
Deliverable 6.7
“Prototypical implementation of phase 3 and evaluation results”

___________________________________

Work Package 6
“Blockchains and user right management”



D6.7 – Prototypical implementation of phase 3 and evaluation results

Disclaimer

Copyright message

Document information

Grant Agreement Number: 826078 Acronym: FeatureCloud

Full title Privacy preserving federated machine learning and blockchaining for
reduced cyber risks in a world of distributed healthcare

Topic Toolkit for assessing and reducing cyber risks in hospitals and care
centres to protect privacy/data/infrastructures

Funding scheme RIA - Research and Innovation action

Start Date 1 January 2019 Duration 60 months

Project URL https://featurecloud.eu/

EU Project Officer Christos Maramis, Health and Digital Executive Agency (HaDEA)
Project
Coordinator Jan Baumbach, University of Hamburg (UHAM)

Deliverable D6.7 – Prototypical implementation of phase 3 and evaluation results

Work Package WP6 – Blockchains and user right management

Date of Delivery Contractual 31/12/2023 Actual 19/01/2024

Nature Report Dissemination
Level Public

Lead Beneficiary SBA

Responsible
Author(s) Walid Fdhila (SBA) and Rudolf Mayer (SBA)

Keywords Blockchains, user rights, consent management, patient consent, GDPR
compliance, non-expert users, global discovery, metadata

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 2 of 50

https://featurecloud.eu/


D6.7 – Prototypical implementation of phase 3 and evaluation results

History of changes

Version Date Contributions Contributors (name and institution)

V0.1 30/11/2023 First draft Walid Fdhila (SBA)

V0.2 21/12/2023 Comments Sandor Fejer (Egnosis)

V0.3 22/12/2023 Addressing comments Walid Fdhila (SBA)

V0.3 01/12/2023 Comments Rudolf Mayer (SBA)

V0.3 02/01/2023 Addressing comments and
internal review Walid Fdhila (SBA)

V1.0 19/01/2024 Final edits and approval for
submission

Nina Donner (concentris)
Jan Baumbach (UHAM)

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 3 of 50



D6.7 – Prototypical implementation of phase 3 and evaluation results

Table of Content

1 Table of acronyms and definitions 5
2 Objectives of the deliverable based on the Description of Action (DoA) 6
3 Executive Summary 6
4 Introduction (Challenge) 6
5 Methodology 7
6 Results 7

6.1 Overall FeatureCloud Architecture 7
6.2 Certificate Authorities 8
6.2.1 Identity Registration 9
6.2.2 Identity Enrollment 9

6.2.3 Illustration of a FeatureCloud Participant Configuration 9
6.2.4 Identity Registration and Enrollment Process 10

6.3 Network Deployment 13
6.4 Smart Contract Deployment 16

6.4.1 Consent Contract 16
6.4.2 MLStudy Contract 21
6.4.3 Chaincode Deployment 23

6.5 Integration and Client Application of the FeatureCloud Blockchain Network 24
6.5.1 Architecture Overview 24
6.5.2 RESTful Integration with the FeatureCloud platform 26
6.6 Command Line Interface (CLI) 28
6.7 Web Application 32
6.7.1 Web Authentication 32
6.7.2 Home view and consent management Features 36
6.8 FeatureCloud Blockchain operator 46
6.9 Technology Stack used for FeatureCloud blockchain 47

7 Deviations 48
8 Conclusion 48
9 References 48
10 Other supporting figures 49

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 4 of 50



D6.7 – Prototypical implementation of phase 3 and evaluation results

1 Table of acronyms and definitions
ABAC Attribute-Based Access Control
AC Access Control
API Application Programming Interface
CA Certificate Authority
CID Consent Identifier
CLI Command Line Interface
concentris concentris research management gmbh
D Deliverable
gRPC gRPC Remote Procedure Call
IBAC Identity-Based Access Control
JSON JavaScript Object Notation
JWT JSON Web Token
LPM Local Project Manager
ML Machine Learning
MSP Membership Service Provider
MS Milestone
NodeOU Node Organizational Unit
Patients In this deliverable, we use the term “patients” for all research subjects. In

FeatureCloud, we will focus on patients, as this is already the most vulnerable
case scenario and this is where most primary data is available to us.
Admittedly, some research subjects participate in clinical trials but not as
patients but as healthy individuals, usually on a voluntary basis and are
therefore not dependent on the physicians who care for them. Thus, to
increase readability, we simply refer to them as “patients”.

PID Patient Identifier
PKI Public Key Infrastructure
RBAC Role-Based Access Control
REST Representational State Transfer
SBA SBA Research Gemeinnützige GmbH
SDK Software Development Kit
SMPC Secure Multi-Party Computation
TLS Transport Layer Security
UHAM University of Hamburg
UI User Interface
YAML YAML Ain't Markup Language
WP Work package

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 5 of 50



D6.7 – Prototypical implementation of phase 3 and evaluation results

2 Objectives of the deliverable based on the Description of Action
(DoA)

The objective of this deliverable is based on the description of action, which incorporates aspects
from all Objectives 1 to 4 and thus are part of the corresponding tasks 1 to 4 in work package 6.

“Based on this academic research SBA will construct a prototype that can be verified and tested
with actual information. Required changes will thereby be fed back into the construction phase.”
“During the prototype phase, it will also be considered which level of detail will be appropriate for
non-expert users in order to be able to use the FeatureCloud platform (MUG, TUM).”

3 Executive Summary
Deliverable D6.7 is the culmination of Work Package 6's comprehensive efforts, incorporating
insights from related tasks and feedback from other Work Packages. D6.7 specifically builds and
iterates over the prototypical implementation described in D6.4 with additional features and an
accessible user interface. The final prototype reflects an iterative process that adheres to a
comprehensive methodology including the design, development, and deployment of a
permissioned blockchain solution using Hyperledger Fabric [1], and encompassing requirement
analysis and threat modeling. The proposed blockchain solution enables patients to manage their
consents, and participants in federated machine learning of healthcare data to secure their audit
processes. A multi-organization test network has been established, featuring certificate authorities,
peer nodes, and orderer nodes. While peer nodes maintain ledgers, execute smart contracts, and
manage transaction proposals and endorsements, orderer nodes are responsible for ordering
transactions, ensuring consensus among peers. The deployment includes multiple smart contracts
(chain codes) facilitating the effective management of consents and machine learning studies,
made conveniently accessible through REST services. To enhance user accessibility, especially for
patients less familiar with technology, a web application has been integrated with security
measures in mind. The prototype was also integrated with the FeatureCloud platform.

4 Introduction (Challenge)
Training machine learning models in healthcare poses significant challenges, particularly when
data crucial for training is dispersed among several health care providers such as hospitals, each
potentially located in different jurisdictions. The conventional approach of transferring and centrally
processing data poses legal and privacy concerns. Federated learning, unlike traditional statistical
and machine learning methods, allows local execution of ML algorithms directly at the data holders’
sites, avoiding the need for centralizing sensitive healthcare data. This approach not only
enhances confidentiality and addresses privacy concerns by avoiding the centralization of sensitive
data, but also aligns with legal and technical constraints such as GDPR regulations (e.g., Art. 25
GDPR; Data protection by design and by default) [2]. However, this federated process introduces
its own set of challenges, including the need for ensuring the integrity of the learning process and
preventing malicious behavior. Because the data stays local, outsiders can't easily check if the
learning process was performed correctly. This opens the door to problems like hospitals using
unauthorized data or faking information. In this context, the focus shifts to mechanisms that can
verify the accuracy, integrity and compliance of results without compromising individual data
privacy.

In this context, the integration of blockchain technology becomes crucial, providing a potential
solution to enhance the security and reliability of federated machine learning processes.
Blockchain, with its attributes like traceability, integrity and immutability, can serve as an immutable
audit trail. Its decentralized and chronological timestamping capabilities act as a strong defense

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 6 of 50

https://www.zotero.org/google-docs/?ObL39Z
https://www.zotero.org/google-docs/?nsr2l9


D6.7 – Prototypical implementation of phase 3 and evaluation results

against later attempts to tamper with data, significantly improving the overall security of federated
machine learning of healthcare data.

