

Deliverable 7.7
Report on implementation of assessment,
requirement criteria, and “stress testing”

Work Package 7

Integrated FeatureCloud health informatics platform and app store

Privacy preserving federated machine learning and
blockchaining for reduced cyber risks in a world of
distributed healthcare

This project has received funding from the
European Union’s Horizon 2020 research and
innovation programme under grant
agreement No 826078.

D7.7 – Report on implementation of assessment,
requirement criteria, and “stress testing”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 2 of 86

Disclaimer

Copyright message

Document information

Grant Agreement Number: 826078 Acronym: FeatureCloud

Full title Privacy preserving federated machine learning and blockchaining for
reduced cyber risks in a world of distributed healthcare

Topic Toolkit for assessing and reducing cyber risks in hospitals and care
centres to protect privacy/data/infrastructures

Funding scheme RIA - Research and Innovation action

Start Date 1 January 2019 Duration 60 months

Project URL https://featurecloud.eu/

EU Project Officer Christos Maramis, Health and Digital Executive Agency (HaDEA)
Project
Coordinator Jan Baumbach, University of Hamburg (UHAM)

Deliverable D7.7 – Report on implementation of assessment, requirement criteria,
and “stress testing”

Work Package WP7 – Integrated FeatureCloud health informatics platform and app store

Date of Delivery Contractual 31/12/2023 Actual 22/12/2023

Nature Report Dissemination
Level Public

Lead Beneficiary UHAM

Responsible
Author(s)

Mohammad Bakhtiari (UHAM), Jan Baumbach (UHAM)

Dominik Heider (UHAM), Rudolf Mayer (SBA)

Keywords Requirement criteria, stress testing, platform stability

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 826078. Any dissemination of results reflects
only the author's view and the European Commission is not responsible for any use that may be
made of the information it contains.

© FeatureCloud Consortium, 2023
This deliverable contains original unpublished work except where clearly indicated otherwise.
Acknowledgement of previously published material and of the work of others has been made
through appropriate citation, quotation or both. Reproduction is authorised provided the source
is acknowledged.

https://featurecloud.eu/

D7.7 – Report on implementation of assessment,
requirement criteria, and “stress testing”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 3 of 86

History of changes

Version Date Contributions Contributors (name and institution)

V0.1 06/12/2023 First draft Mohammad Bakhtiari (UHAM)

V0.2 18/12/2023 Comments Rudolf Mayer (SBA)
Dominik Heider (UMR)

V1.0 22/12/2023 Final version
Mohammad Bakhtiari (UHAM)
Nina Donner (concentris)
Jan Baumbach (UHAM)

D7.7 – Report on implementation of assessment,
requirement criteria, and “stress testing”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 4 of 86

Table of Contents

1 Table of acronyms and definitions 6
2 Objectives of the deliverable based on the Description of Action (DoA) 8
3 Executive Summary 8
4 Introduction (Challenge) 8
5 Methodology 9

5.1 Stress testing 9
5.2 Tools and scripts 10

5.2.1 Test workflow 10
5.2.2 Communication test app 11
5.2.3 Test Environment 11
5.2.4 Security testing 12

5.3 Designed tests 13
5.3.1 FeatureCloud pip package 13
5.3.2 FeatureCloud Controller 16
5.3.3 Web Security and Workflow Execution Platform 18

6 Results 20
6.1 Implementation of assessment and requirement criteria 20
6.2 Pip package 21

6.2.1 Execution 21
6.2.2 Communication memo 26

6.3 Controller 36
6.4 Web Security 39

6.4.1 Unauthenticated user access 39
6.4.2 Common Vulnerabilities and Exposures 41
6.4.3 Brute-force attack 43
6.4.4 Manipulate the confidentiality and integrity of data 45
6.4.5 SSL Stripping attacks 45

7 Open issues 47
8 Deviations 47
9 Conclusion 47
10 Other supporting documents / figures / tables 48

10.1 Communication test app 48
10.2 stress testing the Controller 49

10.2.1 Controller Fails the stress test 49
10.2.2 Controller survives the stress test 50

10.3 Aira Server Test Environment 51
10.4 Stress Testing the Pip Package 55

10.4.1 Incorporation of the feedback into the pip package 55
10.4.2 Data misplacement 60
10.4.3 Simple-SMPC Pickle error 64
10.4.4 Binary-Text Data Decoding Error 67

D7.7 – Report on implementation of assessment,
requirement criteria, and “stress testing”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 5 of 86

10.4.5 Pickle Unpickling Stack Underflow Error 74
10.5 Controller’s Dockerfile 86

D7.7 – Report on implementation of assessment,
requirement criteria, and “stress testing”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 6 of 86

1 Table of acronyms and definitions

API application programming interface
App application
CI/CD Continuous Integration/Continuous Deployment
CLI command-line interface
concentris concentris research management gmbh
CPU central processing unit
CSRF Cross-Site Request Forgery
CVE Common Vulnerabilities and Exposures
D Deliverable
DDoS Distributed Denial of Service
DoA Description of Action
DP Differential Privacy
FL federated learning
GB gigabyte
GHz gigahertz
GPU graphics processing unit
HSTS HTTP Strict Transport Security
HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure
JSON JavaScript Object Notation (a text-based format)
ID identification (number)
IP Internet Protocol (address)
KPI key performance indicator
ML machine learning
MS Milestone
MUG Medizinische Universität Graz
OS operating system

Patients

In this deliverable, we use the term “patients” for all research subjects. In
FeatureCloud, we will focus on patients, as this is already the most vulnerable
case scenario and this is where most primary data is available to us. Admittedly,
some research subjects participate in clinical trials but not as patients but as
healthy individuals, usually on a voluntary basis and are therefore not dependent
on the physicians who care for them. Thus, to increase readability, we simply
refer to them as “patients”.

RAM random access memory
RSA Rivest–Shamir–Adleman (a quick encryption and decryption technique)
SBA SBA Research Gemeinnützige GmbH
SMPC Secure Multi-Party Computation
SQL Structured Query Language
SSD solid-state drive

D7.7 – Report on implementation of assessment,
requirement criteria, and “stress testing”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 7 of 86

SSL Secure Sockets Layer (security technology for encrypting data sent between a
website and a browser or between two servers)

TB terabyte
TLS Transport Layer Security
UHAM University of Hamburg
UI user interface
UMR Philipps Universität Marburg
URL Uniform Resource Locator
WP Work package
XSS cross-site scripting

D7.7 – Report on implementation of assessment,
requirement criteria, and “stress testing”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 8 of 86

2 Objectives of the deliverable based on the Description of Action
(DoA)

This deliverable, reports on implementation of assessment, requirement criteria, and “stress testing”,
is closely related to the task 5 of WP 7, “Stress testing”, where we stress test different FeatureCloud
platform components. Meanwhile, the successful stress tests entail the incorporation of test feedback
into the platform to improve its performance. Accordingly, this deliverable touches task 1,
Programming interfaces and platform, due to modification of the pip package. Moreover, the
deliverable contributes to task 2, “App store and workflow management”, and task 3, User interfaces
and testing, with respect to the applied modifications as a result of stress testing the controller,
Docker registry and user interfaces.

3 Executive Summary
This deliverable reports on the successful stress testing of the FeatureCloud platform. We designed
tests to stress the platform while following the principles in the literature (see section 5.1).
Accordingly, we designed tests with various scenarios for stress testing of the pip package (see
section 5.3.1 and 6.2), and elaborated the test scenarios for the Controller (see section 5.3.2 and
6.3), and security (see section 5.3.3 and 6.4). We analyzed the outcomes and logs of the tests and
explained the incorporation of test feedback, and its effect on the FeatureCloud platform (see section
6) to be resilient and robust against failure.

4 Introduction (Challenge)
FeatureCloud, a pioneering platform in federated data analysis and computation, integrates various
applications from its app store into seamless workflows, crucial for secure data processing involving
multiple stakeholders. The platform's front-end, with a user-friendly interface, and back-end are
responsible for handling data and workflow coordination, which makes them central to its
functionality. In this complex environment, stress testing becomes vital, ensuring both parts work
flawlessly under varied, intensive scenarios.

In stress testing FeatureCloud, a significant emphasis is placed on web security. This involves
employing advanced tools like Burp Suite, Trivy, and Nessus to simulate real-world threats such as
Cross-Site Request Forgery (CSRF) vulnerabilities, Transport Layer Security (TLS) protocol
weaknesses, and Secure Sockets Layer (SSL) stripping attacks. By testing the platform's resilience
against various threats, we ensure the integrity and confidentiality of data transmissions, a
cornerstone for trust in our federated computing environment.

Additionally, we stress test the FeatureCloud controller and pip package using specialized stress
tests. For the controller, the focus is on its capability to manage workflows efficiently and securely,
even under extreme conditions. The pip package, essential for developers in creating federated
applications, is tested for its robustness in data communication and handling. This thorough
approach in stress testing different components of FeatureCloud not only highlights potential
vulnerabilities but also aids in continuously improving the platform's performance and security,
maintaining its position as a reliable and efficient tool in the realm of federated computing.

D7.7 – Report on implementation of assessment,
requirement criteria, and “stress testing”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 9 of 86

5 Methodology
In this section, we detail our approach to stress testing the FeatureCloud platform, focusing on
thoroughly evaluating its diverse components. We establish a realistic test environment and
methodically analyze the results. Our process involves pinpointing workload profiles, defining
specific objectives, and choosing relevant metrics, all tailored to different aspects of FeatureCloud.
By employing a variety of stress tests, such as application-specific and systemic, we aim to identify
and fortify any potential vulnerabilities in each component, ensuring their robustness in challenging
scenarios.

5.1 Stress testing
Stress testing is a critical phase in ensuring an application's robustness and reliability. It begins with
identifying the test environment, which involves analyzing the hardware, software, networks, and
other system configurations where the application will run. Understanding these elements is vital to
create a realistic test environment that closely mirrors the production setting. Once the environment
is established, the next step is to outline clear objectives for the test. This includes defining what
success looks like, such as specific performance thresholds or stability criteria. These objectives
should be measurable and closely aligned with user expectations and business requirements. An
objective is defined to stress the software with intention of making it fail.

With workload testing objectives, the next task is to determine the workload profile. This involves
identifying the various types of user interactions that the application will experience, and simulating
these actions to assess how the application behaves under varying levels of stress. After defining
the objectives, metrics must be identified to evaluate the application's performance. These metrics
could include response times, throughput rates, and error percentages. They will serve as indicators
of the application's behavior under stress and help pinpoint areas that require optimization.

Based on the metrics and objectives, detailed test cases can be designed and implemented to satisfy
the objectives. The tests are scripts or procedures that simulate specific user actions or series of
actions within the application. Each test case should have defined expected outcomes to judge
whether the application behaves as anticipated under stress conditions. For workload testing, the
test involves simulating the load based on the test cases, where the application is put through the
paces of the simulated workload, often using automated tools to apply the stress. The load should
be monitored to ensure it reflects the desired stress levels without unintentionally overwhelming the
load generators themselves.

Lastly, the results from these tests are thoroughly analyzed. This analysis is compared against the
predetermined objectives and metrics to assess whether the application meets the desired
performance standards or it fails. If performance issues are detected, further investigation into code,
design, or system configurations may be needed to address these bottlenecks. Throughout the
process, stress testing can take several forms: Application stress testing for uncovering defects
related to the overall application's interactions, transactional stress testing to focus on specific
components or transactions, and systemic stress testing to evaluate the application's behavior in a
multi-application environment. Additionally, exploratory stress testing may be employed to
investigate how the system responds to unlikely or extreme scenarios, thereby providing insights
into potential areas of improvement that aren't obvious through structured testing alone.

D7.7 – Report on implementation of assessment,
requirement criteria, and “stress testing”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 10 of 86

5.2 Tools and scripts
In this section, we will explore the tools and methodologies employed for stress testing the
FeatureCloud platform. These include the Test Workflow for simulating complex user scenarios, the
Communication Test App for assessing the system's response to diverse data types and network
conditions, and a detailed Test Environment script for evaluating server capabilities.

5.2.1 Test workflow
The FeatureCloud platform enables end-users and developers to construct and execute linear
workflows through its front-end website. Users can sequentially run various apps, where the output
of one app serves as input for the next. This requires that the output data is formatted and extended
properly for subsequent apps. Workflows can include multiple clients (data owners) collaborating in
a federated manner using one or more applications. Although the online workflow meets end-user
needs, developers often face challenges in implementing non-linear, flexible workflows for innovative
solutions. These developers range from app developers extending existing centralized applications
to researchers addressing federated challenges, necessitating arbitrary operations on data for
research purposes. The FeatureCloud test workflow is introduced for developers to create arbitrary
workflows for research, which are not supported in the app store. Once a final solution is developed,
it must be presented as an app for inclusion in the broader workflow ecosystem.

The FeatureCloud platform includes a Controller class within its pip package, essential for
developing test apps and workflows. This class facilitates basic interactions with the FeatureCloud
controller, enabling operations like start, stop, delete, list, traffic, logs, and info on test runs.
Developers can run multiple controller instances on the same machine, enhancing the flexibility and
scope of app development. The TestApp class addresses the needs of individual apps within a
workflow, offering features for data handling, result extraction, and interaction with the controller.
Additionally, the TestWorkFlow class provides an abstract framework for creating general workflows,
requiring developers to implement methods for registering apps and running workflows. This class
maintains a list of TestApp instances, along with a default results directory for extracted data useful
for subsequent apps. Developers looking to implement specific workflows must extend the
TestWorkFlow class, implementing 'register_apps' and 'run' methods. Workflows can be executed
using FeatureCloud's pip package with super-user access, ensuring data and results are
appropriately managed in the controller's data directory.

The Test Workflow in FeatureCloud offers a unique opportunity for developers to conduct
comprehensive stress tests across various components of the platform, such as the pip package,
controller, and relay server. By designing and implementing non-linear and complex workflows within
the Test Workflow framework, developers can simulate real-world scenarios and heavy loads. This
approach enables them to evaluate the performance and robustness of individual components under
stress. For example, creating workflows with a high number of client interactions or data-intensive
tasks can test the scalability and reliability of the relay server and the controller's ability to manage
multiple concurrent operations. Similarly, by utilizing a variety of functions provided by the
FeatureCloud pip package within these test workflows, developers can assess the package's stability
and responsiveness under different stress conditions. This process not only helps in identifying
potential bottlenecks or weaknesses in the system but also aids in ensuring that the platform remains
efficient and reliable even when faced with demanding scenarios typical in federated computing
environments. Accordingly, in the test designed to stress test the FeatureCloud platform we will
implement test workflows to run the designed test in federated simulated scenarios.

D7.7 – Report on implementation of assessment,
requirement criteria, and “stress testing”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 11 of 86

5.2.2 Communication test app
The Communication Test App1 is a FeatureCloud application developed for stress testing. It
embodies a comprehensive and modular approach to evaluating the resilience and efficiency of the
relay server, controller, and pip package. The application's architecture, as shown in Appendix
A11.1, offers a sophisticated setup that enables a variety of stress testing scenarios. The application
conducts different stress testing scenarios which are applicable to the stress testing of the pip
package, particularly in terms of communicating different data types and formats, e.g., nested data
types. The communications can pass through the relay server, enabling us to stress test it using
different data volumes from varying numbers of clients. Specifically, the following factors contribute
to executing different stress testing scenarios in the app:

● Scenario Selection (sub_Scen in config.yml): This allows for choosing between different
custom scenarios, each likely simulating unique operational conditions or data processing
tasks. Depending on the scenario, the application might execute different algorithms, handle
data differently, or simulate specific cloud computing challenges.

● Secure Multi-Party Computation (SMPC) (smpc_ in config.yml): This tests the application's
behavior with SMPC enabled or disabled, crucial for applications requiring collaborative
computations while preserving data privacy.

● Differential Privacy (DP) (dp_ in config.yml): This evaluates the application's integration and
performance with Differential Privacy mechanisms. The DP engine, implemented inside the
controller, adds noise to data or query results to ensure individual data privacy while still
providing useful aggregate information.

● Maximum Number of Sub-Scenarios (max_n_sub_scen in config.yml): This sets the limit for
variations in testing within each selected scenario, affecting the depth and breadth of stress
testing. It allows us to vary data types, computational complexities, or interaction patterns to
rigorously test application resilience.

● Traffic Test (traffic_test in config.yml): Focused on assessing the application's performance
under high data traffic conditions, it enables heavy data transfer operations, both upload and
download, to test network and processing capabilities under load.

● Data Size for Traffic Test (Data_Size in config.yml): This specifies the volume of data used
in traffic tests, allowing simulation of different load intensities. Meanwhile, large data sizes
test the application's ability to handle, process, and transfer large datasets efficiently.

In summary, the FeatureCloud Communication Test App is designed to robustly test various aspects
of the platform, from handling network traffic and data processing on a relay server to orchestrating
complex scenarios via a controller and the pip package. This comprehensive approach ensures that
the application can be rigorously tested under a wide range of conditions, making it an invaluable
tool in assessing and enhancing the reliability and efficiency of the platform.

5.2.3 Test Environment
For describing the test environment for different tests, we implemented a shell script to provide a
comprehensive overview of a Linux servers’ test environment. It displays the server's hostname,
operating system details, kernel version, central processing unit (CPU) specifications, memory
usage, disk space utilization, network interfaces and internet protocol (IP) addresses, system load
and uptime, currently running processes, available system updates, and currently logged-in users.
This information is crucial for understanding the server's capabilities and state, which is essential for
planning and conducting stress tests.

#!/bin/bash

1 https://github.com/FeatureCloud/Communication-Test

https://github.com/FeatureCloud/Communication-Test

D7.7 – Report on implementation of assessment,
requirement criteria, and “stress testing”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 12 of 86

Display the hostname of the server
echo "Hostname:"
hostname

Show the Linux distribution and version
echo -e "\nOperating System Info:"
cat /etc/*release

Display Kernel information
echo -e "\nKernel Info:"
uname -r

Show CPU information like model, cores, and speed
echo -e "\nCPU Info:"
lscpu

Display Memory information
echo -e "\nMemory Info:"
free -h

Show Disk usage
echo -e "\nDisk Usage:"
df -h

Display network interfaces and their IPs
echo -e "\nNetwork Interfaces:"
ip addr

Show current system load and uptime
echo -e "\nSystem Load and Uptime:"
uptime

Check for available updates
echo -e "\nAvailable System Updates:"
apt list --upgradable 2>/dev/null | grep -v 'Listing...'

