graph. In this way,
the functional relationships between features are preserved and the algorithm
can be used as an explainable AI method [38].

It is known that communities (strongly connected features) within the coun-
terfactual graph are similar in context. As a result, strongly disconnected com-
munities indicate substantially different classes of counterfactuals. This provides
a global view of the counterfactual landscape, facilitating human interaction with
the counterfactual graph and ultimately enabling adaptation of the multimodal
machine learning model. It is important to highlight semantically similar sub-
graphs so that human experts can visually explore the counterfactual graph in
an efficient manner. Communities that have neither semantic content nor lead
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to causal understanding can thus be revised by a human who has the necessary
domain knowledge and experience. To do this, the human could define, adopt, or
modify paths in the loop (see figure below). The path modifications can thereby
be integrated as knowledge-based constraints in the stochastic procedures used
to train high-end learning models. External resources such as the ClinVar [41]
or the STRING [72] database can be used to further enrich these constraints
in the process. This can be repeated until the human experts are satisfied with
the ”what-if” answers of the learning models. Other forms of developing textual
descriptions of concepts and explanations include Inductive Logic Programming
[8],[12], [18], and interactive symbolic AI methods [70] such as DeepProbLog
[53].

The biomedical experts can not only interact with the counterfactual graph,
but also explore easy-to-understand decision trees derived from the counterfac-
tual graph. To do this, the counterfactual graph itself could be transformed into a
Decision Forest (DF) classifier that includes multiple trees. The features reflected
by the counterfactual communities can in turn be used to create independent
Decision Trees (DT) that form a novel ensemble classifier [62]. The algorithm to
generate the counterfactual paths is implemented within our cpath software li-
brary (https://github.com/pievos101/cpath). A corresponding scientific pa-
per is in progress.

Fig. 1. A possible interaction: In our approach the “human-in-the-loop” has the oppor-
tunity to study the counterfactual graph and the derived decision trees or subgraphs
of the ensemble classifier; thereby the domain expert will be able to adopt the modifi-
cations to the ensemble classifier which approximates the black-box model (feedback-
loop).

3 Methods, Solutions and Implementations

3.1 (1) Disease Subnetwork Detection

As first step in [63], we presented a novel method for disease subnetwork de-
tection using protein-protein interaction (PPI) networks and explainable graph
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neural networks (GNN). Our method leveraged the PPI knowledge to enable
more reliable and biologically meaningful learning trajectories compared to clas-
sical deep learning approaches. The nodes of the induced PPI Network are en-
riched by biological features from various modalities, such as gene expression
and DNA methylation. We applied our proposed method to patients with kid-
ney cancer and demonstrated its ability to detect disease subnetworks. The de-
veloped methodology is implemented within our GNN-SubNet Python package,
freely available on GitHub (https://github.com/pievos101/GNN-SubNet). In
addition, we enhance ensemble learning based on the detected networks. This
makes the classifier more robust, but also more interpretable [60]. Ensemble-
learning with GNNs is implemented within our Ensemble-GNN Python pack-
age (https://github.com/pievos101/Ensemble-GNN). In further updates of
the package additional GNN-based explainers such as GNN-LRP and PGM-
Explainer to further increase the interpretability of the detected subnetworks
will be implemented.

Moreover, as a reliable baseline we have developed the software package
DFNET (https://github.com/pievos101/DFNET) [59], which implements a
network-guided random forest which to this end can also be used to derive an
ensemble classifier from the above described counterfactual graph (Section 2.4).

3.2 (2): Explainability

The classification of Part 1 has been made explainable, i.e. those subnetworks
are detected that were relevant for the classification (”disease subnetworks”) -
subgraphs aka “local spheres”. For this purpose we have developed a modified
version of the GNNexplainer [76] to compute global explanations. This is realized
by sampling patient-specific input graphs while optimizing a single node mask.
From these values edge weights are calculated and assigned to the edges of
the PPI network. Finally, a weighted community detection algorithm infers the
relevant subnetworks.