5 Methodology
The development of the prototype for securing the audit process and managing consents follows
an iterative and incremental methodology. It starts with a comprehensive analysis of requirements,
identifying potential threats in the existing system design and implementing mitigations. The initial
prototype undergoes continuous refinement to accommodate design, architectural, and integration
changes. This iterative approach spans the design, development, and deployment phases,
focusing on a permissioned blockchain solution using Hyperledger Fabric. To enhance
accessibility, smart contract functions are made conveniently accessible through a web API for
patient consent management, and REST services for seamless integration with the FeatureCloud
platform.

6 Results
This section outlines the main results of the prototype implementation, building upon the findings
and prototype in D6.4, and emphasizing key components. It represents an incremental evolution,
refining existing features and introducing novel components essential for enhancing user
accessibility. Subsequent sections explore these additions, providing a comprehensive
understanding of the latest iteration of the prototype.

For the sake of making the deliverable self-contained, relevant figures or text parts from prior
deliverables are incorporated or reused when beneficial.

6.1 Overall FeatureCloud Architecture

In the FeatureCloud approach, participant data and consents are securely stored on-site where
they are collected (cf. Figure 1). Throughout federated machine learning (ML) studies, the ML
algorithm operates only locally, sharing solely the output model (federated learning, FL). This
ensures that confidential patient data and consents remain within each site's storage. Each site
employs a FeatureCloud controller overseeing local execution, whereas the coordinator controller
orchestrates the global workflow. The FeatureCloud system integrates a global API for project
details and an AI store for making FeatureCloud apps available. A trust framework, consisting of
accredited entities, sets up governance rules and facilitates the onboarding of new members.

In the following, our attention turns to the FeatureCloud blockchain prototype, where we will
discuss its key components in detail.

FeatureCloud participants can choose to either operate their own blockchain nodes or obtain
accreditation to leverage the infrastructure. Smart contracts are deployed on peer nodes, handling
the management of both patient consents and ML studies. Access to smart contract functions is
facilitated through REST services hosted on each participant, either directly or via a web API. A
user-friendly interface caters to novice users, enabling them to easily manage their consents.
Additionally, patients have the option to handle their own cryptographic keys (e.g., X.509
certificates) and directly interact with the blockchain, bypassing the need to go through a
participant in the FL, such as a hospital.

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 7 of 50



D6.7 – Prototypical implementation of phase 3 and evaluation results

Figure 1. Overall featureCloud architecture

6.2 Certificate Authorities

In a Fabric network, establishing unique and secure identities is fundamental for ensuring secure
communication channels, and the integrity and controlled access of participants within the network.
These identities play a crucial role in defining roles, permissions, and interactions across the
network. In FeatureCloud, we have chosen to employ certificate authorities instead of the default
keying material generation library, "cryptogen". This approach ensures that each organization
within FeatureCloud possesses its own dedicated Certificate Authority (CA) responsible for
generating identities for users within that organization. Specifically, we utilize the built-in Fabric
CAs as root CA providers, thereby facilitating the creation of Membership Service Providers (MSP)
structures. MSP are configuration folders that define organizational membership and roles,
specifying accepted Certificate Authorities (CAs) and assigning privileges like admin or peer. It
plays a crucial role in validating identities, listing members, and determining their roles and
permissions within the network.
We have deployed two separate CAs for each FeatureCloud participant: i) an enrollment CA
responsible for generating identities for organization administrators, MSPs, peer or orderer nodes,
and users, and a ii) TLS CA which issues identities to nodes for securing communications through
Transport Layer Security (TLS). The TLS CA is deployed first, and its root certificate is utilized
during the bootstrapping of the enrollment CA. This TLS certificate is exclusively utilized for issuing
certificates for nodes. Users typically register and enroll with the enrollment CA, while nodes
undergo registration and enrollment with both the enrollment and TLS CAs.

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 8 of 50



D6.7 – Prototypical implementation of phase 3 and evaluation results

While FeatureCloud currently utilizes X.509 certificates as identities, it is important to highlight that
the system is designed to be adaptable, allowing for the potential integration of alternative identity
forms such as decentralized identifiers and verifiable credentials, as detailed in deliverable D6.4.
Furthermore, as outlined in D6.4, there is an option to leverage trusted Certificate Authorities (CAs)
external to an organization or participant, rather than relying solely on locally deployed CAs. It's
worth noting that patient identities generated by local CAs differ from global identities assigned by
external CAs, such as those held by health ministries or insurance companies.
Once a CA admin is enrolled, the generation of client and node identities within the FeatureCloud
blockchain network involves two key steps: Registration and Enrollment.

6.2.1 Identity Registration

In the registration process, vital information about the entity, whether it's a user or a node, is
submitted to the Certificate Authority administrators. The administrators verify the information,
assign roles, affiliations, and attributes, and issue a unique enrollment ID and secret, establishing a
distinctive identifier for the entity within the network.

6.2.2 Identity Enrollment

Enrollment is the process where certificates are created and handed to the user of the identity.
After successful registration, entities, whether users or nodes, use their own Fabric CA clients with
the provided enrollment ID and secret to trigger the Certificate Authority. The process yields a
public/private key pair encoded with the roles and attributes assigned by the CA admin. The
enrolled identity can now actively participate, sign transactions, and fulfill its designated role,
maintaining the security integrity of the network. Importantly, private keys remain secure,
accessible only to the user of the identity, maintaining a robust security posture within the network.

A key advantage of client-initiated enrollment is the increased confidentiality surrounding private
keys. Traditionally, administrators are actively involved in the enrollment process, potentially
exposing them to sensitive cryptographic material. With client-initiated enrollment, the entity
manages the process autonomously, ensuring that administrators remain unaware of the private
keys associated with the enrolled identity. This confidentiality adds an extra layer of security to the
overall network architecture.

As discussed in previous deliverables (D6.2, D6.3, D6.4), in FeatureCloud, there are two
fundamental designs catering to users with varying technical expertise. Users with limited tech
experience can opt for client-initiated enrollment, allowing them to manage their cryptographic
keys. Conversely, novice users, like those relying on hospitals for key management, can leverage
administrator-initiated enrollment. In the latter case, the associated keys remain on the participant
site, and an accessible user interface with a classical login/password mechanism enables patients
to access provided services, such as smart contracts for managing consents.

6.2.3 Illustration of a FeatureCloud Participant Configuration

Figure 2 provides a sample configuration file of a FeatureCloud participant. This file defines a set
of identities and their associated attributes necessary for the registration and enrollment
processes. This configuration includes specified roles such as patient, auditor, and doctor, along
with corresponding Node Organizational Units (NodeOUs). NodeOUs, integral to Membership
Service Providers (MSPs), play a crucial role in categorizing nodes into Fabric specific roles, i.e
clients, admins, peers, and orderers. This classification enforces an organizational structure,
allowing each node to fulfill its distinct responsibilities within the FeatureCloud blockchain network.

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 9 of 50



D6.7 – Prototypical implementation of phase 3 and evaluation results

Within this organizational framework, roles offer a more detailed breakdown within the NodeOU
structure, enabling a client node, for instance, to assume roles like patient or auditor.

Figure 2. Sample configuration file of a FeatureCloud participant

6.2.4 Identity Registration and Enrollment Process

In FeatureCloud, participants initiate the identity creation process by enrolling the Certificate
Authority (CA) admin (cf. Figure 3). Subsequently, the generation of Membership Service Provider
(MSP) configuration takes place, outlining the roles and responsibilities of nodes within the
organization. Following this, entities, representing users/clients, org admins, or peer and orderer
nodes, undergo registration, leading to the creation of their dedicated MSPs. This includes the
generation of Peer MSPs, which are customized to accommodate the specific attributes and roles
assigned to each entity.