Show current users logged in
echo -e "\nCurrent Logged-In Users:"
who

5.2.4 Security testing
In the security assessment of the FeatureCloud platform, we focused on the web interface and the
workflow execution. We utilized a set of well-known tools to identify and analyze potential
vulnerabilities. These tools, selected for their relevance and effectiveness in various aspects of
security testing, were instrumental in examining different facets of the platform’s web service. We

D7.7 – Report on implementation of assessment,
requirement criteria, and “stress testing”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 13 of 86

will briefly outline each of these tools - Burp Suite2, Nessus3, and Trivy4 - and their general
applications in the context of our stress testing process:

● Burp Suite (Application Security Testing Software) is an application security testing software
that provides a range of tools for performing security testing of web applications. It includes
functionalities for automated scanning, manual testing, and exploitation of web application
vulnerabilities. In the FeatureCloud platform’s assessment, Burp Suite was used for tests like
probing for Cross-Site Request Forgery (CSRF) vulnerabilities, testing for SSL stripping
attacks, and conducting penetration tests on endpoints or authentication mechanisms. Its
ability to intercept and modify Hypertext Transfer Protocol (HTTP) requests makes it
particularly useful for such tests.

● Nessus Vulnerability Scanner, developed by Tenable, is a widely-used network vulnerability
scanner. It detects and reports potential vulnerabilities in networked systems, including
unpatched software, misconfigurations, and exposure to common exploits. In the stress
testing of the FeatureCloud platform, Nessus was instrumental in scanning the network for
vulnerabilities, particularly for assessing the platform’s TLS protocol usage, encryption
practices, and overall configuration and credential security.

● Trivy (Open Source Security Scanner for Vulnerability) is an open-source tool designed for
comprehensive vulnerability scanning. Its primary functionality is to detect vulnerabilities in
container images, file systems, and even source code repositories. Trivy can be used for
identifying a wide range of security issues, including operating system (OS)-level
vulnerabilities and application dependencies. In the context of the FeatureCloud platform
assessment, Trivy employed to scan container images or file systems used by the platform,
aiding in the identification of known vulnerabilities that might impact the platform’s security.

5.3 Designed tests
In this section, we elaborate the designed stress test on the FeatureCloud platform. Each test is
designed and executed independently, however, we tried to follow the same principles. The test
environment should be isolated from production to prevent any impact. Accordingly, we used
different servers than the production server to prevent possible disruptions for FeatureCloud platform
services. We used appropriate monitoring tools to capture metrics such as CPU load, memory usage
which helps to find the breaking points for successful tests. Meanwhile, we analyze the system after
incorporation of stress tests feedback into the platform to show how it survives the stress testing.

5.3.1 FeatureCloud pip package
The FeatureCloud pip package is a comprehensive tool designed for developers, particularly with a
focus on privacy preservation, to facilitate the creation, testing, and deployment of federated
applications through a range of commands and interfaces. In this section, we elaborate on the tests
designed for stress testing the pip package in regard to data communication. For app creation and
management, the pip package offers basic commands including building Docker images,
downloading images from the repository, and even plotting app states and transitions, providing a
visual representation of the app’s workflow. Meanwhile, the engine package simplifies app
development by handling state registration and transitions, requiring minimal developer intervention.
This transparency is key to encouraging wider adoption and innovation in federated learning.

The FeatureCloud pip package offers various communication methods to facilitate data exchange in
a federated environment. These methods are essential for managing data flows between different
clients (participants and coordinators) within the federated network, ensuring efficient and secure

2 https://portswigger.net/burp
3 https://www.tenable.com/products/nessus
4 https://trivy.dev/

https://portswigger.net/burp
https://www.tenable.com/products/nessus
https://trivy.dev/

D7.7 – Report on implementation of assessment,
requirement criteria, and “stress testing”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 14 of 86

data handling. The package provides functionalities like 'aggregate_data' and 'gather_data'. The
former automates the handling of SMPC usage and serialization, returning aggregated data that
maintains the original data structure and shape. The 'await_data' method is designed to wait for data
arrival from a specified number of clients, polling at regular intervals. This is particularly useful in
stress testing scenarios where the responsiveness and efficiency of data receipt are critical metrics.
Furthermore, the package includes 'send_data_to_participant', 'send_data_to_coordinator', and
'broadcast_data' methods.

The 'configure_smpc' function allows developers to set up the SMPC component, which affects some
of the communication methods. Meanwhile, the package enables apps to communicate their
operational states (such as app.status_available, app.status_finished, app.status_message, and
app.status_progress) to the controller and, indirectly, to the front-end. This feature is essential for
providing real-time updates and feedback to users during the app's operation.

In stress testing scenarios, these communication methods play a pivotal role. They allow for the
simulation of real-world data exchange patterns by including different data transfer rates and
methods.

5.3.1.1 Test Environment Setup
For stress testing the FeatureCloud pip package we run the controller and the communication test
app locally in a test-bed. Therefore, the test does not involve any of FeatureCloud servers. We
conducted the test using a MacBook Pro with an Apple M1 chip, featuring 8 cores (4 performance
and 4 efficiency cores) and 16 gigabyte (GB) of memory. The system is running macOS 12.6.9 on a
Darwin 21.6.0 kernel. Storage-wise, it has a 494.38 GB solid-state drive (SSD), with 261.77 GB free
space.

5.3.1.2 Test Scenarios
To design the test for stressing the FeatureCloud pip package we considered the scope of the
interactions, and since the pip package interactions are limited to the controller, e.g., reporting status
and data communication, we use the testbed for stress testing the pip package to isolate the stress
on the pip package and refrain from stressing the relay server, which was done in a separate test,
see section 5.3.1, while sufficiently increasing the stress. The pip package test workflow runs the
communication test app:

class WorkFlow(TestWorkFlow):
 def __init__(self, controller_host: str, channel: str, query_interval:
int):
 super().__init__(controller_host, channel, query_interval)
 self.controller_path = "/home/bbb1037/data"
 self.ctrl_data_path = f"{self.controller_path}"
 self.ctrl_test_path = f"{self.controller_path}/tests"

 self.generic_dir = {}
 self.n_clients = 2
 self.TestApp = partial(TestApp,
 n_clients=self.n_clients,
 ctrl_data_path=self.ctrl_data_path,
 ctrl_test_path=self.ctrl_test_path,
 controller_host=controller_host,

D7.7 – Report on implementation of assessment,
requirement criteria, and “stress testing”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 15 of 86

 channel=channel,
 query_interval=int(query_interval))

 def register_apps(self):
 app_id = 0
 app1 = self.TestApp(app_id=app_id,
app_image="featurecloud.ai/communication_app")
 self.register(app1)

 def run(self):
 print("Workflow execution starts ...")
 i = 0
 app = self.apps[0]
 id, _ = app.start()
 app.set_id(id)
 print(f"{app.app_image}(ID: {app.test_id}) is running ...")
 app.wait_until_finishes()
 print("App execution is finished!")
 app.extract_results(self.default_res_dir_name)
 print("extracting the data...")
 while not app.results_ready:
 sleep(5)
 print("Delete the app container...")
 app.delete()
 print("Workflow execution is finished!")

We executed the test workflow using the local channel as follows:

featurecloud workflow start --wf-dir ./data --wf-file
PipPackageTestWorkflow.py --controller-host localhost:8000 --channel local --
query-interval 1

For stressing the pip package, we simulate different combinations of supported communication
methods in the pip package while using different settings for applying SMPC or DP. We designed
four scenarios, where each is continuance of possible communication methods:

● Simple aggregation: Aggregation using send_data_to_coordinator, aggregate_data, and
broadcast_data methods.

● Gathering: Gathering the data using send_data_to_coordinator, gather_data, and
broadcast_data methods.

● Awaiting: Awaiting the data using send_data_to_coordinator + await_data +
broadcast_data methods.

● Peer-to-peer communication: send_data_to_participant + await_data
● Mix communication: Immediate uninterrupted communication of data with different

methods and privacy enhancing technologies.

D7.7 – Report on implementation of assessment,
requirement criteria, and “stress testing”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 16 of 86

For all supported methods, we call them with and without SMPC or DP. Meanwhile, we communicate
different data types using different methods to stress the platform:

● I: Scalar Integer
● L: Python List including integer and floating numbers
● F: Float data type
● S: Python string

Furthermore, to ensure the platform survives arbitrary immediate combinations of requests, in a loop
we call different scenarios without waiting for the aggregation.

elif sub_Scen == 5:
 for i in range(10):
 smpc_ = False
 dp_ = False
 if np.random.rand() > 0.5:
 smpc_ = True
 self.configure_smpc()

 if np.random.rand() > 0.5:
 dp_ =True

 self.send_data_to_coordinator(data_to_send,use_smpc=smpc_ ,
use_dp=dp_)
 self.log(f'Sub_Scen: {sub_Scen} Round: {count_} client send
data {data_to_send} to coordinator SMPC: {smpc_}, DP: {dp_}')

5.3.2 FeatureCloud Controller
In managing workflows, the controller orchestrates various applications, overseeing their order,
execution, and supervision. It is responsible for initializing and setting up these applications, which
can be structured into workflows or operated in a testing environment. The controller itself functions
within a Docker container and manages the operation of applications in separate Docker instances.
The controller operates and oversees network servers, facilitating incoming connections and the
transfer of data among app containers. It employs TLS and Rivest–Shamir–Adleman (RSA) to
ensure secure communication, with thorough testing of both encrypted and unencrypted network
exchanges. The controller also acquires data or status updates from active applications, utilizing
JavaScript Object Notation (JSON) for structuring data during HTTP-based exchanges.
Stress testing the controller is crucial for ensuring its robustness and reliability in real-world
scenarios. By simulating unusual or extreme use cases, stress testing helps identify potential
bottlenecks or vulnerabilities in the Controller. This process is essential for verifying that the
controller can efficiently handle heavy network traffic, manage multiple concurrent workflows, and
maintain secure communication under varying levels of demand. Additionally, stress testing provides
insights into the system's scalability and resilience, ensuring that the controller remains stable and
functional even under challenging conditions.

We used the “aira” server as a test environment. The server "aira" is configured with openSUSE
Tumbleweed (20231012 version), featuring a 6.5.6-1-default kernel. It's powered by two Intel Xeon
Gold 6258R CPUs (56 cores, 112 threads in total), supporting both 32-bit and 64-bit operations. It
boasts 503 GB of random access memory (RAM), and a 2 GB swap space. The system's disk setup

D7.7 – Report on implementation of assessment,
requirement criteria, and “stress testing”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 17 of 86

includes a 1.1 (terabyte) TB root filesystem with only 2% usage, an 8.8 TB /home partition with 40%
usage, and various other mounts including a 80 TB network file system. Network-wise, it has multiple
interfaces, including a bonded interface (bond0) with an IP of 134.100.85.17/26, and a Docker
network interface. The server had been running for 44 days and at the test time experienced a
moderate load (12.27, 13.29, 12.97). A complete log for the “aira” server is in 11.3.

5.3.2.1 Test Scenarios
We design the stress tests for the FeatureCloud controller to ensure that the system can handle
scenarios involving unmatching applications in a workflow and unsupported input data and
configurations. Even though the controller might not support certain use cases, encountering them
should not lead to system crashes or significant disruptions. One key area of testing involves
application compatibility. Here, the controller would be exposed to a mix of compatible and
incompatible applications. The aim is to observe whether the system can effectively handle the
incompatible applications without affecting its overall stability. This test would reveal the robustness
of the controller's application management protocols and its ability to maintain operational integrity
in the face of unexpected application behaviors.

Another important test scenario is the introduction of unsupported data formats. We do not expect
the controller to process this data correctly, but rather to ensure that it can reject or ignore these
formats without experiencing crashes or critical errors while providing proper logs for the end-users.
Such a test is crucial for understanding the system's resilience against data anomalies. Furthermore,
we simulate network failures or disconnections during data transmission to evaluate the controller's
ability to handle and recover from network interruptions to stress test the platform’s network
resiliency.

Meanwhile, since the workflow execution is not supported in the FeatureCloud command-line
interface (CLI) due to security and privacy concerns, we run various workflows manually. These
workflows include various applications published in the app store. To ensure that the tests will not
affect the platform, specially in terms of residuals of the test, we use the staging server and import
the applications. We have created template workflows to encompass the incompatible applications
and include partially or fully unsupported data or configurations in the platform. Since the stress test
is not concerned with scalability, we run the workflows with two clients.Evdently, all the executed
scenarios will result in errors, however, in the tests we want to observe how the platform behaves
under the stress.

D7.7 – Report on implementation of assessment,
requirement criteria, and “stress testing”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 18 of 86

5.3.3 Web Security and Workflow Execution Platform
FeatureCloud offers a comprehensive web service platform designed to facilitate federated data
analysis and computation. Its core functionality allows users to use and combine federated
applications from the AppStore into federated workflow. Those workflows can then be to securely
run involving multiple data owners, leveraging a federated approach to data processing. The
platform's front-end provides an intuitive interface for users to construct and execute linear
workflows, where the output from one application feeds directly into the next, ensuring seamless
data flow and integration. This interactive front-end is crucial for user engagement, allowing them to
easily navigate and utilize the platform's features for their federated computing needs without the
need for deep knowledge of federated learning. The back-end of FeatureCloud, equally essential,
handles the intricate processes of data management, application execution, and workflow
coordination. It ensures that the computations are performed efficiently and securely, maintaining
the integrity and privacy of the federated data.

Given the complex nature of federated data processing and the diverse user interactions with the
platform, stress testing both the front-end and back-end of FeatureCloud is vital. Stress testing the
front-end involves simulating various user interactions at scale, such as creating, running, and
managing workflows, to ensure that the user interface remains responsive and stable under heavy
load. This helps identify potential bottlenecks in the interface design or workflow management
systems. For the back-end, stress tests focus on the system’s ability to handle large volumes of data,
maintain consistent performance during simultaneous workflow executions, and efficiently manage
network traffic and data processing tasks. This is crucial for assessing the platform's scalability and
resilience, especially in handling complex federated computations and ensuring data privacy.
General methods of stress testing these aspects include injecting high volumes of simulated user
requests, executing multiple workflows concurrently, and processing large datasets to evaluate
system performance and reliability under various load conditions.

5.3.3.1 Test Environment Setup
For stress testing the FeatureCloud website we used the test environment on a server named
"FeatureCloud-staging," running Ubuntu 22.04.3 LTS with the 5.15.0-88-generic kernel. It is powered
by an Intel Core i7-6700 CPU with 8 cores, operating at a maximum frequency of 4.00 GHz. The
server boasts a substantial memory capacity of 31 GB RAM, along with a sizable disk space of 905
GB, of which 570 GB is used. Network-wise, it has multiple interfaces, including a primary one with
the IP address 138.201.198.53. The server's uptime indicates stable performance, having been up
for 15 days with minimal load, as shown by the load averages. The environment includes Docker for
running containerized applications. This setup provides a robust and reliable platform for conducting
comprehensive stress tests in federated learning scenarios.

5.3.3.2 Test Scenarios
FeatureCloud, leveraging Hetzner's infrastructure for hosting, does not require stress testing for
Distributed Denial of Service (DDoS) attacks. Hetzner, known for its dependable cloud services,
offers extensive DDoS protection as a fundamental part of its infrastructure, adept at detecting and
neutralizing large-scale DDoS attacks. This safeguards services like FeatureCloud from such
threats. The advanced security solutions provided by Hetzner enable FeatureCloud to concentrate
on optimizing other vital aspects of its platform, including performance and stability. Hetzner's
effectiveness in handling DDoS threats ensures the continuous security and functionality of
FeatureCloud, eliminating the need for FeatureCloud to perform DDoS-specific stress tests.
Additionally, stress tests like network saturation, traffic floods, application layer attacks, protocol
attacks, and volume-based attacks are not conducted on FeatureCloud, as Hetzner's infrastructure
already offers robust protection against these. With Hetzner ensuring network capacity and system
integrity, FeatureCloud can channel its efforts towards enhancing application resilience and

D7.7 – Report on implementation of assessment,
requirement criteria, and “stress testing”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 19 of 86

performance, rather than focusing on the stress tests associated with the security aspect of
deploying FeatureCloud as a web service that employs Docker containerization.

It has to be noted that providing mitigation against DDOS attacks is what nowadays most reliable
server hosting providers offer; thus, a change from Hetzner to another provider with an equivalent
level of service, will mean that a similar protection will be achieved.

Security specialists at SBA, trained for performing penetration tests in multiple settings and against
various types of systems, conducted a comprehensive assessment of the FeatureCloud platform by
employing a variety of methodologies to detect potential security vulnerabilities. SBA investigated
the platform for Cross-Site Request Forgery (CSRF) vulnerabilities which involve simulating requests
from authenticated users to test if the platform executed actions without proper authorization. In fact
the approach was to mimic typical user behaviors under compromised conditions, checking for any
unauthorized command transmissions. Moreover, to stress the platform’s use cases of TLS
protocols, SBA conducted tests attempting to establish connections using various deprecated TLS
versions to determine if the platform would accept insecure or outdated encryption protocols, thereby
exposing it to potential data breaches. In fact, we tested the platform's encryption by attempting to
breach encrypted data channels and assessing the response to cryptographic attacks like ciphertext-
only attacks. This aspect of testing was crucial in evaluating the integrity of encrypted
communications within the platform. Another key focus was on SSL stripping attacks by intercepting
and altering communications between the client and the server; For instance, connections are
downgraded to insecure (HTTP) ones. SBA assessed the platform’s ability to maintain Hypertext
Transfer Protocol Secure (HTTPS) connections. This testing was vital in understanding the
platform's resilience against efforts to downgrade secure connections to less secure ones.