Furthermore, model-agnostic counterfactual explanations and their associ-
ated counterfactual paths can be generated using our cpath software library
(https://github.com/pievos101/cpath).

3.3 (3): Knowledge Graph

GNNs provide a crucial benefit of enabling the integration of knowledge graphs
[37]. This implies that both ontologies and PPI networks can be effectively incor-
porated into the algorithmic pipeline, as highlighted in much previous research
[69], [40], [44], [36]. This also enables to integrate human experience, conceptual
knowledge, and contextual understanding into machine learning architectures,
which is a notable advantage. This ”human-in-the-loop” or ”expert-in-the-loop”
approach can, in some cases, lead to more robust, reliable, and interpretable
results [31], [32], [35]. It is worth noting that the inclusion of a domain expert
does not guarantee success in every instance. However, the incorporation of such
expertise can contribute to the attainment of the most critical goals of the AI
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community, namely, the development of robust, explainable and trustworthy so-
lutions [27]. These objectives are essential in ensuring the practical and ethical
applications of AI in various fields, and are meanwhile mandatory e.g. in the
European Union.

3.4 (4): Explainable Federated Deep Learning

Federation itself has evolved to be a broad topic; although the main principles
are firm, different implementations realize the same goals. What is similar in
all instantiations is that there is data isolation to some degree and that the
information being exchanged should be minimal and privacy-preserved (i.e. en-
crypted). Furthermore, the i.i.d. scenario is rather the exception than the norm;
several frameworks need to simulate it before the actual deployment. Nonethe-
less, collaboration has proven to be fruitful in most cases, since no one dataset
contains all representative information about a task and AI solutions lack the
ability of systematic generalization and out-of-distribution (OOD) prediction
unless trained with rich and diverse datasets.

In the more concrete case of Federated GNN, there are mainly three possi-
bilities [23], as also shown in figure 2. In the graph-level FL each client has its
graph dataset and potentially also a GNN. In the subgraph-level FL, each of the
clients has one part of the graph and in the node-level FL nodes of one graph
are distributed among clients.

Fig. 2. Three settings of GNN federation [23].

This is following the principles of Horizontal FL (HFL) and Vertical FL
(VFL). In the first case, the features of the graphs of all clients are quite simi-
lar, but their sample characteristics (data distribution) differ substantially. The
opposite occurs in the second case. Both of them are viable scenarios of FL and
need to be addressed either with centralized or decentralized FL. In the cen-
tralized strategy, it is typical that there are several synchronous or asynchonous
events containing parts of the dataset (as shown in figure 2), and one server is
responsible for the federation (which is also called aggregation). In the decentral-
ized case, many clients exchange information with each other; this is more robust
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as far as privacy attacks are concerned but has substantial communication and
organizational overhead.

Regardless of the client-server topology, there is an inter-client graph that can
either be known a priori or can be discovered through self-attention mechanisms
(this can also be helpful in the case where new clients enter the client-server
topology). There are several ways to implement federation for all four combina-
tions of FL possibilities, which in some centralized cases even needs alternating
local and global optimization. Each of them has different convergence guarantees
(if any) and individual countermeasures for the expected privacy attacks.

What is more, the client-server topology or the inter-client graph (in the
decentralized case), have also a graph structure. Although the basic aggrega-
tion procedure (both in centralized and decentralized versions) is the averaging
weighted by the number of samples in each client [55], there are other types
of more sophisticated federation. Inspired by the ideas of learned aggregation
functions of GNNs itself, more sophisticated handling of weights and biases were
invented, as seen in figure 3.

Fig. 3. FedGraphGNN learned aggregation procedure for federation, as presented in
[23].