As mentioned earlier, following the registration (not depicted in Figure 3), the enrollment process in
FeatureCloud can be carried out either by the admin or by the entities themselves, depending on
the specific use case. Note that peer and orderer nodes also need to be registered with the TLS
CA of their respective organizations for securing the communication within the network. Network
participants can choose to include only peer nodes, orderer nodes, or a combination of both.

Figure 3. Identities Registration process with a CA

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 10 of 50



D6.7 – Prototypical implementation of phase 3 and evaluation results

The script segments presented in Figures 4-6 showcase the process of creating organizational
identities. This involves the registration of new entities, including peers, admins, and users, as well
as the generation of their corresponding Membership Service Providers (MSPs). The function is
designed to receive a JSON configuration file, encapsulating essential configuration details (cf.
Figure 4).

Figure 4. Organization Identities creation script snippet

Figure 5. Entity registration script snippet

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 11 of 50



D6.7 – Prototypical implementation of phase 3 and evaluation results

Figure 6. MSP generation script snippet

Figures 7-8 present the client implementation dedicated to enrolling organizational identities.
Figure 7 provides part of the Java code responsible for executing the identity enrollment process.
The subsequent figure complements this by revealing a snippet of the script used to invoke the
client application. The enrollment process is possible via command-line invocation of the JAR file,
but a REST service implementation is also available.

Figure 7. Client implementation snippet of the enrollment process

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 12 of 50



D6.7 – Prototypical implementation of phase 3 and evaluation results

Figure 8. Identity enrollment script snippet 1

The provided screenshots in Figure 9 illustrate a sample Membership Service Provider (MSP)
folder structure for a participant. In this scenario, the participant assumes responsibility for
overseeing all associated private keys on behalf of users.

Figure 9. Sample MSP structure

6.3 Network Deployment

Once cryptographic identities are established, participants in the network start the process of
configuring and deploying their peer and orderer nodes. The distinction between these two types of
nodes lies in their roles and functionalities. Peer nodes engage in maintaining the ledger,
endorsing transactions, and committing blocks to the blockchain, while orderer nodes focus on
managing the ordering service, i.e., defining the consensus algorithm, and organizing the
sequence of transactions.

This deployment process involves detailed configuration steps for each node type. Participants
configure network and database settings (e.g., peer address, external endpoints, tls, couchDB),
logging configurations, and paths to cryptographic materials. Additionally, each participant
designates an anchor peer, a pivotal element facilitating cross-organizational communication and
endorsing transactions.

For orderer nodes, further configuration is necessary. This includes defining the consensus
algorithm to employ, configuring batch sizes, and establishing policies for transaction ordering. In
the network channel configuration, participants finalize details such as policies, access control

1 Disclaimer: The organization names used in this deliverable (e.g.m, uni-wien) are illustrative examples and
do not represent real participants in the FeatureCloud Blockchain network. They are included for
demonstration purposes.

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 13 of 50



D6.7 – Prototypical implementation of phase 3 and evaluation results

rules, and endorsing peer specifications. A channel in Hyperledger Fabric is an isolated ledger
exclusive to a set of organizations, inaccessible to entities outside that channel. A Fabric network
can support multiple distinct channels. A well-structured network channel is imperative for
regulating interactions among diverse participants within the network. In FeatureCloud, the Raft
consensus algorithm is used for ordering service nodes, following a “leader and follower model, in
which a leader is dynamically elected among the orderer nodes in a channel [3].

Figure 10. Sample docker file for a peer node

The deployment process extends to defining and enforcing endorsement policies for chaincode.
This step ensures that the required number of peers endorses transactions, thereby validating their
legitimacy. These configuration and policy-setting steps are very important and collectively
contribute to the network's overall security and reliability. Below, we outline the essential steps for
initiating the blockchain network, assuming the prior generation of organizational definitions,
configuration files, and Membership Service Providers (MSPs).

Blockchain Network Initialization Process Overview:

1) In the initial step, the channel administrator is designated, involving the selection of at
least one peer organization, to exchange private transactions across multiple organizations.

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 14 of 50

https://www.zotero.org/google-docs/?KQTAcP


D6.7 – Prototypical implementation of phase 3 and evaluation results

This requires the creation of peer organization MSP definitions, with at least one
specification in the configtx.yaml file.

2) Following the administrator designation, the orderers and peer nodes are independently
started by their respective organizations. Notably, this initialization occurs without
channels. Communication between nodes remains inactive until a channel is created in the
subsequent steps. A visual representation of this process is shown in Figure 10, extracted
from the Dockerfile of one participant “uni-wien.featurecloud”.

3) The next phase involves the generation of the genesis block for the new channel. This
task is performed by the designated administrator peer using the configtxgen tool provided
by Hyperledger Fabric and the configuration file “configtx.yaml”.

4) With the genesis block created, the activation of the channel is effectively carried out by
the first orderer node that receives the channel join request. Full operational status is not
achieved until a quorum of consenters (orderer nodes participating in the consensus
mechanism on a channel) is established, allowing additional nodes to join from either the
genesis block or the latest config block.

5) The final stage revolves around peers joining the channel. This includes the process of
joining peers, configuring anchor peers, and, if necessary, submitting a channel
configuration update for the inclusion of a new peer organization. For those initially
included, peers can fetch the channel genesis block using the peer channel fetch
command. Subsequently, they join the channel, facilitating the construction of the
blockchain ledger from the ordering service.

Figure 11. Deployed nodes

This process will result in the deployment of nodes from each organization, rendering the network
fully operational. Illustrated in Figure 11 are the nodes belonging to the participant "uni-wien" within
the featureCloud blockchain network. These figures primarily showcase the containers for its
corresponding Certificate Authority (CA), peer, and database. In this example, "uni-wien" is also
integrated into the featurecloud_net network. When deploying the network across multiple hosts,
such as through Kubernetes or Docker Swarm, meticulous attention must be paid to the precise
addresses, ports, and name resolution. At this stage, the network is fully operational, with all
nodes successfully joined to the FeatureCloud channel (cf. Figure 12). However, it's important to
note that no chain code has been deployed as of yet. The next crucial step (see Section 6.4)
involves the deployment of chain code to enable smart contract execution and interaction among
the interconnected nodes.

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 15 of 50



D6.7 – Prototypical implementation of phase 3 and evaluation results

Figure 12. The FeatureCloud blockchain network

6.4 Smart Contract Deployment

In this following section, we offer a brief overview of FeatureCloud's main smart contracts and
outline enhancements made to their design, building upon insights from prior deliverables,
particularly D6.4. For a comprehensive understanding of the core functionalities, please refer to
earlier deliverables (D6.2, D6.3, D6.4). The focus in this deliverable is on clarifying and presenting
the improvements made to the design.

6.4.1 Consent Contract

A consent in FeatureCloud serves as an explicit approval from a patient for having their healthcare
data used in designated studies. Patients can issue consents through digital means or paper
signatures, and in certain cases, trusted third parties can digitally sign consents on behalf of
patients. While the actual consents are stored locally at each participant's site for efficiency, they
are also committed to the blockchain to establish a transparent and traceable record.

The consent contract, functioning as a smart contract, coordinates operations related to patient
consents for healthcare data usage, encompassing actions like consent issuance, update, and
revocation. This orchestration enables transparent tracing and auditing of these operations,
ensuring a secure and transparent consent management system.

The recent enhancements to the consent contract implementation introduces a notable
improvement to access controls for managing consents and user identities, moving beyond the
previous implementations of isOwner and hasRole. The refined access control mechanisms now
incorporate a more comprehensive set of controls and permissions. Specifically, the smart contract
introduces explicit methods for granting and revoking permissions, allowing for a more granular
and flexible management of access rights. The refined implementation of the smart contract
aligns closely with the design principles outlined in Section 5 of deliverable D6.4. The introduced
access controls play a pivotal role in improving the security of the system by preventing
unauthorized access and manipulation of patient consents. Furthermore, the enhanced access
control mechanisms provide the flexibility to explicitly grant specific users (such as a unique doctor

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 16 of 50



D6.7 – Prototypical implementation of phase 3 and evaluation results

identifier) or roles (for instance, all administrators of a specific hospital) the authority to perform
actions on behalf of the patient.