Furthermore, SBA undertook efforts to exploit session cookies or tokens, to stress the platform by
aiming to gain unauthorized access or maintain persistent access to user sessions. This test is
designed to scrutinize the session management and exploit possible weaknesses by attempting to
gain unauthorized access or maintain persistent access to user sessions, e.g., using cross-site
scripting (XSS). By supplying various forms of malicious input, such as a Structured Query Language
(SQL) script, or command injections, into input fields, we stress the platform’s ability in handling and
sanitizing user input. This was critical in assessing the platform's defense mechanisms against
injection attacks.

In another test scenario, we stressed the encryption practices in the platform by using the data
storage and transmission methods of the platform's to undermine the security measures in place for
protecting user’s data, particularly focusing on exposure risks. SBA also stresses the platform’s
endpoints or authentication mechanism by making malformed or irregular request patterns. Also,
SBA stressed the platform’s configurations and credentials using flawed configs and abusing the
credentials. The test was designed to uncover any misconfigurations or overlooked default settings
that could potentially lead to security breaches. The application programming interface (API) security
was another area of our focus in stress testing the security aspects of the platform. SBA interactively
engaged with the platform's API in unintended ways to stress its robustness.

Throughout the stress testing, we maintained a balance between automated scanning tools and
manual probing. This comprehensive approach was instrumental in successfully pushing the
platform to fail the stress tests on a range of security risks.

D7.7 – Report on implementation of assessment,
requirement criteria, and “stress testing”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 20 of 86

6 Results
In this section we discuss the results of implementing the assessment and requirement criteria that
was reported in D7.1. Furthermore, we will elaborate on the outcomes of stress testing different
components in FeatureCloud platform in terms of successful tests which managed to fail the
platform, incorporation of the feedback to the FeatureCloud core development team, and execution
of the tests. We show that after implementing the required measures, the platform manages to
survive the stress tests.

6.1 Implementation of assessment and requirement criteria
FeatureCloud implemented its assessments and requirements criteria through several key
processes and methodologies:

● Federated Learning (FL) for Security and Privacy: We emphasize the use of FL as a
fundamental component for ensuring security and privacy which allows multiple parties to
collaboratively train a machine learning (ML) model without sharing sensitive training data
and reduces privacy and security concerns compared to centralized models by keeping
training data at local sites. Additionally, FeatureCloud developed key performance indicator
(KPI) 3 Privacy Requirements for Federated Algorithms to maintain a balance between
shared parameters and raw patient data.

● App Certification Process: We implemented a certification process for apps in the
FeatureCloud app store by asking for a two-step verification that involves automated and
manual verification of security and privacy aspects. Only certified apps are allowed in the
FeatureCloud workflow without raising a notification, ensuring that the apps meet certain
standards before being published in the app store.

● Automated Pipeline for Code Review: We employed a CI/CD (Continuous
Integration/Continuous Deployment) pipeline to review developed code for the platform after
each commit. This pipeline includes linting for code readability, testing to cover a high
percentage of the code, and a build stage to ensure error-free compilation. This process
helps ensure that the code meets the project's standards and requirements before updating
the production services.

● Balancing Privacy and Performance: We emphasize on achieving comparable results to
traditional cloud-based in published federated applications while maintaining privacy. Our
efforts manifested in developing applications like sPLINK, Flimma, and Partea, as peer
reviewed publications, which deliver similar results in federated environments as in
aggregated analysis, demonstrating the effectiveness of FeatureCloud as a federated
platform.

● Additional Privacy Measures: FeatureCloud encourages AI developers to integrate additional
privacy enhancing technologies like differential privacy (DP) or Secure Multi-Party
Computation (SMPC) to further enhance privacy. These implementations are fully integrated
into the featureCloud platform to facilitate the usage. Such technologies were used in
different apps and underwent a certification process to assess the potential privacy leakage
.

● Security Controlled Communications: We included controlled communications and data
access protocols in the platform to run inside Docker containers, ensuring that only privacy-
aware results are exported, and sensitive intermediate results are not shared.

● Developer Review Process: for developing the platform, after the CI/CD pipeline, another
internal developer reviews the code and functionalities to ensure that the implementation
meets all defined requirements. We fix all the raised issues before merging the new commits
into the production branch.

● Implementation Process and Sprint Planning: FeatureCloud's implementation process
involved splitting user stories into development tasks, prioritizing them into sprints, and

D7.7 – Report on implementation of assessment,
requirement criteria, and “stress testing”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 21 of 86

assigning them to developers. In regular retrospective meetings with stakeholders we
discussed the progress and control to ensure alignment with project goals.

These steps showcase our comprehensive approach to implement the assessments and
requirements while focusing on security, privacy, performance, and stakeholder involvement.

6.2 Pip package
In this section we stress test the pip package and highlight various scenarios that led to platform
failures. These scenarios include Aggregation, Gathering, Awaiting, and Peer-to-peer
communication methods using different data types and privacy-enhancing technologies. We show
occurrences of data mismatches during Aggregation, and serialization errors in mix communication
scenarios involving Simple-SMPC, Simple-DP, and DP-SMPC. We addressed these issues by
enhancing our pip package to manage data and status information more efficiently, introducing a
unique memo feature for communication rounds, and ensuring backward compatibility.

6.2.1 Execution
While stressing the pip package and controller, we manage to fail the platform on multiple occasions.
Here , we discuss different scenarios independently and later we will show how all are caused by
the same issue. For aggregation scenarios while running the Aggregation scenario using the simple
communication method, i.e., using neither SMPC nor DP, for two clients, the platform is stressed by
receiving numerous communication requests at the participants side and corresponding aggregation
requests on the coordinator side which causes the received data pieces being misplaced with each
other. The expected values can be seen in the log entries where “[State: client_state]” is printed. In
comparison to this, it can be seen that in the lines where “[State: coordinator_state]“ is printed, data
from different communication rounds is seen as the incoming data for specific communication
rounds. For example, communication=0 receives [1,11] instead of [1,1]. Each client sends out exactly
the same series of data to the coordinator, however, corresponding values are not aggregated
together due to the mismatch. For instance, [1, 1] should be results of gathering clients send out 1,
however the mismatch causes the gathering output be [1, 11].]

[Time: 30.11.23 17:44:39] [Level: info] [State: client_state] Sub_Scen: 5,
Round: 1, Communication: 0, client send data 1 to coordinator SMPC:
False, DP: False
[Time: 30.11.23 17:44:39] [Level: info] [State: client_state] Sub_Scen: 5,
Round: 1, Communication: 1, client send data 11 to coordinator SMPC:
False, DP: False
[Time: 30.11.23 17:44:39] [Level: info] [State: client_state] Sub_Scen: 5,
Round: 1, Communication: 2, client send data 21 to coordinator SMPC:
False, DP: False
[Time: 30.11.23 17:44:39] [Level: info] [State: client_state] Sub_Scen: 5,
Round: 1, Communication: 3, client send data 31 to coordinator SMPC:
False, DP: False
[Time: 30.11.23 17:44:39] [Level: info] [State: client_state] Sub_Scen: 5,
Round: 1, Communication: 4, client send data 41 to coordinator SMPC:
False, DP: False
[Time: 30.11.23 17:44:39] [Level: info] [State: client_state] Sub_Scen: 5,
Round: 1, Communication: 5, client send data 51 to coordinator SMPC:
False, DP: False

D7.7 – Report on implementation of assessment,
requirement criteria, and “stress testing”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 22 of 86

[Time: 30.11.23 17:44:39] [Level: info] [State: client_state] Sub_Scen: 5,
Round: 1, Communication: 6, client send data 61 to coordinator SMPC:
False, DP: False
[Time: 30.11.23 17:44:39] [Level: info] [State: client_state] Sub_Scen: 5,
Round: 1, Communication: 7, client send data 71 to coordinator SMPC:
False, DP: False
[Time: 30.11.23 17:44:39] [Level: info] transition: coordinator_state
[CTRL] GET /status
127.0.0.1 - - [30/Nov/2023 17:44:39] "GET /api/status HTTP/1.0" 200 151
[Time: 30.11.23 17:44:40] [Level: info] state: coordinator_state
[Time: 30.11.23 17:44:40] [Level: info] [State: coordinator_state] Coordinator
is launched...
[Time: 30.11.23 17:44:40] [Level: info] [State: coordinator_state] Sub_Scen:
5, Round: 1, Communication: 0 gather data: [1, 11] SMPC: False, DP: False
[Time: 30.11.23 17:44:40] [Level: info] [State: coordinator_state] Sub_Scen:
5, Round: 1, Communication: 1 gather data: [21, 31] SMPC: False, DP: False
[Time: 30.11.23 17:44:40] [Level: info] [State: coordinator_state] Sub_Scen:
5, Round: 1, Communication: 2 gather data: [41, 51] SMPC: False, DP: False
[Time: 30.11.23 17:44:40] [Level: info] [State: coordinator_state] Sub_Scen:
5, Round: 1, Communication: 3 gather data: [61, 71] SMPC: False, DP: False
[CTRL] GET /status

For more detailed logs, see section 11.4.2

The same problem is observed for other data types with simple scenarios. The platform also shows
the same behavior while we test it using Awaiting and Gathering scenario with the same setting as
Aggregation scenario. Later we show the persistent issue for all the scenarios stems from the same
design flaw.

For all the Aggregation scenarios, for simple, DP, and SMPC options, once we run the test for String
data type, we receive an error in the coordinator’s log regarding the fact that aggregation method
does not support String data. This is intended behavior which is well explained in the relevant
documentations.

[Time: 30.11.23 18:49:08] [Level: info] Traceback (most recent call last):
 File "/root/.local/lib/python3.8/site-
packages/FeatureCloud/app/engine/app.py", line 226, in guarded_run
 self.run()
 File "/root/.local/lib/python3.8/site-
packages/FeatureCloud/app/engine/app.py", line 241, in run
 transition = self.current_state.run()
 File "/app/states.py", line 461, in run
 data_to_collect = self.aggregate_data(use_smpc=smpc_, use_dp=dp_)
 File "/root/.local/lib/python3.8/site-
packages/FeatureCloud/app/engine/app.py", line 599, in aggregate_data
 return _aggregate(data, operation) # Data needs to be aggregated

D7.7 – Report on implementation of assessment,
requirement criteria, and “stress testing”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 23 of 86

according to operation
 File "/root/.local/lib/python3.8/site-
packages/FeatureCloud/app/engine/app.py", line 1000, in _aggregate
 aggregate = aggregate + d
numpy.core._exceptions._UFuncNoLoopError: ufunc 'add' did not contain a loop
with signature matching types (dtype('<U5'), dtype('<U5')) -> None

We also stressed the platform using mix communication scenario, where we used aggregation
methods with setting the DP and SMPC functions as true or False to create these three sub-
scenarios:

● Simple-SMPC: We alternately set SMPC to True, while DP is always set to False.
● Simple-DP: We alternately set DP to True while always setting SMPC to False.
● DP-SMPC: We alternately set either DP or SMPC to True or False.

By stressing the platform in Simple-SMPC sub-scenario, we send out the same data series using
the same order of communication methods and options from both clients. As it is shown in the
coordinators logs, the controller of the coordinator displaces the received data which result in an
runtime error inside the app:

[Time: 30.11.23 18:07:06] [Level: info] [State: client_state] Sub_Scen: 5,
Round: 1, Communication: 0, client send data 1 to coordinator SMPC:
False, DP: False
[Time: 30.11.23 18:07:06] [Level: info] [State: client_state] Sub_Scen: 5,
Round: 1, Communication: 1, client send data 11 to coordinator SMPC:
True, DP: False
[Time: 30.11.23 18:07:06] [Level: info] [State: client_state] Sub_Scen: 5,
Round: 1, Communication: 2, client send data 21 to coordinator SMPC:
False, DP: False
[Time: 30.11.23 18:07:06] [Level: info] [State: client_state] Sub_Scen: 5,
Round: 1, Communication: 3, client send data 31 to coordinator SMPC:
True, DP: False
[Time: 30.11.23 18:07:06] [Level: info] transition: coordinator_state
[CTRL] GET /status
127.0.0.1 - - [30/Nov/2023 18:07:06] "GET /api/status HTTP/1.0" 200 219
127.0.0.1 - - [30/Nov/2023 18:07:06] "GET /api/data HTTP/1.0" 200 2
[CTRL] GET /data
[Time: 30.11.23 18:07:07] [Level: info] state: coordinator_state
[Time: 30.11.23 18:07:07] [Level: info] [State: coordinator_state] Coordinator
is launched...
[Time: 30.11.23 18:07:07] [Level: info] [State: coordinator_state] Sub_Scen:
5, Round: 1, Communication: 0 gather data: [1, 21] SMPC: False, DP: False
[CTRL] GET /status
127.0.0.1 - - [30/Nov/2023 18:07:09] "GET /api/status HTTP/1.0" 200 219
[CTRL] GET /data
127.0.0.1 - - [30/Nov/2023 18:07:09] "GET /api/data HTTP/1.0" 200 2

D7.7 – Report on implementation of assessment,
requirement criteria, and “stress testing”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 24 of 86

[CTRL] POST /data
127.0.0.1 - - [30/Nov/2023 18:07:11] "POST /api/data?client=0000000000000000
HTTP/1.0" 200 0
[CTRL] GET /status
127.0.0.1 - - [30/Nov/2023 18:07:12] "GET /api/status HTTP/1.0" 200 151
[CTRL] POST /data
127.0.0.1 - - [30/Nov/2023 18:07:15] "POST /api/data?client=0000000000000000
HTTP/1.0" 200 0
[Time: 30.11.23 18:07:15] [Level: info] Traceback (most recent call last):
 File "/root/.local/lib/python3.8/site-
packages/FeatureCloud/app/engine/app.py", line 226, in guarded_run
 self.run()
 File "/root/.local/lib/python3.8/site-
packages/FeatureCloud/app/engine/app.py", line 241, in run
 transition = self.current_state.run()
 File "/app/states.py", line 454, in run
 data_to_collect = self.gather_data(is_json=flg)
 File "/root/.local/lib/python3.8/site-
packages/FeatureCloud/app/engine/app.py", line 618, in gather_data
 return self.await_data(len(self._app.clients), unwrap=False,
is_json=is_json)
 File "/root/.local/lib/python3.8/site-
packages/FeatureCloud/app/engine/app.py", line 648, in await_data
 return [_deserialize_incoming(d[0], is_json=is_json) for d in data]
 File "/root/.local/lib/python3.8/site-
packages/FeatureCloud/app/engine/app.py", line 648, in <listcomp>
 return [_deserialize_incoming(d[0], is_json=is_json) for d in data]
 File "/root/.local/lib/python3.8/site-
packages/FeatureCloud/app/engine/app.py", line 974, in _deserialize_incoming
 return pickle.loads(data)
_pickle.UnpicklingError: could not find MARK

The error arises from a mismatch in data serialization formats, where the data sent to the Python
pickle module for deserialization have been serialized using JSON, the dedicated serialization
method for simple communications.Therefore, attempting to deserialize data that was serialized in
JSON (a text-based format) causes an incompatibility, leading to the _pickle.UnpicklingError: could
not find MARK error. This error indicates that pickle is unable to find the specific markers it uses to
recognize and decode serialized objects, as these markers are not present in JSON-formatted data.
For a more detailed log see 11.4.3.

For the Simple-DP sub-scenario, the pip package uses the wrong status of another sub scenario
without DP for the data meant to be sent with DP, which results in a runtime error inside the controller:

{'component': 'LOCAL', 'instance': '', 'level': 'error', 'msg': "Error while
adding noise: Error while reading sent data: invalid character '\\u0080'
looking for beginning of value", 'time': '2023-11-30T18:14:03Z'}

D7.7 – Report on implementation of assessment,
requirement criteria, and “stress testing”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 25 of 86

{'component': 'LOCAL', 'instance': '', 'level': 'error', 'msg': "Error while
reading sent data: invalid character '\\u0080' looking for beginning of
value", 'time': '2023-11-30T18:14:03Z'}

The presence of “\u0080” character implies that the data being processed was serialized in a binary
format using pickle, while the controller attempting to read this data, expecting JSON serialization,
which is text-based and does not typically handle raw binary data well. In this case, this means that
data that was supposed to be sent without DP, and therefore with binary serialization, was sent
before the DP data alongside with the status of the DP data. For more detailed logs see section
11.4.4.

And for the DP-SMPC sub-scenario, the controller of the coordinator again displaces the received
data which result in an runtime error inside the coordinator’s app:

[Time: 30.11.23 18:30:18] [Level: info] Traceback (most recent call last):
 File "/root/.local/lib/python3.8/site-
packages/FeatureCloud/app/engine/app.py", line 226, in guarded_run
 self.run()
 File "/root/.local/lib/python3.8/site-
packages/FeatureCloud/app/engine/app.py", line 241, in run
 transition = self.current_state.run()
 File "/app/states.py", line 465, in run
 data_to_collect = self.gather_data(is_json=flg)
 File "/root/.local/lib/python3.8/site-
packages/FeatureCloud/app/engine/app.py", line 618, in gather_data
 return self.await_data(len(self._app.clients), unwrap=False,
is_json=is_json)
 File "/root/.local/lib/python3.8/site-
packages/FeatureCloud/app/engine/app.py", line 648, in await_data
 return [_deserialize_incoming(d[0], is_json=is_json) for d in data]
 File "/root/.local/lib/python3.8/site-
packages/FeatureCloud/app/engine/app.py", line 648, in <listcomp>
 return [_deserialize_incoming(d[0], is_json=is_json) for d in data]
 File "/root/.local/lib/python3.8/site-
packages/FeatureCloud/app/engine/app.py", line 974, in _deserialize_incoming
 return pickle.loads(data)
_pickle.UnpicklingError: unpickling stack underflow

For more detailed logs see section 11.4.5

All the test scenarios, settings, and data types are summarized in Table 1. Where, for String data,
DP and SMPC are not supported, same as simple aggregation; however, for simple gathering and
awaiting, the test is successful due to the misplacement issue. The same misplacement issue makes
the test successful to fail the platform for other data types, operations and communications methods,
except for the peer-to-peer communication method.