The whole aggregation functionality can be solved by a GNN that takes as
input the topology along with weights, gradients or even embeddings (provided
they’ve been sent encrypted) as node and edge features, and returns new pa-
rameters in each federation round. Whether the topology is known beforehand
or is changing, GNN-assisted FL is an emerging area of research [45]. In many
real-world application cases, the assumption is that clients that are “close” have
similar data, thereby their local GNNs will probably also have similar param-
eters. In this case, the result of the trained GNN is practically the federation
function, which goes beyond FedAVg [55] and FedOpt[2] possibilities.

Ensemble In the work [3] we enable federated learning with the methods men-
tioned above. Here, the knowledge graph is divided into relevant subnetworks
using explainable AI, based on which an ensemble classifier is constructed. This
ensemble classifier can be efficiently learned in a federated way.
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Fig. 4. The use of GNN-SubNet in one client, containing a set of graphs for classifica-
tion. This method extracts a list of relevant subgraph structures (topologies) and uses
them by filling the corresponding values of nodes and edges from the original graphs.
The newly created datasets are used to train local GNNs and make predictions which
are aggregated by majority voting.

The main idea of the ensemble federation is depicted in figure 4. Each client
contains several graphs and each of those graphs represents a patient. The values
of the nodes and edges are different in general (as depicted by the different colours
of the nodes in the upper part of figure 4), but the structure of the graphs is the
same. Those graphs can be classified by a GNN and the GNN-SubNet method
[63] can compute a set of relevant subgraphs for this classification. GNN-SubNet
concentrates on providing the relevant structure or topology only; therefore the
subgraphs are depicted with white in the middle of figure 4. The concrete values
of the nodes and edges are transferred in a third step though from the original
graphs (upper part of figure 4) to the concrete subgraphs that have the topology
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of the relevant subgraphs and values overtaken from the original graph (lower
part of figure 4). By creating a new dataset for each discovered relevant subgraph
where its structure is repeated and the values are taken from the original graph
of all the patients in the client, a separate GNN is trained. The predictions of all
those GNNs are input to a majority vote procedure that - in its non-federated
version - has an acceptable local performance.

The federation is depicted in figure 5 and follows a decentralized strategy. The
clients use local GNNs of their peers in the inter-client network, that were created
with similar logic but were trained with graphs having different topologies -
since the relevant subgraphs for each client are expected to vary in general.
There is no exchange of the discovered relevant topologies of each client, only
the GNN parameters are transferred - which is as far as privacy is concerned less
revealing. The majority vote over all those GNNs provided a better performance
over each client’s test set, but not over a test set that was isolated from all
clients, as shown in [60]. The described methodology is implemented within our
Python package Ensemble-GNN, freely available on GitHub (https://github.
com/pievos101/Ensemble-GNN). A Feature Cloud app implementation is also
available (https://github.com/pievos101/fc-ensemble-gnn).

The scenario of non-i.i.d. data has to be simulated in future work, by includ-
ing imbalanced distribution of data and potentially explicitly defining different
feature distributions in the clients. Lastly, the discovered relevant topologies can
also be subject to changes driven by human users through a UI, changing the
local GNNs, and by that the whole federation process.

Centralized FL with xAI and HITL The main goal of the federation is
to create an AI model that distills knowledge from diverse datasets, that share
some pre-defined commonalities either in the feature space (Horizontal FL) or in
the data space (Vertical FL). One characteristic example in the medical domain
is the existence of medical records for different patients in different hospitals.
Provided that the data are gathered to diagnose the same disease, one can fairly
assume that all hospitals gather similar information. Nevertheless, one cannot
completely exclude a situation where a hospital or a doctor decides to gather
more or different information than the others. This creates a situation where the
number of input features of the AI model is not the same among all hospitals.
Furthermore, the number of samples (corresponding to one case or one patient)
of each hospital is different; particularly for the cases where a small dataset is
gathered one would like to have a more powerful AI model, which is not possible
unless one has enough data.