The class diagram of Figure 13 illustrates the key components of the consent management
process. The ConsentContract class serves as the central entity, providing essential
functionalities for managing consents and facilitating the registration of identities.

ConsentContract Class: The ConsentContract embodies the core features necessary for
consent management. Beyond its primary role in managing consents, it also accommodates the
registration of identities, necessary for the integration of new participants (e.g. also client apps or
users) into the FeatureCloud Blockchain ecosystem. The class acts as a central hub orchestrating
the secure and efficient management of consent-related operations, and responsible for facilitating
interactions between the client applications and the blockchain . It includes all functions of type
transaction.

PermissionManager Class: The PermissionManager class oversees access permissions to
the ConsentContract. It manages user, patient, and consent permissions, employing distinct data
structures for each category. With a focus on security, the PermissionManager combines
Role-Based Access Control (RBAC), Identity-Based Access Control (IBAC), and Attribute-Based
Access Control (ABAC). This multi-layered approach ensures a fine-grained and flexible system for
managing permissions within the ConsentContract.

Key Functionalities of the permission management components of our smart contract include:

1. Granular Access Control: the chaincode implements attribute-based access controls in
specific functions, allowing for the verification of critical user attributes, such as the
organizational affiliation (org) extracted from the x509 certificate. This attribute-based
approach enhances the precision of access permissions.

2. Permission Granting and Revocation: PermissionManager orchestrates the granting and
revocation of permissions, offering a dynamic and adaptable system. This feature ensures
that access privileges can be flexibly adjusted based on evolving requirements or changing
organizational structures, e.g. granting auditors access to specific patient consent history.

3. Role-Based Access Control (RBAC): RBAC is a fundamental aspect of the access
control model implemented by the PermissionManager. In RBAC, users are assigned
roles, and permissions are associated with these roles. The key technical components
include:

a. Role Assignment: Users are assigned specific roles based on their organizational
responsibilities or functional roles within FeatureCloud. Such roles are encoded
within the identities issued to users (e.g., x509 certificates). Roles are predefined
and associated with certain permissions related to consent management.

b. Role Verification: The class includes mechanisms for verifying user roles, a
fundamental aspect of access control. This capability ensures that only users with
designated roles can execute specific operations, reinforcing the principle of least
privilege. Before executing certain operations, the PermissionManager verifies that
the calling user has the requisite role to perform the action. This involves checking
the user's identity against the roles assigned to determine if the user has the
necessary privileges.

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 17 of 50



D6.7 – Prototypical implementation of phase 3 and evaluation results

Figure 13. Class diagram for the consent management process2

4. Identity-Based Access Control (IBAC): IBAC complements RBAC by introducing
identity-based controls. In this model, access permissions are directly associated with
individual user identities. The technical aspects include:

a. Identity-based Permissions:
i. Users are granted specific permissions based on their unique identity.

ii. This allows for more fine-granular control, especially in scenarios where
individual users need specific privileges outside their assigned role.

b. Permission Granting and Revocation:
i. The PermissionManager facilitates the dynamic granting and revocation

of permissions on an individual basis.

ii. This ensures that changes in user responsibilities or status can be
immediately reflected in the access control system.

5. Attribute-Based Access Control (ABAC): ABAC introduces an additional layer of control
by considering attributes associated with users. In the context of consent management, a
crucial attribute is the organizational affiliation (org) extracted from the x509 certificate. The
technical aspects include:

a. Attribute Verification:
i. The chaincode checks specific attributes, such as the organizational

affiliation, to make nuanced access decisions.

2 *Note: The diagram has been simplified for readability, and certain details, including utility methods and
additional functions, have been omitted. This simplification is intended to highlight the main system
architecture and functionality.

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 18 of 50



D6.7 – Prototypical implementation of phase 3 and evaluation results

ii. For example, certain operations might be restricted to users affiliated with a
particular organization.

b. Dynamic Attribute Policies:
i. Policies based on attributes can be dynamically adjusted to accommodate

changes in organizational structures or requirements.
ii. This ensures adaptability and responsiveness to evolving access control

needs.

6. Ownership Validation: Beyond the access control models mentioned, ownership
validation is a critical technical aspect. The PermissionManager rigorously validates
whether a user has ownership rights over specific resources (e.g., consents). This involves
cross-referencing the caller's identity with the ownership information associated with the
resource.

Detailed Design Process: For an in-depth understanding of the design rationale, refer to Section
5 of Deliverable D6.4, which provides a comprehensive walkthrough of the design process,
outlining decisions, considerations, and the underlying architecture that governs the consent
management system.

In summary, the access controls implemented by both the PermissionManager and the
ConsentContract classes combine RBAC, IBAC, and ABAC, providing a robust and adaptable
framework for managing permissions in the context of consent management.

Figure 14 depicts a snippet of the Java method grantRolePermission within the smart
contract. This method implements a transaction, marked with @Transaction(intent =
Transaction.TYPE.SUBMIT), grants role-based permissions on a specified resource after
verifying the caller's ownership. The logic includes, ownership checks, permission creation, and
ledger storage.

Figure 14. Snippet of the methods for granting a permission to a role, e.g., admin.

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 19 of 50



D6.7 – Prototypical implementation of phase 3 and evaluation results

Figure 15 showcases the transaction method updateConsent responsible for updating a patient's
consent, performing various checks, including input validity, patient and consent existence, and
permission verification. The logic involves serialization of patient data, updating the consent, and
storing the modified patient information on the ledger. Figure 16 represents the method,
canUpdateConsents, accompanying the updateConsent method. This method checks whether the
caller has the necessary permissions to update consents for a given patient and consent ID. It
involves retrieving the caller's identity and attributes, checking against the permission manager,
and evaluating permission types such as UPDATE, CREATE, and UPDATE for the specified
patient and consent. The method utilizes the method of Figure 17 of the PermissionManager
class for checking the permissions.

Figure 15. Snippets of the transaction method issue consent including permission checks.

Figure 16. Snippet of permission checks on a consent update

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 20 of 50



D6.7 – Prototypical implementation of phase 3 and evaluation results

Figure 17. Smippet of the method hasPermission of the PermissionManager

6.4.2 MLStudy Contract

The MLStudyContract in FeatureCloud helps manage the machine learning studies, ensuring that
study details, input data, and consents maintained off-chain for privacy are committed on-chain,
allowing for transparent traceability and secure auditability [4].

In FeatureCloud, ML studies, for which the workflow and algorithms are provided by a coordinator,
undergo local execution by participants using their locally managed healthcare data. The
coordinator can invite and confirm participant additions to the study. Once the study state
transitions to "executing," participants commence executing their ML applications and push
commitments to the blockchain of updates to their local model results. This process continues until
all participant models are aggregated. Aggregation can either be performed by the coordinator, or
decentralized via Secure Multi-Party Computation (SMPC). For a comprehensive understanding of
the federated machine learning process and ML study design, please refer to [5].

The class diagram of Figure 18 outlines the essential components of the ML study management
process within FeatureCloud. The ML study permissions employ a similar approach to consent
management, combining Identity-Based Access Control (IBAC), Role-Based Access Control
(RBAC), and Attribute-Based Access Control (ABAC). In contrast to consent management, ML
studies involve a singular asset/resource – the ML study itself – resulting in a simpler permission
structure. The majority of permissions are implicitly based upon the study owner (typically the
coordinator) and, eventually, the administrators of the owner organization (derived from the 'org'
attribute in the owner's identity, i.e., the x509 certificate) or local project managers (lpm) assigned
to the study. Noteworthy exceptions include the ability to submit intermediary results (commitments
of local model results), a permission that can be selectively granted to study participants. This
distinction accounts for the relatively simplified architecture of permission management depicted in
this diagram.
MLStudyContract Class: The MLStudyContract class serves as the core smart contract for
managing machine learning studies. It incorporates functionalities for announcing studies, adding
and removing participants, changing study states, setting final results, and submitting intermediary
results. The class interfaces with the Fabric blockchain through methods that interact with the
ledger.
PermissionManager Class: The PermissionManager class helps enforce access controls
within the MLStudyContract. It handles permissions related to various operations, ensuring that
only authorized entities can perform specific actions. The class implements role-based access
control (RBAC) and identity-based access control (IBAC), allowing for definition and verification of
permissions. Table 1 summarizes a part of the permissions on ML studies and required conditions
to get them granted.