D7.7 – Report on implementation of assessment,
requirement criteria, and “stress testing”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 26 of 86

6.2.2 Communication memo
After receiving the feedback from the stress test, we analyze the logs to discover the possible
vulnerabilities contributing to the platform’s failure. Accordingly, we found the misplacement issue
which requires implementing the memo mechanism to keep the track of communications.
Implementing the memo affects the controller and pip package.

D7.7 – Report on implementation of assessment,
requirement criteria, and “stress testing”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 27 of 86

Tabel 1. Stress testing four different scenarios: different communication methods using various
data types and privacy enhancing technologies: (✓) indicates the test was successful, (☓) shows

the test was unsuccessful, (-) shows the data or operation is not supported.

 Aggregation Gathering Awaiting Peer-to-peer

Simple

Int ✓ ✓ ✓ ☓

Float ✓ ✓ ✓ ☓

List ✓ ✓ ✓ ☓

String - ✓ ✓ ☓

DP

Int ✓ ✓ ✓ -

Float ✓ ✓ ✓ -

List ✓ ✓ ✓ -

String - - - -

SMPC

Int ✓ ✓ ✓ -

Float ✓ ✓ ✓ -

List ✓ ✓ ✓ -

String - - - -

As it is shown in Table 2., for all scenarios the test was successful to break the platform.

Tabel 2. Stress testing mix communication scenario: different communication methods using
various data types and privacy enhancing technologies: (✓) Successful test, (☓) Unsuccessful test,

(-) Doesn’t support.

Scenarios Simple-SMPC Simple-DP DP-SMPC

Mix ✓ ✓ ✓

D7.7 – Report on implementation of assessment,
requirement criteria, and “stress testing”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 28 of 86

D7.7 – Report on implementation of assessment,
requirement criteria, and “stress testing”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 29 of 86

6.2.2.1 Pip package
To fix the problems found in our stress testing of the pip package, we applied two different strategies.
Before, shared status_variables, defining how the next data piece should be sent, were used which
was prone to race condition problems. To fix this, we now use the given function “get_current_status”
to ensure that different threads don’t change the status information from other threads, also saving
the status information alongside the data for each data piece sent between clients.

def get_current_status(self, **kwargs):
 status = dict()
 status["available"] = self.status_available
 status["finished"] = self.status_finished
 status["message"] = self.status_message
 status["progress"] = self.status_progress
 status["state"] = self.status_state
 status["destination"] = self.status_destination
 status["smpc"] = self.status_smpc
 status["dp"] = self.status_dp
 status["memo"] = self.status_memo
 for key, value in kwargs.items():
 # set whatever is wanted from the arguments
 status[key] = value
 return status

The status information of how a certain data piece is to be sent is saved as a JSON object
representing the answer to the GET / status request of the controller. Alongside this JSON string,
the data object is saved.

Whenever the status is requested, the oldest added data, status combination is looked at and its
status is sent as an answer. For the following GET / data request, it is ensured that the last send
status is the same as the one of the data objects about to be sent out.

This ensures in total that data is sent out exactly in the way it is wanted by the user, as is shown in
this extract from one of the sending methods of the pip package

smpc = self._app.default_smpc if use_smpc else None
dp = self._app.default_dp if use_dp else None
status = self._app.get_current_status(message=message,
 destination=destination, smpc=smpc, dp=dp, memo=memo,
 available=True)
self._app.data_outgoing.append((data, json.dumps(status, sort_keys=True)))

For each communication round, we added the possibility to add a memo to tag the communication
round. This memo ensures that each communication round is uniquely identifiable so that any race
conditions of individual communications taking a longer time due to e.g. higher data load are not
problematic, as with an added memo, the order of incoming and outgoing data is not relevant for the
identification of individual communication rounds. We added the memo string to the GET /STATUS
call of the controller by adding it to the get_current_status(**kwargs) method.

D7.7 – Report on implementation of assessment,
requirement criteria, and “stress testing”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 30 of 86

We roughly categorize the communication methods into send and receive methods. For send
methods, including send_data_to_participant, send_data_to_coordinator, and broadcast_data we
check for the status and include the memo into the status and communicate the data and status
together by appending them as a tuple into the same element of the data_outgoing list.

def send_data_to_coordinator(self, data, send_to_self=True, use_smpc=False,
 use_dp=False, memo=None):
 message = self._app.status_message if self._app.status_message else
 (self._app.current_state.name if self._app.current_state else None)
 self._app.status_message = message
 smpc = self._app.default_smpc if use_smpc else None
 dp = self._app.default_dp if use_dp else None
 status = self._app.get_current_status(message=message,
 destination=destination, smpc=smpc, dp=dp, memo=memo,
 available=True)
 self._app.data_outgoing.append((data, json.dumps(status,
 sort_keys=True)))

On the other hand, for all receive methods, including `aggregate_data` and `gather_data`, we call
the `await` method which is responsible for handling the incoming data. In fact, the `await_data`
method looks for receiving specific tuples of data and memo from all awaited clients. In this way,
each data and memo will be identifiable for the app.

As older apps that do not use memos will not send any memo, we must ensure backwards
compatibility by assuming potentially, no memo is given when receiving data. In that case, we simply
use the default memo (None).

if "memo" in request.query:
 memo = request.query["memo"]
 else:
 memo = None

For more detail about the changes regarding the pip package see action 11.4.1.

As discussed in 6.2.1, various problems were discovered. The stress test was then done again on
the updated pip package and the following logs were produced considering the following errors

The misplacement of values from different communication rounds was fixed by the implementation
of memos, ensuring that values can be assigned to the correct communication round.
The following log shows no misplacement anymore after the fix. Here, two clients sent different data
in each communication round which then got aggregated. While before, the aggregations would have
been incorrect due to misplacement, e.g. 1 and 11 would have been added to 12 instead of 1 and 1,
now the aggregation returns the correct result.

[Time: 05.12.23 18:14:42] [Level: info] [State: client_state] Sub_Scen: 5,
Round: 1, Communication: 0, client send data 1 to coordinator SMPC:
False, DP: False

D7.7 – Report on implementation of assessment,
requirement criteria, and “stress testing”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 31 of 86

[Time: 05.12.23 18:14:42] [Level: info] [State: client_state] Sub_Scen: 5,
Round: 1, Communication: 1, client send data 11 to coordinator SMPC:
False, DP: False
[Time: 05.12.23 18:14:42] [Level: info] [State: client_state] Sub_Scen: 5,
Round: 1, Communication: 2, client send data 21 to coordinator SMPC:
False, DP: False
[Time: 05.12.23 18:14:42] [Level: info] [State: client_state] Sub_Scen: 5,
Round: 1, Communication: 3, client send data 31 to coordinator SMPC:
False, DP: False
...
[Time: 05.12.23 18:14:44] [Level: info] [State: coordinator_state] Sub_Scen:
5, Round: 1, Communication: 0 aggregate data: 2 SMPC: False, DP: False
[Time: 05.12.23 18:14:47] [Level: info] [State: coordinator_state] Sub_Scen:
5, Round: 1, Communication: 1 aggregate data: 22 SMPC: False, DP: False
[Time: 05.12.23 18:14:50] [Level: info] [State: coordinator_state] Sub_Scen:
5, Round: 1, Communication: 2 aggregate data: 42 SMPC: False, DP: False
[Time: 05.12.23 18:14:53] [Level: info] [State: coordinator_state] Sub_Scen:
5, Round: 1, Communication: 3 aggregate data: 62 SMPC: False, DP: False

The other issue that was found during stress testing was the sending of data serialized in one way
alongside of status that declared the data to be serialized in another way. This was fixed by keeping
the data together with their status, furthermore comparing the last used status with the status the
data should be sent with. In the following log, it is shown that even when mixing communication,
which before due to shared status variables led to serialization related errors, the communication
app works.

[Time: 06.12.23 17:11:13] [Level: info] [State: client_state] Sub_Scen: 5,
Round: 1, Communication: 0, client send data 1 to coordinator SMPC:
False, DP: False
[Time: 06.12.23 17:11:13] [Level: info] [State: client_state] Sub_Scen: 5,
Round: 1, Communication: 1, client send data 11 to coordinator SMPC:
False, DP: True
[Time: 06.12.23 17:11:13] [Level: info] [State: client_state] Sub_Scen: 5,
Round: 1, Communication: 2, client send data 21 to coordinator SMPC:
False, DP: False
[Time: 06.12.23 17:11:13] [Level: info] [State: client_state] Sub_Scen: 5,
Round: 1, Communication: 3, client send data 31 to coordinator SMPC:
False, DP: True
...
127.0.0.1 - - [06/Dec/2023 17:11:13] "POST
/api/data?client=fee5ff399468436f&memo=GATHERROUND2 HTTP/1.0" 200 0
127.0.0.1 - - [06/Dec/2023 17:11:16] "POST
/api/data?client=fee5ff399468436f&memo=GATHERROUND4 HTTP/1.0" 200 0
127.0.0.1 - - [06/Dec/2023 17:11:18] "POST
/api/data?client=1c3278743a14209a&memo=GATHERROUND1 HTTP/1.0" 200 0

D7.7 – Report on implementation of assessment,
requirement criteria, and “stress testing”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 32 of 86

[Time: 06.12.23 17:11:18] [Level: info] [State: coordinator_state] Sub_Scen:
5, Round: 1, Communication: 0 gather data: [1, 1] SMPC: False, DP: False
127.0.0.1 - - [06/Dec/2023 17:11:21] "POST
/api/data?client=1c3278743a14209a&memo=GATHERROUND2 HTTP/1.0" 200 0
[Time: 06.12.23 17:11:21] [Level: info] [State: coordinator_state] Sub_Scen:
5, Round: 1, Communication: 1 gather data: [48.962946450250456, -
15.404591992555652] SMPC: False, DP: True
127.0.0.1 - - [06/Dec/2023 17:11:22] "GET /api/status HTTP/1.0" 200 165
[CTRL] POST /data
127.0.0.1 - - [06/Dec/2023 17:11:24] "POST
/api/data?client=1c3278743a14209a&memo=GATHERROUND3 HTTP/1.0" 200 0
[Time: 06.12.23 17:11:24] [Level: info] [State: coordinator_state] Sub_Scen:
5, Round: 1, Communication: 2 gather data: [21, 21] SMPC: False, DP: False
127.0.0.1 - - [06/Dec/2023 17:11:25] "GET /api/status HTTP/1.0" 200 165
[Time: 06.12.23 17:11:27] [Level: info] [State: coordinator_state] Sub_Scen:
5, Round: 1, Communication: 3 gather data: [50.419946977926884, -
17.18074216073728] SMPC: False, DP: True

Furthermore, also when mixing SMPC with plain sending of data, no problems occur. Please notice
that when using SMPC, data is aggregated by design:

[Time: 06.12.23 20:13:18] [Level: info] [State: client_state] Sub_Scen: 5,
Round: 1, Communication: 0, client send data 1 to coordinator SMPC:
False, DP: False
[Time: 06.12.23 20:13:18] [Level: info] [State: client_state] Sub_Scen: 5,
Round: 1, Communication: 1, client send data 11 to coordinator SMPC:
True, DP: False
[Time: 06.12.23 20:13:18] [Level: info] [State: client_state] Sub_Scen: 5,
Round: 1, Communication: 2, client send data 21 to coordinator SMPC:
False, DP: False
[Time: 06.12.23 20:13:18] [Level: info] [State: client_state] Sub_Scen: 5,
Round: 1, Communication: 3, client send data 31 to coordinator SMPC:
True, DP: False
...
127.0.0.1 - - [06/Dec/2023 20:13:21] "POST
/api/data?client=5cbaecb01a49dc14&memo=GATHERROUND1 HTTP/1.0" 200 0
[Time: 06.12.23 20:13:21] [Level: info] [State: coordinator_state] Sub_Scen:
5, Round: 1, Communication: 0 gather data: [1, 1] SMPC: False, DP: False
127.0.0.1 - - [06/Dec/2023 20:13:24] "POST
/api/data?client=0000000000000000&memo=GATHERROUND2 HTTP/1.0" 200 0
[Time: 06.12.23 20:13:24] [Level: info] [State: coordinator_state] Sub_Scen:
5, Round: 1, Communication: 1 gather data: [22] SMPC: True, DP: False
127.0.0.1 - - [06/Dec/2023 20:13:27] "POST
/api/data?client=5cbaecb01a49dc14&memo=GATHERROUND3 HTTP/1.0" 200 0

D7.7 – Report on implementation of assessment,
requirement criteria, and “stress testing”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 33 of 86

[Time: 06.12.23 20:13:27] [Level: info] [State: coordinator_state] Sub_Scen:
5, Round: 1, Communication: 2 gather data: [21, 21] SMPC: False, DP: False
127.0.0.1 - - [06/Dec/2023 20:13:30] "POST
/api/data?client=0000000000000000&memo=GATHERROUND4 HTTP/1.0" 200 0
[Time: 06.12.23 20:13:30] [Level: info] [State: coordinator_state] Sub_Scen:
5, Round: 1, Communication: 3 gather data: [62] SMPC: True, DP: False

6.2.2.2 Controller
Since the memo must be propagated from one client to another, the memo also had to be
implemented into the controller. For any communication of a data piece between two clients, the
controller of a client sends the information as given in the code block below. Here, we added one
byte to inform about the memo size and then up to 255 byte of the memo itself.

func (s *Server) writePacket(cmd byte, b []byte, dest int, memosize byte, memo
[]byte) error {
 // writes byte cmd, [4]byte destination, [8]byte contentLength,
 // byte memosize, [memosize]byte memo, [contentlength] b

 // write cmd
 s.mutexOut.Lock()
 if err := s.writeByte(cmd); err != nil {
 s.mutexOut.Unlock()
 return err
 }

 // write destination
 if dest != -1 {
 destinationBytes := [4]byte{}
 binary.BigEndian.PutUint32(destinationBytes[:], uint32(dest))
 if err := s.writeBytes(destinationBytes[:]); err != nil {
 return err
 }
 }

 // write contentLength
 contentLength := int64(len(b))

 chunkSize := [8]byte{}
 binary.BigEndian.PutUint64(chunkSize[:], uint64(contentLength))

 if err := s.writeBytes(chunkSize[:]); err != nil {
 s.mutexOut.Unlock()
 return err
 }

D7.7 – Report on implementation of assessment,
requirement criteria, and “stress testing”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 34 of 86

 // write memosize and the memo itself
 if err := s.writeByte(memosize); err != nil {
 s.mutexOut.Unlock()
 return err
 }
 if memosize > 0 {
 if err := s.writeBytes([]byte(memo)); err != nil {
 s.mutexOut.Unlock()
 return err
 }
 }

 // write b (the data itself)
 if err := s.writeBytes(b); err != nil {
 s.mutexOut.Unlock()
 return err
 }

 s.mutexOut.Unlock()

 return nil
}

Then, on the receiving side, the global relay server reads the memo
// read memosize
 memosize, err := c.readByte()
 if err != nil {
 return err
 }

 // read memo
 memo := make([]byte, int(memosize))
 if err := c.readBytes(memo); err != nil {
 return err
 }

and relays it in the same way to the receiving client.
func (c *Client) SendData(msg []byte, senderID shared.ClientID, tp string,
memosize byte, memo []byte) error {
 c.mutexOut.Lock()
 defer c.mutexOut.Unlock()

 var b byte
 switch tp {
 case "plain":
 b = shared.CMD_SEND_PLAIN_DATA

D7.7 – Report on implementation of assessment,
requirement criteria, and “stress testing”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 35 of 86

 case "p2p":
 b = shared.CMD_SEND_P2P_DATA
 case "smpc":
 b = shared.CMD_SEND_SMPC_DATA
 case "smpc_agg":
 b = shared.CMD_SEND_SMPC_AGG
 }

 // write the command byte
 if err := c.writeByte(b); err != nil {
 return err
 }

 // write the senderID so the receiver can identify the sender
 if err := c.writeBytes(senderID[:]); err != nil {
 return err
 }

 // write the contentlength
 remainingBytes := [8]byte{}
 binary.BigEndian.PutUint64(remainingBytes[:], uint64(len(msg)))

 if err := c.writeBytes(remainingBytes[:]); err != nil {
 return err
 }

 // write the memosize
 if err := c.writeByte(memosize); err != nil {
 return err
 }

 // write the memo
 if err := c.writeBytes(memo); err != nil {
 return err
 }

 // write the content
 err := c.writeBytes(msg)
 if err != nil {
 return err
 }

 return nil
}

D7.7 – Report on implementation of assessment,
requirement criteria, and “stress testing”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 36 of 86

Lastly, the receiving client reads it again in the same manner

 // read the memo
 if cmd == shared.CMD_SEND_PLAIN_DATA || cmd ==
shared.CMD_SEND_P2P_DATA || cmd == shared.CMD_SEND_SMPC_DATA || cmd ==
shared.CMD_SEND_SMPC_AGG {
 // read the memosize and memo, for CMD_SEND_SETUP this is
not send, this is why we need this if statement
 memosize, err := s.readByte()
 if err != nil {
 return s.evaluateError(err)
 }
 if memosize > 0 {
 memoBytes = make([]byte, memosize)
 if err := s.readBytes(memoBytes); err != nil {
 return s.evaluateError(err)
 }
 memo = string(memoBytes)
 }
 }

And finally sends the data to the app instance. The memo is given as part of the Uniform Resource
Locator (URL) of the POST Request to the app Instance.

func (s *Server) postData(dataBytes []byte, clientID shared.ClientID, memo
string) error {
 maxTries := 3
 // Relay data (POST data)
 for tries := 0; tries < maxTries; tries++ {
 var targetURL string
 if len(memo) > 0 {
 targetURL = fmt.Sprintf("%s/data?client=%x&memo=%s",
s.localURL, clientID, memo)
 } else {
 targetURL = fmt.Sprintf("%s/data?client=%x", s.localURL,
clientID)
 }

6.3 Controller
In the process of stress testing the FeatureCloud controller, we evaluated the platform's robustness
against a variety of scenarios. One significant aspect of our testing involved running workflows with
a mix of both compatible and incompatible applications. The platform is able to manage these
application inconsistencies effectively, maintaining operational stability throughout the test. When
faced with incompatible applications the system intelligently raised runtime errors. These errors were
indicative of the platform's inability to process data due to format mismatches, thus providing
valuable feedback in the application logs.