Due to privacy constraints, it is not possible to share information between the
hospitals in general. Due to the General Data Protection Regulation (GDPR),
personal data cannot be shared. Nonetheless, it is less risky to send information
about the AI models, such as weights, gradients, or embeddings although it has
been shown that one can extract valuable information even from those, in the
case of a successful attack [19], [22], [10]. Since there are ways to counteract those
attacks [34], [77], [16], this research work concentrates on the simulation of the
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Fig. 5. Depiction of the federated learning of Ensemble-GNN. The late fusion of ex-
changed GNN’s predictions through voting is the way federation is driven by the result
of the xAI method.

information exchange containing Graph Neural Network weights, gradients and
embeddings, and the aspects of privacy are handled by colleagues in the Feature
Cloud Project - as they are taken over for the other AI models in the FC Cloud
store as well.

The basic model of centralized federation applied in the Counterfactuals plat-
form is presented in figure 6. It is composed of several clients, each of them oper-
ating independently from each other, and one central server. Each of the clients
contains its dataset and its own GNN model, although there must be some pre-
agreement between them as far as the similarities and differences of the datasets
are concerned. It is expected that the size of the graph and the number of the
features of each dataset can also vary; for this task which encompasses graph
classification, different graph sizes are not a problem - as long as the type of
nodes and edges is the same, meaning that the features have to be equal (up to
their values). The platform does not support heterogeneous graphs yet; this is a
prerequisite for federating graph datasets of different types of nodes and edges.
For the basic federation scheme to work, all clients and the server have to have
the same GNN architecture.

As also seen in figure 6, it is expected that in the first round, all clients train
their own local GNN, each of them with their dataset. The weights of the first
GNN are described by W1, the ones of the second W2 and so on. At some
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Fig. 6. Federated Learning Overview: Each hospital has its own dataset with different
characteristics, but also some similarities with the others.

particular point which can either be a) periodic or b) asynchronous, the weights
of one or more of those GNNs are sent to the server. There, they will be averaged,
as described in the research work [55], and the resulting weights W are going to
be sent back to each of the clients. The GNN of each client can use the weights
W and replace its weights with it, or not.

Typically after the adoption of W weights one detects lower performance in
each of the individual client GNNs, which is expected since those weights are
not tailored to the distribution of the local dataset. Nevertheless, the adoption
of those weights prepares the GNN for adequate generalization in cases where
similar patients/diseases (whatever the graph represents) as the ones presented
to other clients, occur in the future - even if there are not as many as the ones
the other models from other clients have been trained to. One example scenario
would be as follows: a patient coming to hospital 1 that has similar characteristics
with several patients of the other hospitals will highly likely not have a good
diagnosis with the first GNN, if he/she is different from the patients already
registered in hospital 1. Even re-training with this one new data sample in the
dataset will not be enough to influence the weights of the first GNN towards
a direction where this (more or less) outlier will need for producing a correct
prediction in the output. What is more, there are cases reported where the central
GNN model weights W were proven to be better - as far as performance goes
- than the local GNN model [23]. The reasons for that are currently unknown,
they could be probably uncovered through Explainable AI (xAI) methods and
they are a very interesting direction for future work.

One fundamental difference of the approach with the use of the xAI Coun-
terfactuals platform is that the model parameters change only after retraining;
this is decided by a human user and is does not occur because some new patient
or new disease information has entered or was removed from the local dataset.
Those two processes are both occur asynchronously. Two strategies can be devel-
oped: either the weights are gathered periodically (even if for some local clients
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they haven’t changed at all - one can “catch” it with a request) or each time a
client retrains, after the retrain is finished, the weights can be sent to the server
and a new average can be computed.