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 21 of 50

https://www.zotero.org/google-docs/?d62Qap
https://www.zotero.org/google-docs/?i3qaEZ


D6.7 – Prototypical implementation of phase 3 and evaluation results

Figure 18. Class diagram for the ML study management process

Table 1. Permissions on ML studies. (lpm: local project manager, mid: machine learning study ID)

Permission/Condition role=admin owner role=admin &&
org=owner.org

role=lpm && mid
=studyId
org=owner.org

isParticipant &&
role=admin

isParticipant
&& role=lpm
&& mid=studyId

role=auditor

canAnnounce x

canAddParticipant x x x

canRemoveParticipant x x x

canChangeState x x x

canSubmitResult x x

canSetFinalResult x x x

canGetbyMid x x x x x x

canGetAllStudies x x x x x x

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 22 of 50



D6.7 – Prototypical implementation of phase 3 and evaluation results

6.4.3 Chaincode Deployment

The Fabric chaincode lifecycle involves deploying and managing chaincode on a channel (cf.
Figure 19). The process begins with packaging the chaincode into a tar file, including a metadata
file specifying language, code path, and package label. Each organization independently packages
the chaincode. Subsequently, the chaincode package is installed on every peer that will execute
and endorse transactions, generating a package identifier. Channel members must then
collectively approve a chaincode definition, reaching consensus on parameters such as name,
version, and endorsement policy.

This approval is submitted to the ordering service by each participating organization. Once a
sufficient number of organizations has approved, one organization commits the approved
chaincode definition to the channel. This involves a commit transaction proposal sent to channel
peers, who endorse it based on their approved definitions. The transaction is submitted to the
ordering service, which finalizes the chaincode definition commitment to the channel. With the
committed definition, the chaincode container launches on installed peers, making the
chaincode available for channel members to use, subject to the specified endorsement policy. An
initiation function may be invoked if required by the chaincode definition. The lifecycle process also
accommodates chaincode upgrades. To upgrade, the chaincode can be repackaged, and the new
package installed on peers.

Figure 19. Chaincode lifecycle

In FeatureCloud, the deployment of each smart contract, such as the ConsentContract and
MLStudyContract, is carried out on every peer, adhering to the outlined process. Figure 20
presents relevant code snippets, showcasing a portion of the script responsible for deploying the
chaincode, providing an illustration of the steps involved in this process. Additionally, the
deployment of one of the smart contracts on a specific peer, "uni-wien.featureCloud.net," serves as
a practical illustration of how the deployment process is executed in a real-world scenario.

Once all participant identities are defined, and the peer and orderer nodes are deployed, the
FeatureCloud channel is joined, and all chaincodes are successfully deployed on every peer, the
FeatureCloud blockchain network is considered operational. At this point, nodes within the network
are capable of receiving transaction requests and engaging in secure communication facilitated by
TLS.

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 23 of 50



D6.7 – Prototypical implementation of phase 3 and evaluation results

Figure 20. Code snippets of chaincode deployment scripts

In the illustrated scenario (refer to Figure 21), a participant equipped with only one peer node
would involve five Docker containers. These include two for the smart contracts, namely
MlStudyContract and ConsentContract, one for the peer node, another for the ledger state, and
one more for the Certificate Authority (CA). It's worth noting that this configuration may vary in
organizations with a different number of nodes, multiple CAs, or additional smart contracts. For
more complex setups, additional containers might be deployed to accommodate operational
services or client applications (c.f. Section 6.5).

Figure 21. Docker containers for the deployed chaincodes

6.5 Integration and Client Application of the FeatureCloud Blockchain Network

In the previous sections, we covered deploying the FeatureCloud blockchain network and
implementing chaincodes governing patient consents and ML studies. In this section, our focus
shifts to the client applications, to facilitate smooth interactions with smart contracts and seamless
integration with the FeatureCloud platform.

6.5.1 Architecture Overview

The architectural framework of the FeatureCloud blockchain is comprehensively illustrated in
Figure 22. FeatureCloud participants have the flexibility to either operate their individual peer or
orderer nodes or opt for shared deployment scenarios. The latter means that participants do not
operate their dedicated peer or orderer nodes. Instead, they connect to peers belonging to other
organizations without having nodes of their own. Moreover, a participant possesses the liberty to
manage multiple peer and orderer instances, enhancing the security of the ledger.

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 24 of 50



D6.7 – Prototypical implementation of phase 3 and evaluation results

Following an iterative approach, and in order to enhance the integration capabilities of the
FeatureCloud blockchain within the broader FeatureCloud platform and improve the user
experience, we've introduced refinements to the existing system described in D7.5 and D6.4.
While the initial design enables direct interaction between the FeatureCloud (FC) controller and the
Blockchain CLI component within a local network (with the CLI deployed as a Docker container
within the FeatureCloud controller), we recognize the need for a more versatile and scalable
approach.

To address this, we have improved our integration strategy by incorporating RESTful services into
the FeatureCloud blockchain architecture. This involves exposing all chaincode functions as REST
services, leading to improved interoperability and streamlined chaincode invocations by the
FeatureCloud controller. Participants now have the flexibility to choose between invoking functions
directly through local communication channels or leveraging RESTful APIs for broader network
scenarios.

Figure 22. FeatureCloud Blockchain Architecture Overview

In Figure 22, the Hyperledger Fabric Gateway serves as an intermediary, simplifying the interaction
between blockchain client applications and the network. It grants access to blockchain networks
and Smart Contracts through a single endpoint, thereby facilitating easy submission of transactions
and ledger queries on behalf of client applications. To establish a session for a specific client
identity, the application builds and connects to a Fabric Gateway using a gRPC connection to the
Gateway endpoint.

Before Hyperledger Fabric version 2.4, interaction with the blockchain was facilitated through a
legacy Gateway SDK. This has since been replaced by the Gateway Client API 1.4, designed for
Hyperledger Fabric versions 2.4 and beyond. While the Fabric Gateway client API is now the
recommended choice for developing applications for Fabric from version 2.4 onward, the legacy
SDK continues to be supported. Since much of the FeatureCloud blockchain code predates
version 2.4, the legacy SDK was initially utilized, but transitioning to the new client API is a
straightforward process. Key differences can be found in the migration documentation [6].

In conjunction with the aforementioned enhancements, our focus extended to refining the user
interface for facilitating interaction with the FeatureCloud blockchain, considering users with
diverse technical skills. The Command-Line Interface (CLI) caters to developers and advanced
users, offering a direct and efficient way to interact with the FeatureCloud blockchain.
Simultaneously, our user-friendly web interface serves as a gateway for users less familiar with
technical details.

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 25 of 50

https://www.zotero.org/google-docs/?f43ddJ


D6.7 – Prototypical implementation of phase 3 and evaluation results

This user interface also incorporates new components for authentication and role-based
authorization, ensuring that users have access only to functionalities and views aligned with their
roles. These components dynamically shape the interface based on user permissions, offering a
tailored experience aligned with specific roles within the FeatureCloud platform.

The approach of decentralized service hosting ensures that each participant has control over their
specific services, autonomously hosting their own dedicated web API and REST services, along
with an identity management system, all protected by a robust firewall, thereby safeguarding their
services from potential external threats.

6.5.2 RESTful Integration with the FeatureCloud platform

As previously highlighted, the main FeatureCloud controller has now been extended to support
communication and integration with REST services. This extension enables the invocation of smart
contract functionalities, including the commitment and management of machine learning results
and input data (i.e., commitments). In Figure 23, a code snippet in Go illustrates the invocation of
the mlstudy/announceStudy endpoint from the main FeatureCloud controller.