D7.7 – Report on implementation of assessment,
requirement criteria, and “stress testing”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 37 of 86

Another key area of our testing focused on the controller's response to unsupported data formats.
The controller rejects or ignores these formats without crashing or resulting in critical system errors.
In fact, the pip package, used in app development, generates error logs to inform the users about
the nature of the data format issues. This aspect of the testing underscored the controller's resilience
in handling data anomalies.

We also conducted tests involving incompatible configurations. The system's response was to raise
specific errors tailored to the nature of the configuration issue. For example, a "File Not Found" error
was generated when the system tried to access a file that did not exist according to the given
configuration. Similarly, a "Key Error" was raised during the reading of the configuration file,
highlighting problems related to missing or incorrect keys necessary for processing. The logs will
appear in output logs of the workflow.

Lastly, our stress tests included simulations of network failures and disconnections. These tests were
crucial in evaluating the platform's capability to cope with and recover from network-related
disruptions. During such network interruptions, the workflow was programmed to halt, and this
stoppage was clearly communicated to the user through an error message displayed on the frontend.
This error message informed users of the workflow’s interruption due to network issues, thereby
helping them understand the cause of the disruption.

Figure 1. Network disruption error during workflow execution

Executing workflows including incompatible apps, configurations, and data can be handled by the
platform differently since the response will be highly dependent on the error and exception handling
of the apps. If the app faces unhandled exceptions the app will crash, which is an expected behavior
in the platform design, however, the controller recognizes the app status and informs the end user
via error logs in the frontend.

Figure 2. Error logs for app crashes in a workflow

However, during the stress testing the controller, we discovered a failure. In fact, the controller
continuously polls the app for status updates. If the app stops responding for any reason (e.g. wrong
input data, wrong config file caused the app to crash), the controller doesn’t properly react to this
and the workflow stays in “running” state endlessly.

time="2022-04-26 09:44:22" level=error msg="[LOCAL] Get
\"http://172.29.0.3:9000/status\": dial tcp 172.29.0.3:9000: connectex: No
connection could be made because the target machine actively refused it."
time="2022-04-26 09:44:25" level=debug msg="[FLOW] 63 Workflow running"

D7.7 – Report on implementation of assessment,
requirement criteria, and “stress testing”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 38 of 86

This message indicates an attempt by the Controller to connect to the app at the IP address
172.29.0.3 on port 9000 in the local Docker network to retrieve a status update. However, the
connection attempt failed because the target app actively refused the connection. This happens once
the app crashes. Despite this error, the workflow remains in a "running" state, for more detailed logs
see section 11.2.1 In fact, once the app failed, the overall workflow process continued to run, which
is not an expected behavior by the platform.

Unhandled errors may occur inside the FeatureCloud app, and the platform should be able to handle
them. Below we show a series of changes we implemented in the major platform components (see
D7.2, chapter 4.1. System Architecture) which improved the platform’s robustness. Here we cover
the code blocks of the error handling in chronological order.

The app template catches any runtime errors, and reports the error state to the controller as a status
update:

def guarded_run(self):
 """ run the workflow while trying to catch possible exceptions
 """
 try:
 self.run()
 except Exception as e:
 self.log(traceback.format_exc())
 self.status_message = e.__class__.__name__
 self.status_state = State.ERROR.value
 self.status_finished = True

The Controller, acting on behalf of one workflow participant, propagates the error to the Global
Backend. The `updateFunc` function is invoked each time a status update is received from the
FeatureCloud app and `w.setAppStatus` sends the update to the Global Backend.

// This function produces a callback function, creating a closure for the
projectId
updateFunc := func(projectId int) func(message *string, progress *float64,
state *string) {
 return func(message *string, progress *float64, state *string) {
 w.setAppStatus(projectId, message, progress, state)
 }
}(info.ProjectId)

// Now we configure the link between the container and the socket server
// It will perform the querying (hence the interval) and relaying, so
basically this struct
// implements the FeatureCloud controller API
lastInfo.LocalLink = local.NewServer(
 time.Duration(w.queryInterval)*time.Second,
 info.Coordinator,
 true,
 updateFunc,
)

D7.7 – Report on implementation of assessment,
requirement criteria, and “stress testing”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 39 of 86

Furthermore, if the communication with the FeatureCloud app fails (i.e. status update cannot be
acquired), the controller reports it as a status update with “error” state, which is handled by the above
code and propagated to the Global Backend.

// Start relaying
go func() {
 err := s.relayBinaryLocal()
 if err != nil {
 if s.updateCB != nil {
 msg := err.Error()
 state := "error"
 s.updateCB(&msg, nil, &state)
 }
 logger.Error(LOCAL, "", err.Error())
 }
}()

In case any participant reports an error, it means the workflow cannot continue and the Global
Backend will set the entire workflow to “error” state.

if 'state' in request.data:
 current_state = request.data.get('state')
 membership.state = current_state
 # Set error status at project level too
 if current_state == 'error':
 project.status = 'error'
 project.finished_at = timezone.now()
 project.save()

The controller will handle the workflow “error” state and stop the FeatureCloud application:

case "shutdown", "error":
 if info.Stage == "error" {
 logger.Error(FLOW, strconv.Itoa(info.ProjectId), "Workflow is shutting
down because of an error")
 } else {
 logger.Info(FLOW, strconv.Itoa(info.ProjectId), "Workflow is shutting
down")
 }
 lastInfo.Run = w.ensureRunNumber(info.ProjectId)
 shutdownLocalLink(lastInfo.LocalLink)
 w.stopApplication(lastInfo.LocalApp, info.ProjectId, lastInfo.Step)

After the robustness improvements by the FeatureCloud core development team, we executed the
stress test to validate that the platform survives the test. As it is shown in the logs below, the “error”
entries are extended to not only report on the unreachability of the app, but also shutting down the
workflow (for more detailed logs see 11.2.2). Consequently, the workflow stop logs, see Figure 2,
will inform the end-user about the status of the app and workflow. Further detailed logs can be
provided by the app on the reasons for the app crashing.

D7.7 – Report on implementation of assessment,
requirement criteria, and “stress testing”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 40 of 86

time="2022-05-04 10:24:05" level=error msg="[LOCAL] Get
\"http://172.29.0.3:9000/status\": dial tcp 172.29.0.3:9000: connectex: No
connection could be made because the target machine actively refused it."
time="2022-05-04 10:24:08" level=info msg="[FLOW] 63 Info change for project
63: stage: error, step: 0"
time="2022-05-04 10:24:08" level=error msg="[FLOW] 63 Workflow is shutting
down because of an error"

6.4 Web Security
We stress tested the security aspect of FeatureCloud platform as a web application in different
scenarios using different tools:

● Cross-Site Request Forgery (CSRF) Vulnerabilities: We used Burp Suite to modify and replay
web requests.

● TLS Protocol Usage and Encryption Testing: We used Trivy for scanning vulnerabilities in
encryption protocols, and we used Nessus to scan network-level TLS protocol
implementations.

● SSL Stripping Attacks: We used Burp Suite to intercept and modify HTTP/HTTPS traffic.
● Session Management and XSS Testing: We used Burp Suite to exploit possible session

management vulnerabilities and conduct XSS attacks.
● Input Validation Tests (SQL, Script, Command Injections): We used Burp Suite for stressing

the FeatureCloud web applications.
● Data Storage and Transmission Methods Testing: We used Trivy to scan for possible

vulnerabilities in the platform’s data handling components.
● Endpoints and Authentication Mechanism Stress Testing: We used Burp Suite to create and

modify web requests.
● Configuration and Credential Testing: We used Nessus to scan for misconfigurations and

credential weaknesses.
● API Security Testing: We used Burp Suite for stressing the platform’s API.

6.4.1 Unauthenticated user access
We designed a test to access data out of the intended scope while exploiting the root user privileges
inside the controller's Docker container.

During the stress tests, the controller failed to robustly act on the path traversal aspect caused by
insufficient validation of file name input which allows an unauthenticated user to write or overwrite
arbitrary files on the server. This is implemented in the file upload function of a project in the
controller, where the file name is passed to the server via a URL parameter:

fPath := filepath.Join(internalDir, fileName)

Where, `fileName` is concatenated directly with `directoryPath` to form a file path, without checking
if `fileName` contains any directory traversal characters like “../”. Thereby, the test was successful to
manipulate the file system of the server by unauthorized data modification, e.g., overwriting critical
system files or configuration files.

We incorporated the feedback into the platform by validating and normalizing the path. In fact, we
implemented validation checks. We ensure the path is resolved to its absolute canonical form then
we normalize and validate the resolved path points only to authorized directories, thus fixing this
vulnerability.

D7.7 – Report on implementation of assessment,
requirement criteria, and “stress testing”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 41 of 86

fPath := getPath(internalDir, fileName)
if err != nil {
 return err
}

…
func (m manager) getPath(topDir string, relPath string) (string, error) {
 relPath = filepath.Clean(relPath)
 if filepath.IsAbs(relPath) {
 return "", errors.New(fmt.Sprintf("need relative path, topDir: %s,
relPath: %s", topDir, relPath))
 }
 if strings.Contains(relPath, "..") {
 return "", errors.New(fmt.Sprintf("relative path must not escape top
path: %s", relPath))
 }
 p := filepath.Join(topDir, relPath)
 if rp, err := filepath.Rel(topDir, p); err != nil || rp != relPath {
 return "", errors.New(fmt.Sprintf("path %s should be inside %s", p,
topDir))
 }
 return p, nil
}

In another test scenario, the FeatureCloud controller exhibited vulnerabilities in its Docker
configuration, where the Docker image for the fc-controller did not specify a non-root user, resulting
in the application running with elevated root permissions. This was evident from the Docker run script
used to start the fc-controller.

The fc-controller Docker image lacks a specific USER directive, causing it to default to using the root
user. Consequently, the image's ENTRYPOINT, which launches the application /go/bin/controller,
operates with root permissions 11.5.1 To support running the controller with a specific user, we
extended app.cli.controller.commands in a way that the start command accepts a new --user option.
This option allows specifying the username with which the controller should run.

@controller.command('start')
@click.option('--user', default='root', help='Username to run the controller.
Optional parameter (e.g. --user=non_root_user).', required=False)
... (other options)
def start(user: str, name: str, port: int, data_dir: str, controller_image,
gpu: bool, mount: str) -> None:
 # ... (existing code)
 Try:
 commands.start(name, port, data_dir, controller_image, gpu, mount,
user)
 click.echo(f'Started controller: {name} with user: {user}')

D7.7 – Report on implementation of assessment,
requirement criteria, and “stress testing”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 42 of 86

Also, In app.imp.controller.commands, modify the start function to accept the user parameter and
use it when creating the Docker container.

def start(name: str, port: int, data_dir: str, controller_image: str,
with_gpu: bool, mount: str, user: str = 'root'):
 if os.geteuid() != 0 and user == 'root':
 raise EnvironmentError("Only the `root` user can run FeatureCloud
controller by setting the user as `root`.")

 Try:
 client.containers.run(

 user=user,
)

Finally, after implementing these changes, we start the FeatureCloud controller with a specified non-
root user by using the following command:

$ featurecloud controller start --user non_root_user

6.4.2 Common Vulnerabilities and Exposures
In another scenario, we tried to exploit possible outdated libraries with known vulnerabilities inside
the controller. These Docker images, which are based on standard Linux distribution base images,
were not regularly updated, leading to potential security risks. The Docker image for the
“featurecloud.ai/controller” was found to contain multiple outdated libraries with high to medium
severity vulnerabilities:

● github.com/docker/distribution: Vulnerabilities like CVE-2023-2253 (Common Vulnerabilities
and Exposures)

● github.com/docker/docker
● golang.org/x/net

The vulnerabilities within these libraries primarily threatened the integrity and availability of the
system. Notably, they did not pose a direct threat to confidentiality but could lead to system instability
and unauthorized data modification or deletion. To mitigate these risks, we have enhanced our CI/CD
pipeline with a robust routine focused on continuous monitoring of libraries used in our Docker
images. This proactive approach enables us to quickly identify known vulnerabilities and implement
necessary countermeasures. Our response primarily involves updating the affected libraries to their
secured, fixed versions, thereby ensuring the ongoing stability and security of the FeatureCloud
platform.

To address the issue of outdated libraries with known vulnerabilities in the Docker images, we
improved our CI/CD pipeline to include automated checks for library vulnerabilities by integrating
Trivy as a vulnerability scanning tool and updating our CI/CD pipeline configuration. The new stage
runs after the build stage, but before the deployment stage:

check:vulnerabilities:
 image: registry.blitzhub.io/trivy

D7.7 – Report on implementation of assessment,
requirement criteria, and “stress testing”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 43 of 86

 stage: check
 script:
 - trivy image $REGISTRY_URL/featurecloud/controller:staging
 dependencies:
 - build_controller

We also modify the deployment stages to depend on the vulnerability check. This ensures that
deployment only happens if the vulnerability check passes.

deploy:gitlab:staging:
 # ...
 dependencies:
 - check:lint
 - check:test
 - check:vulnerabilities
 # ...
deploy:main:staging:
 # ...
 dependencies:
 - check:lint
 - check:test
 - check:vulnerabilities

We also add regular base image updates to ensure that the base images used in the Dockerfile are
regularly updated to the latest versions.

before_script:
 - docker pull golang:latest # Ensure the latest base image is used

And we add library update checks to include steps in the pipeline to check for and update the
dependencies in the project to their latest, secure versions:

setup:
 stage: setup
 script:
 - go get -u ./... # Update all dependencies

The “./…” in the “go get -u ./…” command ensures that the update operation applies recursively to
all packages in the current directory and its subdirectories, covering all project dependencies. If the
project uses Go modules, as standard from Go 1.11 onwards, this command will update
dependencies within the constraints defined in the “go.mod” file, ensuring compatibility and version
control. Once the version deployed on the staging server shows stability without producing any
errors, we manually deploy the updates on the production server.

D7.7 – Report on implementation of assessment,
requirement criteria, and “stress testing”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 44 of 86

6.4.3 Brute-force attack
In the next scenario, we systematically attempted various password combinations to gain
unauthorized access which resulted in identifying a significant security vulnerability in terms of the
absence of brute-force attack protection on the FeatureCloud platform. The staging.featurecloud.ai
system lacked measures to prevent or mitigate brute-force attacks, posing a high risk to both
confidentiality and integrity. The test stressed the platform by submitting numerous incorrect login
attempts within a short time without triggering any account lockout or alert mechanisms.

We incorporated the feedback into the platform for this issue by implementing an account lockout
policy including temporarily locking the target account after five consecutive failed login attempts for
a duration of five minutes. We introduced two new fields, “failed_login_attempts” and “lockout_until”,
to the FCUser model to enhance security. These fields help us keep track of consecutive failed login
attempts and specify a time period during which the user account remains locked. Additionally, we
added the “lockout_expired” method to determine if the lockout period has passed, allowing the user
to attempt logging in again.

class FCUser(AbstractUser):
 site = models.ForeignKey('Site', on_delete=models.SET_NULL, null=True,
blank=True)
 is_site_admin = models.BooleanField(default=False)
 # ... (other fields of FCUser) ...

 # Add fields for tracking failed login attempts and lockout timestamp
 failed_login_attempts = models.IntegerField(default=0)
 lockout_until = models.DateTimeField(null=True, blank=True)

 def lockout_expired(self):
 # Check if the lockout period has expired
 if self.lockout_until and now() >= self.lockout_until:
 return True
 return False

We modified the “login_view” function to incorporate our new account lockout mechanism. Now,
when a user tries to log in, we first check if their account is locked. If it is, we redirect them to an
error page. For successful logins, we reset the “failed_login_attempts” to zero and clear the
“lockout_until field”, effectively unlocking the account. In case of failed login attempts, we increment
the “failed_login_attempts” and, if necessary, set the lockout_until field to lock the account for a
period. We made sure to render appropriate views based on whether the login attempt succeeds,
fails, or if the account is locked.

def login_view(request):

 def post(self, request):
 username = request.POST.get('username')
 password = request.POST.get('password')
 user = authenticate(username=username, password=password)

 if user is not None:

D7.7 – Report on implementation of assessment,
requirement criteria, and “stress testing”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 45 of 86

 # Check if the account is locked
 if user.lockout_expired() or user.lockout_until is None:
 # Reset failed login attempts and lockout timestamp upon successful
login
 user.failed_login_attempts = 0
 user.lockout_until = None
 user.save()
 # Proceed with login process
 login(request, user)
 return Response({'success': True})
 else:
 content = {'success': False, 'detail': 'Account is locked'}
 return Response(content, status=status. HTTP_401_UNAUTHORIZED)
 else:
 # Failed login attempt
 try:
 user = User.objects.get(username=username)
 user.failed_login_attempts += 1
 if user.failed_login_attempts >= 5:
 user.lockout_until = timezone.now() + timezone.timedelta(minutes=5)
 user.save()
 except User.DoesNotExist:
 pass

 content = {'success': False, 'detail': 'No active account found with the
given credentials'}
 return Response(content, status=status. HTTP_401_UNAUTHORIZED)

We implemented “BruteForceProtectionMiddleware” to handle preemptive checks on login attempts.
This middleware intervenes during POST requests to the login URL. It checks whether the username
exists and if the corresponding account is locked. If an account is locked, it raises a
PermissionDenied exception, thus preventing further processing of the login attempt. For login
attempts with non-existent usernames, we log these events for security monitoring and analysis.

class BruteForceProtectionMiddleware:
 def __init__(self, get_response):
 self.get_response = get_response

 def __call__(self, request):
 response = self.get_response(request)
 return response

 def process_view(self, request, view_func, view_args, view_kwargs):
 if request.method == 'POST' and '/login' in request.path:
 username = request.POST.get('username')

D7.7 – Report on implementation of assessment,
requirement criteria, and “stress testing”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 46 of 86

 try:
 user = User.objects.get(username=username)
 if not user.lockout_expired() and user.lockout_until is not None:
 raise PermissionDenied('Account is temporarily locked due to multiple
failed login attempts.')
 except User.DoesNotExist:
 logger.info(f"Login attempt with non-existing username: {username}")
 return None

6.4.4 Manipulate the confidentiality and integrity of data
We stressed the platform by attempting to manipulate the confidentiality and integrity of data
transmission in the platform by exploiting the usage of insecure TLS versions in the platform. In fact,
the platform uses TLS 1.0 and 1.1 for secure communication. These versions are considered
insecure due to vulnerabilities that cannot be remediated:

● TLS 1.0: Utilizes the SHA-1 hash algorithm, which is no longer secure, and supports
outdated ciphers susceptible to multiple known vulnerabilities like FREAK, DROWN,
BEAST, CRIME, and POODLE.