The scenario of different hospitals needs to be simulated; to achieve this, the
dataset that we already work with (PPI) needs to be split in a way that simulates
non-identically independent (non-i.i.d.) distributed data [58]. That means that
the balance of each of the client datasets needs to differ. Since the task is a
binary classification, it must be ensured that there are local datasets containing
f.e. 70% of their data belonging to class 0 and 30% of their data belonging to
class 1, but also other ones having f.e. 60% of their data belonging to class 1
and 40% of their data belonging to class 0. The logic of creating this imbalance
and the number of clients should be configurable. This is the most fundamental
type of non-i.i.d. simulation for the data distribution; in a future step there is
the need to synthetically generate non-i.i.d. topology data [45].

3.5 Interactive User Interface

In addition, a user interface was developed that allows a domain expert to analyse
and manipulate the detected subnetworks (delete and add nodes) and finally
reintegrate them into the ensemble classifier.

The incorporation of the human-in-the-loop can be also made even more di-
rectly with the use of the GCEXplainer. This can be central component of an
encompassing framework for Graph Concept Interpretation [39] which measures
quantitatively the interpretation-concept alignment using the number of samples
for which the interpretation function is true. Good performance in several qual-
ity metrics such as concept completeness, predictability, coherence, and purity
creates the basis for characterizing the interpretations of this method as overall
“relevant”.

Fig. 7. Implementation of the Human-in-the-Loop principle with an actionable inter-
action between the human and the AI solution (here a local GNN) through xAI and a
User-Interface [39].
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interaCtive expLainable plAtform for gRaph neUral networkS (CLARUS)
The CLARUS UI platform is accessible under http://rshiny.gwdg.de/apps/
clarus/. The goal of the UI platform is to provide any human user interactive
access to prepared datasets, GNNs and several xAI methods. All necessary in-
formation about the platform usage, datasets, features and performance metrics
are provided through the platform. An overview of the typical sequence of steps
that a user takes is presented in figure 8.

Fig. 8. The sequence of user action steps in the CLARUS platform. First, the user
selects one of the prepared datasets and immediately after he/she has the opportunity
to explore any graph visually by zooming and by inspecting the nodes and edges
feature values. The backend has already trained a GNN with the training dataset after
a stratified split of the data and presents performance results (individual and global),
xAI relevance values as well as additional information that can be useful such as the
degree of each node. With the help of this information, and additional acquired domain
knowledge, the human user decides to take action(s) and either add or delete nodes,
edges and features thereof. To see how those actions affected the task prediction of
the current GNN a new prediction can be triggered. In cases where the changes are
substantial a retrain from scratch can be also made, deleting by that all old information
in the current GNN. This process can be repeated as many times as desired until
the user conceives the decision-making process to an acceptable extent through the
generated counterfactual explanations. A download of all data and model details at a
particular time point, together with a unique timestamp is possible on demand.

For the user to be able to make informed actions [64] with the use of di-
verse xAI methods (GNNExplainer [76], GCExplainer [50]), all nodes and edges
are presented by sorted relevance values. The colouring scheme depends on the
properties of the xAI method itself; the saliency method [71], Integrated Gradi-
ents (IG) method, and the GNNExplainer return only positive relevance values,
but methods like GNN-LRP (Layer-wise Relevance Propagation) return both
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positive and negative values. Those two groups of relevance value ranges have
discrete colourings for a better understanding of the concept of negative rele-
vance as one denoting element in the data sample that “speak against” a class
and even in a correct classification is responsible for making the confidence value
smaller. Beyond that, for each sample it has to be clear if it is correctly clas-
sified or misclassified; even the exact prediction performance is present. This is
because the reliability of explanations in the misclassification case is question-
able and it is a subfield of xAI research itself. Therefore, several classification
metrics are accessible: the confusion matrix, sensitivity, specificity and in the
future Mutual Information (MI) [6], [20], [48]. After each retrain and predic-
tion, those metrics are re-computed and in general they have changed values.
A detailed description of the pre-selected datasets, their preprocessing, various
interaction scenarios and abilities of the platform can be found in [4].