Figure 23. Go snippet of study announcement invocation

Furthermore, Figures 24 and 25 depict the FeatureCloud platform's capability to facilitate the
commitment of federated learning results. Notably, an essential addition to the interface is the
introduction of the "audit" checkbox. When selected, this checkbox triggers the local storage of
data and commits corresponding hashes to the blockchain (cf. Figure 24). Additionally, if a
workflow is initiated with the "audit" checkbox enabled, the interface dynamically reveals the "Add
consent" button, providing participants with a straightforward means to upload consents for
processing the data (e.g. for machine learning) and necessary for the audit process (cf. Figure 25).
We refer to deliverable D7.5 for more details about the integration of the blockchain prototype with
the overall FeatureCloud platform.

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 26 of 50



D6.7 – Prototypical implementation of phase 3 and evaluation results

Figure 24. Blockchain integration with FeatureCloud platform

Figure 25. Blockchain integration with FeatureCloud platform

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 27 of 50



D6.7 – Prototypical implementation of phase 3 and evaluation results

6.6 Command Line Interface (CLI)

In the following, we showcase the FeatureCloud blockchain CLI, and highlight various types of
interaction and processes. Multiple CLI instances operate concurrently, with distinct participants
running them using their individual credentials. In the following screenshots, the organization
responsible for a specific CLI instance is identifiable through the connection profile used for
blockchain connectivity (e.g., “INFO: Read connection profile from:
./gateway/connection-akh-wien.yaml”).

Screenshots for Consents

Figure 26 shows the main command-line interface, executed by the participant akh-wien. It
shows the available commands for interacting with the FeatureCloud blockchain, and specifically to
the fcchannel.

Figure 26. Featurecloud blockchain cli - main interface

Figure 27 shows the registration process for a patient p0742340920. The organization
(akh-wien) is responsible for the registration. Once registered, consents can be issued or
updated on behalf of the patient. This assumes that akh-wien has the necessary permissions to
commit consent operations on behalf of the patient. In Figure 27, consent c0001V1 is initially
issued and subsequently updated. Updates may pertain to the scope of the consent or may involve

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 28 of 50



D6.7 – Prototypical implementation of phase 3 and evaluation results

revocation. Notably, the revocation is processed as an update operation, aligning with the privacy
and data protection considerations outlined in deliverable D6.5.

Figure 27. CLI - Registration process

Figure 28 illustrates the retrieval of consent information. The depicted commands include various
actions such as issuing additional consent c0001V2 (e.g., for distinct data or scope), retrieving all
consents associated with a specific patient p0742340920, obtaining the latest value of a particular
consent identified by its ID c0001V1), and accessing a detailed history of a specific consent.

Figure 28. CLI - Consent management

Screenshots of ML studies

The interaction shown in Figure 29 announces a new Machine Learning (ML) study identified as
ml4065876967. This announcement is initiated by the organization uni-wien, signaling the
commencement of the ML study. Participants, namely akh-wien and uke-hamburg, are included

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 29 of 50



D6.7 – Prototypical implementation of phase 3 and evaluation results

in the ML study ml4065876967, with the organization uni-wien overseeing the participant
addition process. To enable participants to submit interim results, uni-wien is required to
transition the study's state to executing.

Figure 29. CLI - Announcing a new ML study

In Figures 30 and 31, interim results labeled r000001 and r000002 are submitted for the
Machine Learning (ML) study ml4065876967. These submissions are independently carried out
by distinct organizations, namely akh-wien and uke-hamburg, each utilizing their own cli
instance and credentials for the submission process.

Figure 30. CLI - Submitting results by participant akh-wien

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 30 of 50



D6.7 – Prototypical implementation of phase 3 and evaluation results

Figure 31. CLI -Submitting results by participant uke-hamburg

In Figure 32, interim results labeled r000003 are attempted to be submitted for the Machine
Learning (ML) study identified as ml4065876967 by the organization akh-graz. However, the
transaction is rejected due to the organization lacking the necessary permissions to submit results
and not being listed among the participants for that particular study.

Figure 32. CLI -Submitting results by a non-participant (uni-graz)

In Figure 33, the Machine Learning (ML) study, identified as ml4065876967, transitions to the
post-processing state under the coordination of the organization uni-wien. Following this
progression, the final results (an aggregation of all local models) can be submitted by the
coordinator uni-wien. This submission marks the successful completion of the study.

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 31 of 50



D6.7 – Prototypical implementation of phase 3 and evaluation results

Figure 33. CLI -Submitting Final results

6.7 Web Application

While the invocation of smart contract functions is feasible through both the CLI and REST
services (leveraging an implemented REST connector directly exposed to the FeatureCloud
platform), it is essential to accommodate non-technical users with an accessible user interface to
easily manage their consents. To fulfill this requirement, we developed a user-friendly web
application that aligns with FeatureCloud's commitment to user accessibility. The REST services
and the web application are shielded by a firewall, adding an extra layer of protection to the entire
system. To keep data integrity and privacy, the smart contracts themselves are equipped with
access controls (cf. section 6.4) that restrict access to on-chain data and smart contract functions,
ensuring that only authorized users can interact with specific elements of the blockchain. These
security measures help safeguard user data and facilitate a user-friendly experience for patients.

6.7.1 Web Authentication

The web application incorporates authentication mechanisms to ensure secure access and
exposes RESTful endpoints, to facilitate interactions with the blockchain network, offering an
intuitive experience for users. Authentication is achieved through a standard login/password
mechanism. Upon successful authentication, a Json Web Token (JWT) is issued to the user. This
JWT serves as a secure credential, encapsulating the user's authentication details such as roles or
other associated information. Figure 34 illustrates the flow of this process. The use of JWTs offers
a stateless and scalable authentication solution. This JWT acts as a bearer token, enabling the
user to make subsequent authenticated requests without the need to re-enter their login
credentials. The token is automatically stored in the cookies of the user's browser, although it can
alternatively be saved locally and is included in the Authorization header for subsequent requests.
The server can then validate the token without the need for storing a user session state on the
server. This approach not only simplifies the user experience (e.g., better performance) but also
ensures secure and efficient interactions.

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 32 of 50



D6.7 – Prototypical implementation of phase 3 and evaluation results

Furthermore, the system allows users, particularly patients, to delegate the management of their
cryptographic keying material and certificates to trusted entities (following the process described in
Section 6.4), such as hospitals. This delegation of complexity enhances user convenience while
maintaining the security of their interactions with the blockchain network.

Overall Interaction flow:

1. User Login: The user provides credentials (e.g., username and password) to the server,
and upon successful authentication, the server responds with a JWT. The server also
selects the credentials associated with the user that subsequent requests to the blockchain
are correctly authenticated by the peers and the right permissions are given on-chain .

2. Token Storage: The client (typically a web browser) needs to store the JWT securely.
Common storage options include browser storage mechanisms like localStorage or
sessionStorage. The token is then used for subsequent requests.

3. Token Inclusion in Requests: For each subsequent request to the server, the client
includes the JWT in the HTTP headers. This is often done automatically by client-side
libraries or frameworks. The most common way is to include the token in the
Authorization header using the "Bearer" scheme.

4. Handling of the Requests: The requests are handled by the server and the transactions to
the FeatureCloud Blockchain are submitted through the gateway. Request results are then
forwarded to the user.

Figure 34. Interaction Flow

Implementation in Spring Boot:

The authentication was implemented as part of the overall Spring Boot project for the web interface
and REST services. The user triggers authentication via the web application, initiating a process
through the Filter Chain (cf. Figure 35). The Authentication Filter manages the authentication flow,
interfacing with the Authentication Manager, which, in turn, delegates tasks to the Authentication

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 33 of 50



D6.7 – Prototypical implementation of phase 3 and evaluation results

Provider. User details are retrieved from a User Repository, and successful authentication leads to
JWT token generation by a JWT Token Provider. The Authentication Filter processes the token,
and in successful cases, the Success Handler manages the response, providing the user with a
JWT token for local storage or cookie saving. Failure cases are handled by the Failure Handler.
Throughout this process, the Security Context Holder maintains the security context, ensuring the
integrity of the authentication flow.