● TLS 1.1: Similar to TLS 1.0, it uses the SHA-1 algorithm for signature creation and lacks
significant support among modern browsers and clients.

Consequently, we upgraded the platform to use modern TLS versions 1.2 while completely disabling
all older versions (SSLv2, SSLv3, TLS 1.0, TLS 1.1). We updated the Apache server configurations
in both staging and production servers:

SSLProtocol all -SSLv2 -SSLv3 -TLSv1 -TLSv1.1

6.4.5 SSL Stripping attacks
Moreover, we stressed the platform by SSL Stripping attacks to manipulate confidentiality and
integrity. We attempt to intercept the initial HTTP request and prevent redirection to a secure HTTPS
connection, gaining the ability to see and manipulate the data. The test was successful because of
the lack of HTTP Strict Transport Security (HSTS) Headers.

HTTP/1.1 200 OK
Date: Tue, 21 Nov 2023 10:37:26 GMT
Server: nginx/1.19.4
Content-Type: text/html
Last-Modified: Tue, 31 Oct 2023 13:14:58 GMT
ETag: "6540fdd2-1386-gzip"
Accept-Ranges: bytes
Vary: Accept-Encoding
Content-Length: 4998
Connection: close

Therefore, to improve the platform, we configured the web servers to send the HSTS Header with a
“max-age” of one year and include all subdomains. This measure ensures that browsers will
automatically upgrade all HTTP requests to HTTPS, even if the user enters an HTTP URL.

D7.7 – Report on implementation of assessment,
requirement criteria, and “stress testing”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 47 of 86

Recommended configuration for Apache:
Header always set Strict-Transport-Security "max-age=31536000;
includeSubDomains"

Recommended configuration for NGINX:
add_header Strict-Transport-Security "max-age=31536000;
includeSubDomains" always;

Recommended configuration for IIS:
<system.webServer>
...
<httpProtocol>
<customHeaders>
<add name="Strict-Transport-Security" value="max-age=31536000;
includeSubDomains"/>
</customHeaders>
</httpProtocol>
...
</system.webServer>

D7.7 – Report on implementation of assessment,
requirement criteria, and “stress testing”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 48 of 86

7 Open issues
No open issues remaining.

8 Deviations
As it was discussed in D7.4 and D7.5, the patients’ user interface (UI) is deployed on hospitals’
infrastructure due to privacy concerns. This affects a considerable aspect of blockchain integration
because all the patient’s consent management alongside workflow auditing will take place on the
hospital's side where various technologies, including hardware and software, can be used.
Accordingly, designing tests to stress the blockchain integration could not capture real world aspects
of the deployment on hospitals platform since we could not simulate the production environment.

9 Conclusion
In conclusion, in this deliverable, we reported the FeatureCloud platform's resilience to have a
successful performance in a series of stress tests. Specifically, the platform demonstrated robust
web security, effectively countering threats like Cross-Site Request Forgery (CSRF), SSL stripping,
and vulnerabilities in TLS protocols. These tests, conducted using tools such as Burp Suite, Trivy,
and Nessus, established the platform's capability to safeguard data integrity and confidentiality.
Moreover, the controller component of FeatureCloud showcased its efficiency in managing complex
workflows under high-stress conditions. Equally impressive was the pip package, which proved its
reliability in data communication, a critical aspect for developers in federated environments. The
platform's ability to withstand these diverse tests not only confirms its operational resilience but also
assures users of its reliability in managing federated data processing and analysis securely and
efficiently.

D7.7 – Report on implementation of assessment,
requirement criteria, and “stress testing”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 49 of 86

10 Other supporting documents / figures / tables
10.1 Communication test app

10.2 stress testing the Controller
This section provides more detailed logs on the controllers under stress.

D7.7 – Report on implementation of assessment,
requirement criteria, and “stress testing”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 50 of 86

10.2.1 Controller Fails the stress test
Controller logs before the robustness improvements, see the “error” entry, after which the workflow
is still in “running” state:

time="2022-04-26 09:43:51" level=info msg="[FLOW] 63 Start workflow"
time="2022-04-26 09:43:55" level=info msg="[FLOW] 63 Info change for project
63: stage: running, step: 0"
time="2022-04-26 09:43:56" level=info msg="[FLOW] 63 Start application:
fc_stagingfeaturecloudaitestappsha256ca6cef25fae208ea3ef9db4df49d81e4e369dc1c5
0c1939ad514ea7bd326397f_579646700"
time="2022-04-26 09:43:56" level=info msg="[FLOW] 63 Start relaying
fc_stagingfeaturecloudaitestappsha256ca6cef25fae208ea3ef9db4df49d81e4e369dc1c5
0c1939ad514ea7bd326397f_579646700"
time="2022-04-26 09:43:59" level=info msg="[FLOW] 63 Trigger setup"
time="2022-04-26 09:43:59" level=info msg="[LOCAL] Received setup trigger"
time="2022-04-26 09:44:03" level=debug msg="[FLOW] 63 Workflow running"
time="2022-04-26 09:44:06" level=debug msg="[FLOW] 63 Workflow running"
time="2022-04-26 09:44:09" level=debug msg="[FLOW] 63 Workflow running"
time="2022-04-26 09:44:12" level=debug msg="[FLOW] 63 Workflow running"
time="2022-04-26 09:44:16" level=debug msg="[FLOW] 63 Workflow running"
time="2022-04-26 09:44:19" level=debug msg="[FLOW] 63 Workflow running"
time="2022-04-26 09:44:22" level=debug msg="[FLOW] 63 Workflow running"
time="2022-04-26 09:44:22" level=error msg="[LOCAL] Get
\"http://172.29.0.3:9000/status\": dial tcp 172.29.0.3:9000: connectex: No
connection could be made because the target machine actively refused it."
time="2022-04-26 09:44:25" level=debug msg="[FLOW] 63 Workflow running"
time="2022-04-26 09:44:28" level=debug msg="[FLOW] 63 Workflow running"
time="2022-04-26 09:44:31" level=debug msg="[FLOW] 63 Workflow running"
time="2022-04-26 09:44:34" level=debug msg="[FLOW] 63 Workflow running"
time="2022-04-26 09:44:37" level=debug msg="[FLOW] 63 Workflow running"
time="2022-04-26 09:44:40" level=debug msg="[FLOW] 63 Workflow running"

D7.7 – Report on implementation of assessment,
requirement criteria, and “stress testing”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 51 of 86

10.2.2 Controller survives the stress test
Controller logs after the robustness improvements, see the “error” entry, after which the workflow is
still in “running” state:

time="2022-05-04 10:23:34" level=info msg="[FLOW] 63 Start workflow"
time="2022-05-04 10:23:37" level=info msg="[FLOW] 63 Info change for project
63: stage: running, step: 0"
time="2022-05-04 10:23:38" level=info msg="[FLOW] 63 Start application:
fc_stagingfeaturecloudaitestappsha256ca6cef25fae208ea3ef9db4df49d81e4e369dc1c5
0c1939ad514ea7bd326397f_316668300"
time="2022-05-04 10:23:39" level=info msg="[FLOW] 63 Start relaying
fc_stagingfeaturecloudaitestappsha256ca6cef25fae208ea3ef9db4df49d81e4e369dc1c5
0c1939ad514ea7bd326397f_316668300"
time="2022-05-04 10:23:39" level=debug msg="[DATA] 63 Updated project state
for project 63"
time="2022-05-04 10:23:42" level=debug msg="[FLOW] 63 Trying to advance
project 63... 1/1"
time="2022-05-04 10:23:42" level=info msg="[FLOW] 63 Trigger setup"
time="2022-05-04 10:23:42" level=info msg="[LOCAL] Received setup trigger"
time="2022-05-04 10:23:46" level=debug msg="[FLOW] 63 Workflow running"
time="2022-05-04 10:23:49" level=debug msg="[FLOW] 63 Workflow running"
time="2022-05-04 10:23:52" level=debug msg="[FLOW] 63 Workflow running"
time="2022-05-04 10:23:55" level=debug msg="[FLOW] 63 Workflow running"
time="2022-05-04 10:23:58" level=debug msg="[FLOW] 63 Workflow running"
time="2022-05-04 10:24:01" level=debug msg="[FLOW] 63 Workflow running"
time="2022-05-04 10:24:04" level=debug msg="[FLOW] 63 Workflow running"
time="2022-05-04 10:24:05" level=debug msg="[DATA] 63 Updated project state
for project 63"
time="2022-05-04 10:24:05" level=error msg="[LOCAL] Get
\"http://172.29.0.3:9000/status\": dial tcp 172.29.0.3:9000: connectex: No
connection could be made because the target machine actively refused it."
time="2022-05-04 10:24:08" level=info msg="[FLOW] 63 Info change for project
63: stage: error, step: 0"
time="2022-05-04 10:24:08" level=error msg="[FLOW] 63 Workflow is shutting
down because of an error"

D7.7 – Report on implementation of assessment,
requirement criteria, and “stress testing”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 52 of 86

10.3 Aira Server Test Environment
Test environment logs for the “aira” server.

Hostname:
aira

Operating System Info:
NAME="openSUSE Tumbleweed"
VERSION="20211012"
ID="opensuse-tumbleweed"
ID_LIKE="opensuse suse"
VERSION_ID="20211012"
PRETTY_NAME="openSUSE Tumbleweed"
ANSI_COLOR="0;32"
CPE_NAME="cpe:/o:opensuse:tumbleweed:20211012"
BUG_REPORT_URL="https://bugzilla.opensuse.org"
SUPPORT_URL="https://bugs.opensuse.org"
HOME_URL="https://www.opensuse.org"
DOCUMENTATION_URL="https://en.opensuse.org/Portal:Tumbleweed"
LOGO="distributor-logo-Tumbleweed"

Kernel Info:
6.5.6-1-default

CPU Info:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 46 bits physical, 48 bits virtual
Byte Order: Little Endian
CPU(s): 112
On-line CPU(s) list: 0-111
Vendor ID: GenuineIntel
Model name: Intel(R) Xeon(R) Gold 6258R CPU @ 2.70GHz
CPU family: 6
Model: 85
Thread(s) per core: 2
Core(s) per socket: 28
Socket(s): 2
Stepping: 7
BogoMIPS: 5402.00
Flags: fpu vme de pse tsc msr pae mce cx8 apic
sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm
pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts
rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64
monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1

D7.7 – Report on implementation of assessment,
requirement criteria, and “stress testing”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 53 of 86

sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand
lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cdp_l3 invpcid_single
intel_ppin ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow flexpriority ept
vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm mpx rdt_a
avx512f avx512dq rdseed adx smap clflushopt clwb intel_pt avx512cd avx512bw
avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total
cqm_mbm_local dtherm ida arat pln pts vnmi pku ospke avx512_vnni md_clear
flush_l1d arch_capabilities
Virtualization: VT-x
L1d cache: 1.8 MiB (56 instances)
L1i cache: 1.8 MiB (56 instances)
L2 cache: 56 MiB (56 instances)
L3 cache: 77 MiB (2 instances)
NUMA node(s): 2
NUMA node0 CPU(s):
0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40,42,44,46,48,50,52,54
,56,58,60,62,64,66,68,70,72,74,76,78,80,82,84,86,88,90,92,94,96,98,100,102,104
,106,108,110
NUMA node1 CPU(s):
1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,51,53,55
,57,59,61,63,65,67,69,71,73,75,77,79,81,83,85,87,89,91,93,95,97,99,101,103,105
,107,109,111
Vulnerability Gather data sampling: Mitigation; Microcode
Vulnerability Itlb multihit: KVM: Mitigation: VMX disabled
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Mitigation; Clear CPU buffers; SMT
vulnerable
Vulnerability Retbleed: Mitigation; Enhanced IBRS
Vulnerability Spec rstack overflow: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass
disabled via prctl
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and
__user pointer sanitization
Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS,
IBPB conditional, RSB filling, PBRSB-eIBRS SW sequence
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Mitigation; TSX disabled

Memory Info:
 total used free shared buff/cache
available
Mem: 503Gi 30Gi 114Gi 5.0Mi 361Gi
472Gi

D7.7 – Report on implementation of assessment,
requirement criteria, and “stress testing”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 54 of 86

Swap: 2.0Gi 55Mi 1.9Gi

Disk Usage:
Filesystem Size Used Avail Use% Mounted
on
/dev/sdb2 1.1T 21G 1.1T 2% /
devtmpfs 4.0M 8.0K 4.0M 1% /dev
tmpfs 252G 4.0K 252G 1% /dev/shm
efivarfs 304K 115K 185K 39%
/sys/firmware/efi/efivars
tmpfs 101G 2.6M 101G 1% /run
/dev/sdb2 1.1T 21G 1.1T 2%
/boot/grub2/i386-pc
/dev/sdb2 1.1T 21G 1.1T 2%
/boot/grub2/x86_64-efi
/dev/sdb2 1.1T 21G 1.1T 2% /opt
/dev/sdb2 1.1T 21G 1.1T 2% /root
/dev/sdb2 1.1T 21G 1.1T 2% /srv
/dev/sdb2 1.1T 21G 1.1T 2%
/usr/local
/dev/sdb2 1.1T 21G 1.1T 2% /var
tmpfs 252G 164K 252G 1% /tmp
/dev/sda1 8.8T 3.5T 5.4T 40% /home
/dev/sdb1 511M 5.9M 506M 2%
/boot/efi
fs-s-nas04.rrz.uni-hamburg.de:/nfs-min/cosybio 80T 40T 41T 50% /cosybio
tmpfs 51G 4.0K 51G 1%
/run/user/7001780
tmpfs 51G 4.0K 51G 1%
/run/user/7021401
tmpfs 51G 4.0K 51G 1%
/run/user/7031037
tmpfs 51G 4.0K 51G 1%
/run/user/6880865

Network Interfaces:
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group
default qlen 1000
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
 inet6 ::1/128 scope host proto kernel_lo
 valid_lft forever preferred_lft forever
2: em1: <BROADCAST,MULTICAST,SLAVE,UP,LOWER_UP> mtu 1500 qdisc mq master bond0
state UP group default qlen 1000

D7.7 – Report on implementation of assessment,
requirement criteria, and “stress testing”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 55 of 86

 link/ether aa:84:ed:ed:a3:f4 brd ff:ff:ff:ff:ff:ff permaddr
5c:6f:69:25:63:5a
 altname eno1np0
 altname enp25s0f0np0
3: em2: <BROADCAST,MULTICAST,SLAVE,UP,LOWER_UP> mtu 1500 qdisc mq master bond0
state UP group default qlen 1000
 link/ether aa:84:ed:ed:a3:f4 brd ff:ff:ff:ff:ff:ff permaddr
5c:6f:69:25:63:5b
 altname eno2np1
 altname enp25s0f1np1
4: idrac: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN group default
qlen 1000
 link/ether ec:2a:72:2b:47:4d brd ff:ff:ff:ff:ff:ff
 altname enp0s20f0u14u3
5: em3: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN group default
qlen 1000
 link/ether 5c:6f:69:25:63:58 brd ff:ff:ff:ff:ff:ff
 altname eno3
 altname enp1s0f0
6: em4: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN group default
qlen 1000
 link/ether 5c:6f:69:25:63:59 brd ff:ff:ff:ff:ff:ff
 altname eno4
 altname enp1s0f1
7: bond0: <BROADCAST,MULTICAST,MASTER,UP,LOWER_UP> mtu 1500 qdisc noqueue
state UP group default qlen 1000
 link/ether aa:84:ed:ed:a3:f4 brd ff:ff:ff:ff:ff:ff
 inet 134.100.85.17/26 brd 134.100.85.63 scope global bond0
 valid_lft forever preferred_lft forever
533: docker0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc noqueue state
DOWN group default
 link/ether 02:42:4f:11:eb:4d brd ff:ff:ff:ff:ff:ff
 inet 172.172.0.1/24 brd 172.172.0.255 scope global docker0
 valid_lft forever preferred_lft forever
34: br-130ce407edc7: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc
noqueue state DOWN group default
 link/ether 02:42:ea:b2:6a:71 brd ff:ff:ff:ff:ff:ff
 inet 172.172.3.1/24 brd 172.172.3.255 scope global br-130ce407edc7
 valid_lft forever preferred_lft forever

System Load and Uptime:
 16:29:42 up 44 days 6:40, 4 users, load average: 12.27, 13.29, 12.97

Available System Updates:

D7.7 – Report on implementation of assessment,
requirement criteria, and “stress testing”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 56 of 86

Current Logged-In Users:
bbb1037 pts/1 2021-11-27 16:27 (134.100.40.3)
bam0865 pts/7 2021-11-27 16:23 (134.100.40.24)
bay1780 pts/6 2021-11-27 16:17 (134.100.40.30)
bay1780 pts/5 2021-11-27 14:01 (134.100.40.30)

10.4 Stress Testing the Pip Package
This section contains more detailed logs of stress testing the pip package and detailed codes of
improving the robustness.