With the use of adequately designed UI tests on this platform it is possible
to show the effect of counterfactual questions and corresponding user actions
on user understanding of the model. The completeness of the already used xAI
methods is enhanced by the actions triggered by users in combination with the
already present domain knowledge, but also from the juxtaposition of their re-
sults since they all differ to a certain extent. The user is motivated and inspired
to make informed actions, imagine what their effect would be and compare the
actual result with his/her preconceived notions about why the model solves the
task sufficiently well (or not) in a dialectical manner. The path to increasing
causability [56] with the use of specially designed interfaces [30] is at the fore-
front for the causal understanding of AI models in the future.

4 Lessons learned

What was not done and why?
The implementation of other explainer than GNNexplainer for the detection of
disease subnetworks. This is particularly relevant for the ensemble-based GNN
architectures. Each GNN explainer might create different ensemble members,
which to this end could be studied in terms of performance and interpretability
(e.g GO enrichment of the detected PPI subnetworks).

GNN-LRP [65] implements Layer-wise Relevance Propagation on GNNs and
assigns relevance values on walks; that means that a node or edge belonging to
more than walks (which is usually the case) has not one relevance; taking a sim-
ple mean is not representative of the explanation method. This method provides
both negative and positive relevances, which means that not only the colour map
has to be distinct from the methods that provide only positive relevance, but
that the relevance of the paths needs an individual visualization strategy that
allows overlapping and user selection.

What problems occurred?
Other explanations than GNNexplainer were more difficult to implement than



18 Holzinger et al.

expected. Some explainers only compute relevances for edges or nodes. The data
scientists may be tempted to average all edge relevances to infer the relevance
of the node or the opposite, but this is not representative of the xAI method.

What was the most pressing problem?
Computational resource sometimes was a bottleneck. It is important to have
Graphics Processing Unit (GPU), since without it the tasks cannot be solved in
a timely manner.

What was easy?
Using the Pytorch Geometric software https://pytorch-geometric.readthedocs.
io/en/latest/ and its built-in explainability package Captum https://captum.

ai/ was fairly straightforward. Furthermore, the tutorials help the data scien-
tists to understand the theory thoroughly.

What was difficult?
There is a constant and rapid development on the theoretical foundations of
GNNs and their explanations. The associated research field is very competitive.
To not get confused or overwhelmed, an in-depth knowledge about the research
field is required, from theory to practical solutions and concrete implementa-
tions. Otherwise it may lead to miscalculations of the planed project goals.

What was particularly difficult for both data scientists and users is the dis-
covery of differences between the xAI methods results. Data scientists provide
several xAI methods to shed light on different aspects of the design-making
process of the model, but if the results of those methods deviate from each
other, this disagreement is not easy to interpret and understand. Furthermore,
counter-intuitive phenomena were observed; it is assumed for example, that if a
user deletes components of a graph according to decreasing (positive) relevance
order, then the performance of the model will not only decrease monotonically
but also that the newly computed relevance order after a new triggered pre-
diction will remain the same. In many cases this was not experienced, making
the users question the reliability of the xAI methods. Related to that, the value
range of the colour map was an issue, since the minimum and maximum value
of relevance change in general after a prediction is initiated.

What did we learn?
The fact that each graph has the same topology (PPI network) hinders sta-
ble and robust graph classification, especially in cases where the input graph is
large. We could observe that GNNs on smaller graphs perform generally better
[60]. Further, we have learned that in the herein studied cases of same topology
graphs, using laplacian layers might be more efficient in terms of performance.
Therefore, we also included the ChebNet approach [13] as an option for GNN-
SubNet and Ensemble-GNN. However, GNNs are generic models and applicable
to many other related tasks. Also, we might model each patient with different
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graph topologies. In that case the ChebNet approach is not applicable.