Figure 35. Interaction flow of the authentication components

Figure 36 shows the login interface for the FeatureCloud blockchain platform. To gain access,
users are required to input their username and password. Based on their role, they will be
redirected to the respective home view (e.g., admin, patient, auditor).

Figure 36. Screenshot of the login interface

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 34 of 50



D6.7 – Prototypical implementation of phase 3 and evaluation results

Figure 37 shows the correspondent snippet of the AJAX call to the login REST service. This
snippet captures the process of setting the JWT in the cookie and subsequently redirecting to the
corresponding home view. The appropriate home view is selected and displayed to the user based
on the role used in login page (cf. Figure 38). Depending on the role, different functions are
available.

Figure 37. Ajax code snippet for login redirect

Figure 38. Java code snippet for Role-based home view redirect

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 35 of 50



D6.7 – Prototypical implementation of phase 3 and evaluation results

6.7.2 Home view and consent management Features

Figure 39 provides a snapshot of the admin role's home screen. Within this interface,
administrators have the capability to register patients, access information related to issued
consents or consent states, and execute actions such as issuing and updating consents on behalf
of the patients (given they have the right permissions).

Figure 39. Home View for an Admin role

Figure 40 shows the home screen of the auditor role. Auditors can retrieve committed consents
and ML studies, providing them with a comprehensive overview of the blockchain's recorded data.
A pivotal feature of the auditor interface is the capability to perform integrity checks. This involves a
comparison of on-chain hashes with the corresponding off-chain data hashes, ensuring the
consistency and reliability of the stored information. Moreover, auditors possess the authority to
execute updates and revocations concerning the cryptographic material linked to their identifiers.
This includes operations such as updating the hash of their public key.

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 36 of 50



D6.7 – Prototypical implementation of phase 3 and evaluation results

Figure 40. Home View for an Auditor role

Figure 41 presents the enhanced home screen for the patient role. In this interface, patients gain
increased control and functionality for managing their consents and personal information. Users
can issue, update, and revoke consents, in addition to retrieving detailed information about their
committed data, such as the history of consent changes. Alongside the ability to manage their
identifiers (e.g., p0742340920 and associated cryptographic keys; see deliverable D6.4) by
updating or revoking them, patients can now easily grant or revoke permissions for third parties to
handle their consents on their behalf, as elaborated in Section 6.4.

Figure 42 showcases a patient registration form, illustrating the creation of a new patient object
on-chain linked to the patient identifier p0002. The figure confirms the successful submission of
the transaction. At this stage, the list of consents linked to the patient object is empty.

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 37 of 50



D6.7 – Prototypical implementation of phase 3 and evaluation results

Figure 41. Home View for a Patient role

Figure 42. Admin Form for Patient Registration

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 38 of 50



D6.7 – Prototypical implementation of phase 3 and evaluation results

Figure 43 3 shows the user interface designed for consent issuance. Notably, certain fields are
conveniently prefilled based on the user's login information, streamlining the process. The system
also automatically generates a unique consent ID to ensure traceability. To initiate the consent
process, patients download a preconfigured consent template containing all legally mandated
details, such as the scope and purpose. Subsequently, patients fill in and sign the document, either
manually or electronically, before reuploading it to the system. Upon agreeing to the terms, an
automatic generation of the consent hash takes place, and users can then submit the consent. The
consent document is stored locally, while the corresponding hash is securely recorded on the
blockchain, ensuring immutability and transparency.

Figure 43. Issue Consent Interface

Figure 44 shows the JavaScript function that hashes consent documents using SHA-256. This
function automates the hashing and transaction submission process, ensuring the integrity and
security of consent-related information (e.g., to avoid errors in copying the hash). Notably, the
function integrates with the user interface, automatically populating the corresponding field with the
generated hash.

3 The user interface screenshots presented in this section were captured at various instances using
diverse simulation data. As a result, the utilization of identifiers across the screenshots may occasionally
appear inconsistent. The identifiers shown are solely for the purpose of showcasing different scenarios.

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 39 of 50



D6.7 – Prototypical implementation of phase 3 and evaluation results

Figure 44. Javascript function for hashing the consent file

Figure 45 shows the AJAX code snippet associated with the "Issue Consent" button, which invokes
the corresponding REST service. This code snippet serves as the backend logic that orchestrates
the communication between the user interface and the FeatureCloud blockchain platform.

Figure 45. Ajax call to the REST service for issuing the consent

Figures 46 and 47 depict the user interface for updating consents. The patient needs to upload the
signed document for the new consent and check all relevant boxes. The interface resembles the
issue consent interface, with the distinction that the consent identifier is already issued. If the ID
does not exist on-chain or belongs to a different user without permission, the transaction will fail
(Figure 47).

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 40 of 50



D6.7 – Prototypical implementation of phase 3 and evaluation results

Figure 46. Update Consent Form (transaction success)

Figure 47. Update Consent Form (transaction failure: consent c_5jng2y8qw does not belong to
patient p0002)

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 41 of 50



D6.7 – Prototypical implementation of phase 3 and evaluation results

Figures 48 to 50 illustrate various operations performed by an auditor, which can also be invoked
by administrators or patients with the appropriate permissions. A patient may have granted multiple
consents with different scopes, and updates may have been applied to each of these consents.
The operation in Figure 48 enables the retrieval of the latest version of all consents for a specific
patient p0001. As shown in Figure 49, the form allows for retrieving the historical versions of a
specific consent c_5jng2y8qw, while the form in Figure 50 facilitates retrieving the current value
of the same consent ID c_5jng2y8qw.

Figure 48. Auditor Role retrieving all consents of patient p0001

Figure 49. Auditor retrieving the history of consent c_5jng2y8qw of patient p0001

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 42 of 50



D6.7 – Prototypical implementation of phase 3 and evaluation results

Figure 50. Auditor retrieving current value of consent c_5jng2y8qw of patient p0001

Figure 51 presents a snapshot of the auditor interface designed for validating the integrity of
consents used in Machine Learning (ML) studies. The process begins with the auditor uploading
the consent document, triggering an automated hashing mechanism to generate the corresponding
hash. Subsequently, the auditor enters information, including the Consent ID and the date of the
study. Concurrently, the system interacts with the blockchain, retrieving the hash of the consent
value at the specified time. The retrieved hash, representing the state of the consent precisely
during the study period, is then displayed for the auditor. Clicking the "Check" button initiates a
comparison between the two values: the hash generated from the uploaded consent document and
the hash retrieved from the blockchain. The outcome of this comparison verifies whether the most
recent version of the consent was indeed utilized in the study. Auditors can also utilize the consent
history form and manually cross-reference corresponding dates.

Figure 51. Consent Integrity Check by Auditor

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 43 of 50



D6.7 – Prototypical implementation of phase 3 and evaluation results

In Figures 52 and 53, the granting permission form is illustrated, providing a visual representation
of the interaction between patient patient2@akh-wien.featurecloud.net and the
permission management features of the consent management smart contract as described in
earlier sections.

Figure 52. Patient form for granting CREATE Permission on a patient object p0002

In Figure 52, a patient with identifier patient2@akh-wien.featurecloud.net authorized user
doctor2@akh-wien.featurecloud.net, possibly identified as a doctor or a trusted individual,
to manage consents on their behalf. This expansive permission encompasses the ability to create
new consents, as well as update or revoke existing ones, illustrating a use case tailored for
patients with limited technological proficiency.

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 44 of 50



D6.7 – Prototypical implementation of phase 3 and evaluation results

Figure 53 depicts a scenario where patient patient2@akh-wien.featurecloud.net narrows
the authorization, granting permission to all administrators affiliated with
akh-wien.featurecloud.net, to oversee a specific consent with the identifier c_6tmthv15v
is restricted solely to update operations on the specified consent.

Figure 53. Patient form for granting UPDATE Permission on a consent

The screenshot of Figure 54 illustrates the user interface designed for updating the identifier of the
user with the email address patient2@akh-wien.featurecloud.net. The purpose of this
operation is to replace the old public key linked to the user's identifier with a new one. To ensure
the legitimacy of this update and prove ownership of the new public key, a signature is generated
using the SHA256 algorithm with the ECDSA (Elliptic Curve Digital Signature Algorithm) over both
the hash of the old key and the new public key, utilizing the corresponding new private key. This

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 45 of 50



D6.7 – Prototypical implementation of phase 3 and evaluation results

process is implemented to prevent the association of an unauthorized key with the user's identifier,
thereby maintaining control over the security of the user's information.

The signing mechanism employed for updating user identifiers can be extended to sign all other
user operations (e.g., consents), allowing them to retain control over the data they commit to the
blockchain, while specifically entrusting the interaction with the blockchain, utilizing the users'
X.509 certificates for authentication within the blockchain network, to the respective hospital. This
delegation ensures that the hospital is solely involved in blockchain-related interactions, specifically
relaying user transactions. This ensures the integrity of the data without granting unrestricted
control. Note, that Hyperledger fabric also supports offline signing of transactions where users
have the possibility to maintain their private keys external to the client application 4.

Figure 54. Update form for the user Identifier

6.8 FeatureCloud Blockchain operator

To facilitate metrics and monitoring capabilities within the FeatureCloud blockchain network, we
utilize existing tools such as i) Grafana for visualizing and analyzing metrics [7], and ii) Prometheus
for monitoring and alerting [8].

It's important to note that the accompanying screenshot in Figure 55 is provided solely for
illustrative purposes. It does not reflect the current operational state of the network and was
captured during the testing phase of the prototype."

4 https://hyperledger.github.io/fabric-sdk-node/release-1.4/tutorial-sign-transaction-offline.html

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 46 of 50

https://www.zotero.org/google-docs/?gUE6QF
https://www.zotero.org/google-docs/?okeCfk


D6.7 – Prototypical implementation of phase 3 and evaluation results

Figure 55. Screenshot of Grafana operator

6.9 Technology Stack used for FeatureCloud blockchain

The technology stack for the FeatureCloud blockchain prototype covers a range of tools for
frontend and backend development, deployment through containerization, secure data handling
with a blockchain framework, and diverse databases for various storage needs (ledger, identity
management). Additional tools such as Postman, Grafana, and Prometheus were employed for
testing, monitoring, and analytics within the FeatureCloud blockchain platform.

Table 2. Technology stack used for FeatureCloud Blockchain

Category Technology Description

Programming Languages Java 17, JavaScript, HTML, Bash Script Languages used for backend, frontend, markup, and scripting.

Web Technologies JWT, Web Security, bcrypt Secure authentication, web security, and password hashing.

Containerization and Orchestration Docker 24.0.2 Platform for containerization and application deployment.

Blockchain Framework Hyperledger Fabric 2.5 Framework for building distributed ledgers.

Backend Framework Spring Boot 4.18.1 Framework for building Java-based web applications.

Integrated Development Environment Eclipse 4.29.0 IDE for software development.

Database Technologies MySQL 8.0.33, CouchDBc3.3.2 Relational and NoSQL databases for data storage.

Blockchain Gateway Gateway SDK Software Development Kit for interacting with blockchain.

API Development and Testing Postman Tool for API testing.

Monitoring and Analytics Grafana 2.3.4, Prometheus V2.32.1 Open-source analytics and monitoring platform.

Configuration and Data Formats JSON, YAML Formats for configuration and data serialization.

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 47 of 50



D6.7 – Prototypical implementation of phase 3 and evaluation results

Category Technology Description

Communication Protocols gRPC, TLS, x509 Protocols for secure communication.

Shell Scripting Bash Scripting language for command-line tasks.

JavaScript Library AJAX Library for asynchronous web requests.

Operating System Ubuntu 18.04 and 22.04 Operating system used for development and deployment.

7 Deviations
In compliance with rigorous privacy and data protection rules (e.g., GDPR), the FeatureCloud
blockchain platform refrains from storing actual consents directly on the blockchain, as outlined in
deliverables D6.5 and D6.2. Instead, a decision has been made to commit all consent
management operations on-chain. While sensitive consents are not stored directly on the
blockchain, this method ensures that crucial consent-related actions are executed and documented
on the immutable ledger. Through this approach, FeatureCloud enhances its audit processes,
establishing a transparent and secure framework for monitoring and validating consent-related
activities. This design aligns with the privacy considerations and the imperative for a verifiable and
accountable consent management system.

8 Conclusion
Deliverable D6.7 builds upon the foundational work of D6.4, and introduces substantial
enhancements to the FeatureCloud blockchain solution. This iteration refines the prototype for
securing federated machine learning processes, with an emphasis on a user-friendly interface.
D6.7 presents the steps of designing, developing, and deploying the FeatureCloud blockchain
solution using Hyperledger Fabric. The refined prototype not only enhances existing features but
also introduces new capabilities, and more complex access controls. Smart contract functions for
patient consent management are made accessible through both a web application and REST
services, prioritizing a user-centric approach.

9 References
[1] “https://www.hyperledger.org/projects/fabric.”
[2] “https://gdpr-info.eu/.”
[3] “https://hyperledger-fabric.readthedocs.io/en/latest/orderer/ordering_service.html#raft.”
[4] W. Fdhila, N. Stifter, and A. Judmayer, “Challenges and Opportunities of Blockchain

for Auditable Processes in the Healthcare Sector,” in Business Process Management:
Blockchain, Robotic Process Automation, and Central and Eastern Europe Forum, 2022, pp.
68–83. doi: 10.1007/978-3-031-16168-1_5.

[5] J. Matschinske et al., “The FeatureCloud Platform for Federated Learning in Biomedicine:
Unified Approach,” J. Med. Internet Res., vol. 25, p. e42621, Jul. 2023, doi: 10.2196/42621.

[6] “https://hyperledger.github.io/fabric-gateway/migration#event-reconnect.”
[7] “https://grafana.com/.”
[8] “https://prometheus.io/.”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 48 of 50

https://www.hyperledger.org/projects/fabric
https://www.zotero.org/google-docs/?OF8FmI
https://gdpr-info.eu/
https://www.zotero.org/google-docs/?OF8FmI
https://www.zotero.org/google-docs/?OF8FmI
https://hyperledger-fabric.readthedocs.io/en/latest/orderer/ordering_service.html#raft
https://www.zotero.org/google-docs/?OF8FmI
https://www.zotero.org/google-docs/?OF8FmI
https://www.zotero.org/google-docs/?OF8FmI
https://www.zotero.org/google-docs/?OF8FmI
https://www.zotero.org/google-docs/?OF8FmI
https://www.zotero.org/google-docs/?OF8FmI
https://www.zotero.org/google-docs/?OF8FmI
https://www.zotero.org/google-docs/?OF8FmI
https://hyperledger.github.io/fabric-gateway/migration#event-reconnect
https://www.zotero.org/google-docs/?OF8FmI
https://www.zotero.org/google-docs/?OF8FmI
https://grafana.com/
https://www.zotero.org/google-docs/?OF8FmI
https://www.zotero.org/google-docs/?OF8FmI
https://prometheus.io/
https://www.zotero.org/google-docs/?OF8FmI


D6.7 – Prototypical implementation of phase 3 and evaluation results

10 Other supporting figures

The following figures are additional snippets of methods within the implemented chaincodes.

Figure 56. Issue Consent Transaction Method

Figure 57. Issue Consent Transaction Method

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 49 of 50



D6.7 – Prototypical implementation of phase 3 and evaluation results

Figure 58. Issue Consent Transaction Method

Figure 59. Issue Consent Transaction Method

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 50 of 50