We have further learned that the quality and validity of the knowledge-graph is
crucial. Knowledge graphs must be further improved in order to obtain reliable
and domain-specific meaningful results. Also, it has been shown that most meth-
ods for disease module discovery learn from the PPI node degrees and mostly
fail to exploit the biological knowledge encoded in the edges of the PPI networks
[43]. Although we believe that our proposed methodology is not biased to that
described case, further investigations are needed to understand and quantify the
bias induced by the network structure.

What open work remains for the future?
Heterogeneous Graphs (including text and images or different types of nodes and
edges) were not included. After preliminary tests, we know that they need more
ressources and xAI methods need to be thouroughly tested before deployment.
So far we have multi-model genomic data in tabular form, structured by a PPI
network.

Until now the GNN architecture is pre-defined for every dataset and it is some-
how intertwined with the characteristics of this dataset - and most of all its size.
In the case where the user changes increase or decrease the size of the dataset
and/or change its characteristics substantially, the platform cannot guarantee
similar performance since the GNN’s architecture is not adapted. To automat-
ically find the adequate GNN architecture is a topic of Automated Machine
Learning (Auto-ML), and its incorporation in this platform will come with ad-
ditional time costs which will, in turn, influence the waiting time of the users in
favour of performance and better xAI results.

The main reason federation is used, is for the central model to learn
something from the different local models, trained with their datasets.
Comparing the performance of the local models with the central
model: what are the differences there?
It does make a considerable difference whether we test the federated global model
on an independent global test data set, or on multiple client-specific test data
sets (see [60]). It still needs to be investigated which scenario is most relevant
and why these two cases differ so much in terms of the performance of the global
model.

5 Conclusion and Future Outlook

The plethora of work in FL shows that it is quite multi-faceted. In the proposed
research work triggering a retrain may change the parameters of the local GNN
model completely and thereby also influence the central model substantially. If
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the federation process has “matured” substantially, meaning that the number
of clients is sufficient and the overall FL system has been working with a good
performance for a long time, one would like that a new client, influenced by the
actions of a user is not substantially perturbed immediately. Therefore ideas in
the direction of online federation learning have emerged, which resemble already
known solutions that combine local and global embeddings for similar purposes
[45]. Future work can also go into the direction of recognizing unusual user
behaviour as well as the recommendation of counterfactual actions that were
proven to provide substantial insights to other users as well.

Until now, xAI methods that were used (GNNExplainer, PGExplainer, GC-
explainer) return relevant values of nodes, edges and features thereof. Apart
from the fact that some fundamental principles of them need to be explained
to the users (f.e. that the GNN-LRP assigns relevance to walks and not di-
rectly to nodes and edges), the interpretation of those numerical values is a task
that the user’s mental model needs to undertake. In contrast to that, explana-
tions in the form of rules, provide a completely different user experience and
understanding. It would be interesting to research how Logical Rules (e.g. with
Prolog) guide the selection of counterfactuals [17], similarly or differently with
the numerical relevance values. Furthermore, a framework that asks the users
about their preconceived notions as far as what parts of the input data should
be important, before seeing xAI results is worthwhile studying. The comparison
of users’ reactions after confronting relevant values vs. uninfluenced opinions
derived from their knowledge before any interaction could uncover interesting
effects of human-AI interaction.

6 List of Abbreviations

AI = Artificial Intelligence
CLARUS = interaCtive expLainable plAtform for gRaph neUral networkS
DNA = Deoxyribo-Nucleic Acid
FC = FeatureCloud (EU Project)
GDPR = General Data Protection Regulation
GNN = Graph Neural Network
GNN-LRP = GNN Layer-wise Relevance Propagation
GPU = Graphics Processing Unit
HITL = Human-in-the-Loop
IG = Integrated Gradients
i.i.d. = Independent and identically distributed
LRP = Layerwise Relevance Propagation
MI = Mutual Information
ML = Machine Learning
mRNA = messenger Ribo-Nucleic Acid
OOD = Out-Of-Distribution
PGM = Probabilistic Graphical Model Explainer
UI = User Interface
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xAI = explainable Artificial Intelligence
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