10.4.1 Incorporation of the feedback into the pip package
Extract from http_ctrl.py defining the changed API that serves the controller. app.handle_status()
includes the memo.

@api_server.get('/status')
def ctrl_status():
 print(f'[CTRL] GET /status')
 return app.handle_status()
@api_server.route('/data', method='POST')
def ctrl_data_in():
 print(f'[CTRL] POST /data')
 if "memo" in request.query:
 memo = request.query["memo"]
 else:
 memo = None
 return app.handle_incoming(request.body.read(), request.query['client'],
 memo=memo)

The app.py file defining the connector for users to the API. It now includes a more robust status
handling that uses an individual status object for each sending operation. Furthermore, it is ensured
that each data piece when sent to the controller had the previous status call answered with the
correct data object. The app.py file provides all the required functionalities for app development, and
covering all its content is out of scope for this deliverable. Therefore, here we only include the parts
affected or implemented to address the platform robustness against stress testing. Accordingly, the
code documentation is also not covered. For more detail visit out pubic repository on GitHub5.

class App:
 def __init__(self):
 self.id = None
 self.coordinator = None
 self.clients = None
 self.default_memo = None
 self.thread: Union[threading.Thread, None] = None

5 https://github.com/FeatureCloud/FeatureCloud

https://github.com/FeatureCloud/FeatureCloud

D7.7 – Report on implementation of assessment,
requirement criteria, and “stress testing”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 57 of 86

 self.data_incoming = {}
 self.data_outgoing = []
 self.default_smpc: SMPCType = {'operation': 'add', 'serialization':
'json', 'shards': 0, 'exponent': 8}
 self.default_dp: DPType = {'serialization': 'json', 'noisetype':
'laplace',
 'epsilon': 1.0, 'delta': 0.0,
 'sensitivity': None, 'clippingVal': 10.0}

 self.current_state: Union[AppState, None] = None
 self.states: Dict[str, AppState] = {}
 self.transitions: Dict[
 str, Tuple[AppState, AppState, bool, bool, str]] = {} # name =>
(source, target, participant, coordinator, label)

 self.transition_log: List[Tuple[datetime.datetime, str]] = []

 self.internal = {}

 self.status_available: bool = False
 self.status_finished: bool = False
 self.status_message: Union[str, None] = None
 self.status_progress: Union[float, None] = None
 self.status_state: Union[str, None] = None
 self.status_destination: Union[str, None] = None
 self.status_smpc: Union[SMPCType, None] = None
 self.status_dp: Union[DPType, None] = None
 self.status_memo: Union[str, None] = None

 self.last_send_status = self.get_current_status()

 # Add terminal state
 @app_state('terminal', Role.BOTH, self)
 class TerminalState(AppState):
 def register(self):
 pass

 def run(self) -> str:
 pass

 def get_current_status(self, **kwargs):
 status = dict()
 status["available"] = self.status_available
 status["finished"] = self.status_finished

D7.7 – Report on implementation of assessment,
requirement criteria, and “stress testing”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 58 of 86

 status["message"] = self.status_message
 status["progress"] = self.status_progress
 status["state"] = self.status_state
 status["destination"] = self.status_destination
 status["smpc"] = self.status_smpc
 status["dp"] = self.status_dp
 status["memo"] = self.status_memo
 for key, value in kwargs.items():
 # set whatever is wanted from the arguments
 status[key] = value
 return status

 def handle_incoming(self, data, client, memo):
 if memo not in self.data_incoming:
 self.data_incoming[memo] = [(data, client)]
 else:
 self.data_incoming[memo].append((data, client))

class AppState(abc.ABC):

 def aggregate_data(self, operation: SMPCOperation = SMPCOperation.ADD,
use_smpc=False,
 use_dp=False, memo=None):

 if use_smpc:
 return self.await_data(n=1, unwrap=True, is_json=True, memo=memo)
 # Data is aggregated already
 else:
 data = self.gather_data(is_json=use_dp, memo=memo)
 return _aggregate(data, operation)
 # Data needs to be aggregated according to operation

 def gather_data(self, is_json=False, use_smpc=False, use_dp=False,
memo=None):
 if not self._app.coordinator:
 self._app.log('must be coordinator to use gather_data',
level=LogLevel.FATAL)
 n = len(self._app.clients)
 if use_smpc or use_dp:
 is_json = True
 if use_smpc:
 n = 1
 return self.await_data(n, unwrap=False, is_json=is_json,
use_dp=use_dp,
 use_smpc=use_smpc, memo=memo)

D7.7 – Report on implementation of assessment,
requirement criteria, and “stress testing”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 59 of 86

 def await_data(self, n: int = 1, unwrap=True, is_json=False,
 use_dp=False, use_smpc=False, memo=None):
 if use_smpc:
 n = 1
 is_json = True
 if use_dp:
 is_json = True

 while True:
 # print(f"Current Incoming Data: {self._app.data_incoming}")
 num_data_pieces = 0
 if memo in self._app.data_incoming:
 num_data_pieces = len(self._app.data_incoming[memo])
 if num_data_pieces >= n:
 # warn if too many data pieces came in
 if num_data_pieces > n:
 self._app.log(
 f"await was used to wait for {n} data pieces, " +
 f"but more data pieces ({num_data_pieces}) were found.
" +
 f"Used memo is <{memo}>",
 LogLevel.ERROR)

 # extract and deseralize the data
 data = self._app.data_incoming[memo][:n]
 self._app.data_incoming[memo] =
self._app.data_incoming[memo][n:]
 if len(self._app.data_incoming[memo]) == 0:
 # clean up the dict regularly
 del self._app.data_incoming[memo]
 if n == 1 and unwrap:
 return _deserialize_incoming(data[0][0], is_json=is_json)
 else:
 return [_deserialize_incoming(d[0], is_json=is_json) for d
in data]

 sleep(DATA_POLL_INTERVAL)

 def send_data_to_participant(self, data, destination, use_dp=False,
 memo=None):

 data = _serialize_outgoing(data, is_json=use_dp)
 if destination == self._app.id and not use_dp:
 # In no DP case, the data does not have to be sent via the

D7.7 – Report on implementation of assessment,
requirement criteria, and “stress testing”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 60 of 86

controller
 self._app.handle_incoming(data, client=self._app.id, memo=memo)
 else:
 # update the status variables and get the status object
 message = self._app.status_message if self._app.status_message
else (self._app.current_state.name if self._app.current_state else None)
 dp = self._app.default_dp if use_dp else None
 self._app.status_message = message
 status = self._app.get_current_status(message=message,
 destination=destination, dp=dp, memo=memo,
 available=True)
 self._app.data_outgoing.append((data, json.dumps(status,
sort_keys=True)))

 def send_data_to_coordinator(self, data, send_to_self=True,
use_smpc=False,
 use_dp=False, memo=None):

 if use_smpc or use_dp:
 data = _serialize_outgoing(data, is_json=True)

 else:
 data = _serialize_outgoing(data, is_json=False)

 if self._app.coordinator and not use_smpc and not use_dp:
 if send_to_self:
 self._app.handle_incoming(data, self._app.id, memo)
 else:
 # for SMPC and DP, the data has to be sent via the controller
 if use_dp and self._app.coordinator:
 destination = self._app.id
 else:
 destination = None
 # this is interpreted as to the coordinator
 message = self._app.status_message if self._app.status_message
else (self._app.current_state.name if self._app.current_state else None)
 self._app.status_message = message
 smpc = self._app.default_smpc if use_smpc else None
 dp = self._app.default_dp if use_dp else None
 status = self._app.get_current_status(message=message,
 destination=destination, smpc=smpc, dp=dp, memo=memo,
 available=True)
 self._app.data_outgoing.append((data, json.dumps(status,
sort_keys=True)))

D7.7 – Report on implementation of assessment,
requirement criteria, and “stress testing”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 61 of 86

 def broadcast_data(self, data, send_to_self=True, use_dp = False,
 memo = None):
 if not self._app.coordinator:
 self._app.log('only the coordinator can broadcast data',
level=LogLevel.FATAL)

 is_json = False
 if use_dp:
 is_json = True

 # serialize before broadcast
 data = _serialize_outgoing(data, is_json=False)

 message = self._app.status_message if self._app.status_message else
(self._app.current_state.name if self._app.current_state else None)
 self._app.status_message = message
 dp = self._app.default_dp if use_dp else None
 status = self._app.get_current_status(message=message,
 destination=None, dp=dp, memo=memo,
 available=True)
 if send_to_self:
 self._app.handle_incoming(data, client=self._app.id, memo=memo)
 self._app.data_outgoing.append((data, json.dumps(status,
sort_keys=True)))

10.4.2 Data misplacement
Client one (Coordinator) log:

[Time: 30.11.23 17:44:36] [Level: info] id: 5eea47b3e422a904
[Time: 30.11.23 17:44:36] [Level: info] coordinator: True
[Time: 30.11.23 17:44:36] [Level: info] clients: ['91ff362b71b912fd',
'5eea47b3e422a904']
[Time: 30.11.23 17:44:36] [Level: info] state: initial
[Time: 30.11.23 17:44:36] [Level: info] [State: initial] App is started...
[Time: 30.11.23 17:44:36] [Level: info] [State: initial] traffic_test: False ,
Data_Size: 100
[Time: 30.11.23 17:44:36] [Level: info] [State: initial] Coordinator broadcast
test settings...
[Time: 30.11.23 17:44:36] [Level: info] transition: loop_state
127.0.0.1 - - [30/Nov/2023 17:44:36] "POST /api/setup HTTP/1.0" 200 0
[CTRL] GET /status
127.0.0.1 - - [30/Nov/2023 17:44:36] "GET /api/status HTTP/1.0" 200 143
[CTRL] GET /data
127.0.0.1 - - [30/Nov/2023 17:44:36] "GET /api/data HTTP/1.0" 200 40

D7.7 – Report on implementation of assessment,
requirement criteria, and “stress testing”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 62 of 86

[Time: 30.11.23 17:44:37] [Level: info] state: loop_state
[Time: 30.11.23 17:44:37] [Level: info] transition: wait_data_state
[Time: 30.11.23 17:44:38] [Level: info] state: wait_data_state
[Time: 30.11.23 17:44:38] [Level: info] [State: wait_data_state] Round: 1 -
Scenario: 5 - DataType: 1 - SMPC: False - DP: False
[Time: 30.11.23 17:44:38] [Level: info] transition: client_state
[Time: 30.11.23 17:44:39] [Level: info] state: client_state
[Time: 30.11.23 17:44:39] [Level: info] [State: client_state] Sub_Scen: 5,
Round: 1, Communication: 0, client send data 1 to coordinator SMPC:
False, DP: False
[Time: 30.11.23 17:44:39] [Level: info] [State: client_state] Sub_Scen: 5,
Round: 1, Communication: 1, client send data 11 to coordinator SMPC:
False, DP: False
[Time: 30.11.23 17:44:39] [Level: info] [State: client_state] Sub_Scen: 5,
Round: 1, Communication: 2, client send data 21 to coordinator SMPC:
False, DP: False
[Time: 30.11.23 17:44:39] [Level: info] [State: client_state] Sub_Scen: 5,
Round: 1, Communication: 3, client send data 31 to coordinator SMPC:
False, DP: False
[Time: 30.11.23 17:44:39] [Level: info] [State: client_state] Sub_Scen: 5,
Round: 1, Communication: 4, client send data 41 to coordinator SMPC:
False, DP: False
[Time: 30.11.23 17:44:39] [Level: info] [State: client_state] Sub_Scen: 5,
Round: 1, Communication: 5, client send data 51 to coordinator SMPC:
False, DP: False
[Time: 30.11.23 17:44:39] [Level: info] [State: client_state] Sub_Scen: 5,
Round: 1, Communication: 6, client send data 61 to coordinator SMPC:
False, DP: False
[Time: 30.11.23 17:44:39] [Level: info] [State: client_state] Sub_Scen: 5,
Round: 1, Communication: 7, client send data 71 to coordinator SMPC:
False, DP: False
[Time: 30.11.23 17:44:39] [Level: info] transition: coordinator_state
[CTRL] GET /status
127.0.0.1 - - [30/Nov/2023 17:44:39] "GET /api/status HTTP/1.0" 200 151
[Time: 30.11.23 17:44:40] [Level: info] state: coordinator_state
[Time: 30.11.23 17:44:40] [Level: info] [State: coordinator_state] Coordinator
is launched...
[Time: 30.11.23 17:44:40] [Level: info] [State: coordinator_state] Sub_Scen:
5, Round: 1, Communication: 0 gather data: [1, 11] SMPC: False, DP: False
[Time: 30.11.23 17:44:40] [Level: info] [State: coordinator_state] Sub_Scen:
5, Round: 1, Communication: 1 gather data: [21, 31] SMPC: False, DP: False
[Time: 30.11.23 17:44:40] [Level: info] [State: coordinator_state] Sub_Scen:
5, Round: 1, Communication: 2 gather data: [41, 51] SMPC: False, DP: False
[Time: 30.11.23 17:44:40] [Level: info] [State: coordinator_state] Sub_Scen:
5, Round: 1, Communication: 3 gather data: [61, 71] SMPC: False, DP: False

D7.7 – Report on implementation of assessment,
requirement criteria, and “stress testing”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 63 of 86

[CTRL] GET /status
127.0.0.1 - - [30/Nov/2023 17:44:42] "GET /api/status HTTP/1.0" 200 151
[CTRL] POST /data
127.0.0.1 - - [30/Nov/2023 17:44:44] "POST /api/data?client=91ff362b71b912fd
HTTP/1.0" 200 0
[CTRL] GET /status
127.0.0.1 - - [30/Nov/2023 17:44:45] "GET /api/status HTTP/1.0" 200 151
[CTRL] POST /data
127.0.0.1 - - [30/Nov/2023 17:44:47] "POST /api/data?client=91ff362b71b912fd
HTTP/1.0" 200 0
[Time: 30.11.23 17:44:47] [Level: info] [State: coordinator_state] Sub_Scen:
5, Round: 1, Communication: 4 gather data: [1, 11] SMPC: False, DP: False
[CTRL] GET /status
127.0.0.1 - - [30/Nov/2023 17:44:48] "GET /api/status HTTP/1.0" 200 151
[CTRL] POST /data
127.0.0.1 - - [30/Nov/2023 17:44:50] "POST /api/data?client=91ff362b71b912fd
HTTP/1.0" 200 0
[CTRL] GET /status
127.0.0.1 - - [30/Nov/2023 17:44:51] "GET /api/status HTTP/1.0" 200 151
[CTRL] POST /data
127.0.0.1 - - [30/Nov/2023 17:44:53] "POST /api/data?client=91ff362b71b912fd
HTTP/1.0" 200 0
[Time: 30.11.23 17:44:53] [Level: info] [State: coordinator_state] Sub_Scen:
5, Round: 1, Communication: 5 gather data: [21, 31] SMPC: False, DP: False
[CTRL] GET /status
127.0.0.1 - - [30/Nov/2023 17:44:54] "GET /api/status HTTP/1.0" 200 151
[CTRL] POST /data
127.0.0.1 - - [30/Nov/2023 17:44:56] "POST /api/data?client=91ff362b71b912fd
HTTP/1.0" 200 0
[CTRL] GET /status
127.0.0.1 - - [30/Nov/2023 17:44:57] "GET /api/status HTTP/1.0" 200 151
[CTRL] POST /data
127.0.0.1 - - [30/Nov/2023 17:44:59] "POST /api/data?client=91ff362b71b912fd
HTTP/1.0" 200 0
[Time: 30.11.23 17:44:59] [Level: info] [State: coordinator_state] Sub_Scen:
5, Round: 1, Communication: 6 gather data: [41, 51] SMPC: False, DP: False
[CTRL] GET /status
127.0.0.1 - - [30/Nov/2023 17:45:00] "GET /api/status HTTP/1.0" 200 151
127.0.0.1 - - [30/Nov/2023 17:45:02] "POST /api/data?client=91ff362b71b912fd
HTTP/1.0" 200 0
[CTRL] POST /data
[CTRL] GET /status
127.0.0.1 - - [30/Nov/2023 17:45:03] "GET /api/status HTTP/1.0" 200 151
[CTRL] POST /data
127.0.0.1 - - [30/Nov/2023 17:45:05] "POST /api/data?client=91ff362b71b912fd

D7.7 – Report on implementation of assessment,
requirement criteria, and “stress testing”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 64 of 86

HTTP/1.0" 200 0
[Time: 30.11.23 17:45:05] [Level: info] [State: coordinator_state] Sub_Scen:
5, Round: 1, Communication: 7 gather data: [61, 71] SMPC: False, DP: False
[Time: 30.11.23 17:45:05] [Level: info] transition: loop_state

Client two (participant) log:

[Time: 30.11.23 17:44:38] [Level: info] id: 91ff362b71b912fd
[Time: 30.11.23 17:44:38] [Level: info] coordinator: False
[Time: 30.11.23 17:44:38] [Level: info] clients: ['91ff362b71b912fd',
'5eea47b3e422a904']
[Time: 30.11.23 17:44:38] [Level: info] state: initial
[Time: 30.11.23 17:44:38] [Level: info] [State: initial] App is started...
[Time: 30.11.23 17:44:38] [Level: info] [State: initial] traffic_test: False ,
Data_Size: 100
127.0.0.1 - - [30/Nov/2023 17:44:38] "POST /api/setup HTTP/1.0" 200 0
[CTRL] GET /status
127.0.0.1 - - [30/Nov/2023 17:44:38] "GET /api/status HTTP/1.0" 200 141
[CTRL] POST /data
127.0.0.1 - - [30/Nov/2023 17:44:38] "POST /api/data?client=5eea47b3e422a904
HTTP/1.0" 200 0
[Time: 30.11.23 17:44:38] [Level: info] transition: loop_state
[Time: 30.11.23 17:44:39] [Level: info] state: loop_state
[Time: 30.11.23 17:44:39] [Level: info] transition: wait_data_state
[Time: 30.11.23 17:44:40] [Level: info] state: wait_data_state
[Time: 30.11.23 17:44:40] [Level: info] [State: wait_data_state] Round: 1 -
Scenario: 5 - DataType: 1 - SMPC: False - DP: False
[Time: 30.11.23 17:44:40] [Level: info] transition: client_state
[CTRL] GET /status
127.0.0.1 - - [30/Nov/2023 17:44:41] "GET /api/status HTTP/1.0" 200 146
[Time: 30.11.23 17:44:41] [Level: info] state: client_state
[Time: 30.11.23 17:44:41] [Level: info] [State: client_state] Sub_Scen: 5,
Round: 1, Communication: 0, client send data 1 to coordinator SMPC:
False, DP: False
[Time: 30.11.23 17:44:41] [Level: info] [State: client_state] Sub_Scen: 5,
Round: 1, Communication: 1, client send data 11 to coordinator SMPC:
False, DP: False
[Time: 30.11.23 17:44:41] [Level: info] [State: client_state] Sub_Scen: 5,
Round: 1, Communication: 2, client send data 21 to coordinator SMPC:
False, DP: False
[Time: 30.11.23 17:44:41] [Level: info] [State: client_state] Sub_Scen: 5,
Round: 1, Communication: 3, client send data 31 to coordinator SMPC:
False, DP: False
[Time: 30.11.23 17:44:41] [Level: info] [State: client_state] Sub_Scen: 5,
Round: 1, Communication: 4, client send data 41 to coordinator SMPC:

D7.7 – Report on implementation of assessment,
requirement criteria, and “stress testing”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 65 of 86

False, DP: False
[Time: 30.11.23 17:44:41] [Level: info] [State: client_state] Sub_Scen: 5,
Round: 1, Communication: 5, client send data 51 to coordinator SMPC:
False, DP: False
[Time: 30.11.23 17:44:41] [Level: info] [State: client_state] Sub_Scen: 5,
Round: 1, Communication: 6, client send data 61 to coordinator SMPC:
False, DP: False
[Time: 30.11.23 17:44:41] [Level: info] [State: client_state] Sub_Scen: 5,
Round: 1, Communication: 7, client send data 71 to coordinator SMPC:
False, DP: False
[Time: 30.11.23 17:44:41] [Level: info] transition: loop_state
[Time: 30.11.23 17:44:42] [Level: info] state: loop_state
[Time: 30.11.23 17:44:42] [Level: info] transition: wait_data_state

10.4.3 Simple-SMPC Pickle error
Client one (Coordinator) log:

[Time: 30.11.23 18:07:03] [Level: info] id: b47aaefed78d6811
[Time: 30.11.23 18:07:03] [Level: info] coordinator: True
[Time: 30.11.23 18:07:03] [Level: info] clients: ['b47aaefed78d6811',
'5c0d492b0866d4a7']
[Time: 30.11.23 18:07:03] [Level: info] state: initial
[Time: 30.11.23 18:07:03] [Level: info] [State: initial] App is started...
[Time: 30.11.23 18:07:03] [Level: info] [State: initial] traffic_test: False ,
Data_Size: 100
[Time: 30.11.23 18:07:03] [Level: info] [State: initial] Coordinator broadcast
test settings...
[Time: 30.11.23 18:07:03] [Level: info] transition: loop_state
127.0.0.1 - - [30/Nov/2023 18:07:03] "POST /api/setup HTTP/1.0" 200 0
127.0.0.1 - - [30/Nov/2023 18:07:03] "GET /api/status HTTP/1.0" 200 143
[CTRL] GET /status
[CTRL] GET /data
127.0.0.1 - - [30/Nov/2023 18:07:03] "GET /api/data HTTP/1.0" 200 40
[Time: 30.11.23 18:07:04] [Level: info] state: loop_state
[Time: 30.11.23 18:07:04] [Level: info] transition: wait_data_state
[Time: 30.11.23 18:07:05] [Level: info] state: wait_data_state
[Time: 30.11.23 18:07:05] [Level: info] [State: wait_data_state] Round: 1 -
Scenario: 5 - DataType: 1 - SMPC: False - DP: False
[Time: 30.11.23 18:07:05] [Level: info] transition: client_state
[Time: 30.11.23 18:07:06] [Level: info] state: client_state
[Time: 30.11.23 18:07:06] [Level: info] [State: client_state] Sub_Scen: 5,
Round: 1, Communication: 0, client send data 1 to coordinator SMPC:
False, DP: False
[Time: 30.11.23 18:07:06] [Level: info] [State: client_state] Sub_Scen: 5,
Round: 1, Communication: 1, client send data 11 to coordinator SMPC:

D7.7 – Report on implementation of assessment,
requirement criteria, and “stress testing”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 66 of 86

True, DP: False
[Time: 30.11.23 18:07:06] [Level: info] [State: client_state] Sub_Scen: 5,
Round: 1, Communication: 2, client send data 21 to coordinator SMPC:
False, DP: False
[Time: 30.11.23 18:07:06] [Level: info] [State: client_state] Sub_Scen: 5,
Round: 1, Communication: 3, client send data 31 to coordinator SMPC:
True, DP: False
[Time: 30.11.23 18:07:06] [Level: info] transition: coordinator_state
[CTRL] GET /status
127.0.0.1 - - [30/Nov/2023 18:07:06] "GET /api/status HTTP/1.0" 200 219
127.0.0.1 - - [30/Nov/2023 18:07:06] "GET /api/data HTTP/1.0" 200 2
[CTRL] GET /data
[Time: 30.11.23 18:07:07] [Level: info] state: coordinator_state
[Time: 30.11.23 18:07:07] [Level: info] [State: coordinator_state] Coordinator
is launched...
[Time: 30.11.23 18:07:07] [Level: info] [State: coordinator_state] Sub_Scen:
5, Round: 1, Communication: 0 gather data: [1, 21] SMPC: False, DP: False
[CTRL] GET /status
127.0.0.1 - - [30/Nov/2023 18:07:09] "GET /api/status HTTP/1.0" 200 219
[CTRL] GET /data
127.0.0.1 - - [30/Nov/2023 18:07:09] "GET /api/data HTTP/1.0" 200 2
[CTRL] POST /data
127.0.0.1 - - [30/Nov/2023 18:07:11] "POST /api/data?client=0000000000000000
HTTP/1.0" 200 0
[CTRL] GET /status
127.0.0.1 - - [30/Nov/2023 18:07:12] "GET /api/status HTTP/1.0" 200 151
[CTRL] POST /data
127.0.0.1 - - [30/Nov/2023 18:07:15] "POST /api/data?client=0000000000000000
HTTP/1.0" 200 0
[Time: 30.11.23 18:07:15] [Level: info] Traceback (most recent call last):
 File "/root/.local/lib/python3.8/site-
packages/FeatureCloud/app/engine/app.py", line 226, in guarded_run
 self.run()
 File "/root/.local/lib/python3.8/site-
packages/FeatureCloud/app/engine/app.py", line 241, in run
 transition = self.current_state.run()
 File "/app/states.py", line 454, in run
 data_to_collect = self.gather_data(is_json=flg)
 File "/root/.local/lib/python3.8/site-
packages/FeatureCloud/app/engine/app.py", line 618, in gather_data
 return self.await_data(len(self._app.clients), unwrap=False,
is_json=is_json)
 File "/root/.local/lib/python3.8/site-
packages/FeatureCloud/app/engine/app.py", line 648, in await_data
 return [_deserialize_incoming(d[0], is_json=is_json) for d in data]

D7.7 – Report on implementation of assessment,
requirement criteria, and “stress testing”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 67 of 86

 File "/root/.local/lib/python3.8/site-
packages/FeatureCloud/app/engine/app.py", line 648, in <listcomp>
 return [_deserialize_incoming(d[0], is_json=is_json) for d in data]
 File "/root/.local/lib/python3.8/site-
packages/FeatureCloud/app/engine/app.py", line 974, in _deserialize_incoming
 return pickle.loads(data)
_pickle.UnpicklingError: could not find MARK

[CTRL] GET /status
127.0.0.1 - - [30/Nov/2023 18:07:15] "GET /api/status HTTP/1.0" 200 151

Client two (Participant) log:

[Time: 30.11.23 18:07:05] [Level: info] id: 5c0d492b0866d4a7
[Time: 30.11.23 18:07:05] [Level: info] coordinator: False
[Time: 30.11.23 18:07:05] [Level: info] clients: ['b47aaefed78d6811',
'5c0d492b0866d4a7']
[Time: 30.11.23 18:07:05] [Level: info] state: initial
[Time: 30.11.23 18:07:05] [Level: info] [State: initial] App is started...
[Time: 30.11.23 18:07:05] [Level: info] [State: initial] traffic_test: False ,
Data_Size: 100
127.0.0.1 - - [30/Nov/2023 18:07:05] "POST /api/setup HTTP/1.0" 200 0
[CTRL] GET /status
127.0.0.1 - - [30/Nov/2023 18:07:05] "GET /api/status HTTP/1.0" 200 141
127.0.0.1 - - [30/Nov/2023 18:07:05] "POST /api/data?client=b47aaefed78d6811
HTTP/1.0" 200 0
[CTRL] POST /data
[Time: 30.11.23 18:07:06] [Level: info] transition: loop_state
[Time: 30.11.23 18:07:07] [Level: info] state: loop_state
[Time: 30.11.23 18:07:07] [Level: info] transition: wait_data_state
[Time: 30.11.23 18:07:08] [Level: info] state: wait_data_state
[Time: 30.11.23 18:07:08] [Level: info] [State: wait_data_state] Round: 1 -
Scenario: 5 - DataType: 1 - SMPC: False - DP: False
[Time: 30.11.23 18:07:08] [Level: info] transition: client_state
[CTRL] GET /status
127.0.0.1 - - [30/Nov/2023 18:07:08] "GET /api/status HTTP/1.0" 200 146
[Time: 30.11.23 18:07:09] [Level: info] state: client_state
[Time: 30.11.23 18:07:09] [Level: info] [State: client_state] Sub_Scen: 5,
Round: 1, Communication: 0, client send data 1 to coordinator SMPC:
False, DP: False
[Time: 30.11.23 18:07:09] [Level: info] [State: client_state] Sub_Scen: 5,
Round: 1, Communication: 1, client send data 11 to coordinator SMPC:
True, DP: False
[Time: 30.11.23 18:07:09] [Level: info] [State: client_state] Sub_Scen: 5,
Round: 1, Communication: 2, client send data 21 to coordinator SMPC:

D7.7 – Report on implementation of assessment,
requirement criteria, and “stress testing”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 68 of 86

False, DP: False
[Time: 30.11.23 18:07:09] [Level: info] [State: client_state] Sub_Scen: 5,
Round: 1, Communication: 3, client send data 31 to coordinator SMPC:
True, DP: False
[Time: 30.11.23 18:07:09] [Level: info] transition: loop_state
[Time: 30.11.23 18:07:10] [Level: info] state: loop_state
[Time: 30.11.23 18:07:10] [Level: info] transition: wait_data_state
[Time: 30.11.23 18:07:11] [Level: info] state: wait_data_state

10.4.4 Binary-Text Data Decoding Error
Client one (coordinator) log:
Time: 30.11.23 18:13:55] [Level: info] id: 731caacdfca736bf
[Time: 30.11.23 18:13:55] [Level: info] coordinator: True
[Time: 30.11.23 18:13:55] [Level: info] clients: ['f192abe67545f698',
'731caacdfca736bf']
[Time: 30.11.23 18:13:55] [Level: info] state: initial
[Time: 30.11.23 18:13:55] [Level: info] [State: initial] App is started...
[Time: 30.11.23 18:13:55] [Level: info] [State: initial] traffic_test: False ,
Data_Size: 100
[Time: 30.11.23 18:13:55] [Level: info] [State: initial] Coordinator broadcast
test settings...
[Time: 30.11.23 18:13:55] [Level: info] transition: loop_state
127.0.0.1 - - [30/Nov/2023 18:13:55] "POST /api/setup HTTP/1.0" 200 0
[CTRL] GET /status
127.0.0.1 - - [30/Nov/2023 18:13:55] "GET /api/status HTTP/1.0" 200 143
[CTRL] GET /data
127.0.0.1 - - [30/Nov/2023 18:13:55] "GET /api/data HTTP/1.0" 200 40
[Time: 30.11.23 18:13:56] [Level: info] state: loop_state
[Time: 30.11.23 18:13:56] [Level: info] transition: wait_data_state
[Time: 30.11.23 18:13:57] [Level: info] state: wait_data_state
[Time: 30.11.23 18:13:57] [Level: info] [State: wait_data_state] Round: 1 -
Scenario: 5 - DataType: 1 - SMPC: False - DP: False
[Time: 30.11.23 18:13:57] [Level: info] transition: client_state
[Time: 30.11.23 18:13:58] [Level: info] state: client_state
[Time: 30.11.23 18:13:58] [Level: info] [State: client_state] Sub_Scen: 5,
Round: 1, Communication: 0, client send data 1 to coordinator SMPC:
False, DP: False
[Time: 30.11.23 18:13:58] [Level: info] [State: client_state] Sub_Scen: 5,
Round: 1, Communication: 1, client send data 11 to coordinator SMPC:
False, DP: True
[Time: 30.11.23 18:13:58] [Level: info] [State: client_state] Sub_Scen: 5,
Round: 1, Communication: 2, client send data 21 to coordinator SMPC:
False, DP: False
[Time: 30.11.23 18:13:58] [Level: info] [State: client_state] Sub_Scen: 5,

D7.7 – Report on implementation of assessment,
requirement criteria, and “stress testing”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 69 of 86

Round: 1, Communication: 3, client send data 31 to coordinator SMPC:
False, DP: True
[Time: 30.11.23 18:13:58] [Level: info] transition: coordinator_state
[CTRL] GET /status
127.0.0.1 - - [30/Nov/2023 18:13:58] "GET /api/status HTTP/1.0" 200 281
[CTRL] GET /data
127.0.0.1 - - [30/Nov/2023 18:13:58] "GET /api/data HTTP/1.0" 200 2
[CTRL] /data
127.0.0.1 - - [30/Nov/2023 18:13:58] "POST /api/data?client=731caacdfca736bf
HTTP/1.0" 200 0
[Time: 30.11.23 18:13:59] [Level: info] state: coordinator_state
[Time: 30.11.23 18:13:59] [Level: info] [State: coordinator_state] Coordinator
is launched...
[Time: 30.11.23 18:13:59] [Level: info] [State: coordinator_state] Sub_Scen:
5, Round: 1, Communication: 0 gather data: [1, 21] SMPC: False, DP: False
[CTRL] GET /status
127.0.0.1 - - [30/Nov/2023 18:14:01] "GET /api/status HTTP/1.0" 200 267
[CTRL] GET /data
127.0.0.1 - - [30/Nov/2023 18:14:01] "GET /api/data HTTP/1.0" 200 2

Client two (participant) log:
2023-11-30 18:13:55,430 INFO success: app entered RUNNING state, process has
stayed up for > than 1 seconds (startsecs)
2023-11-30 18:13:55,471 INFO success: nginx entered RUNNING state, process has
stayed up for > than 1 seconds (startsecs)
[CTRL] POST /setup
[Time: 30.11.23 18:13:57] [Level: info] id: f192abe67545f698
[Time: 30.11.23 18:13:57] [Level: info] coordinator: False
[Time: 30.11.23 18:13:57] [Level: info] clients: ['f192abe67545f698',
'731caacdfca736bf']
[Time: 30.11.23 18:13:57] [Level: info] state: initial
[Time: 30.11.23 18:13:57] [Level: info] [State: initial] App is started...
127.0.0.1 - - [30/Nov/2023 18:13:57] "POST /api/setup HTTP/1.0" 200 0
[Time: 30.11.23 18:13:57] [Level: info] [State: initial] traffic_test: False ,
Data_Size: 100
[CTRL] GET /status
127.0.0.1 - - [30/Nov/2023 18:13:57] "GET /api/status HTTP/1.0" 200 141
[CTRL] POST /data
127.0.0.1 - - [30/Nov/2023 18:13:57] "POST /api/data?client=731caacdfca736bf
HTTP/1.0" 200 0
[Time: 30.11.23 18:13:57] [Level: info] transition: loop_state
[Time: 30.11.23 18:13:58] [Level: info] state: loop_state
[Time: 30.11.23 18:13:58] [Level: info] transition: wait_data_state
[Time: 30.11.23 18:13:59] [Level: info] state: wait_data_state

D7.7 – Report on implementation of assessment,
requirement criteria, and “stress testing”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 70 of 86

[Time: 30.11.23 18:13:59] [Level: info] [State: wait_data_state] Round: 1 -
Scenario: 5 - DataType: 1 - SMPC: False - DP: False
[Time: 30.11.23 18:13:59] [Level: info] transition: client_state
[CTRL] GET /status
127.0.0.1 - - [30/Nov/2023 18:14:00] "GET /api/status HTTP/1.0" 200 146
[Time: 30.11.23 18:14:00] [Level: info] state: client_state
[Time: 30.11.23 18:14:00] [Level: info] [State: client_state] Sub_Scen: 5,
Round: 1, Communication: 0, client send data 1 to coordinator SMPC:
False, DP: False
[Time: 30.11.23 18:14:00] [Level: info] [State: client_state] Sub_Scen: 5,
Round: 1, Communication: 1, client send data 11 to coordinator SMPC:
False, DP: True
[Time: 30.11.23 18:14:00] [Level: info] [State: client_state] Sub_Scen: 5,
Round: 1, Communication: 2, client send data 21 to coordinator SMPC:
False, DP: False
[Time: 30.11.23 18:14:00] [Level: info] [State: client_state] Sub_Scen: 5,
Round: 1, Communication: 3, client send data 31 to coordinator SMPC:
False, DP: True
[Time: 30.11.23 18:14:00] [Level: info] transition: loop_state
[CTRL] POST /data

The controller’s log:

{'component': 'TESTBED', 'instance': '1', 'level': 'info', 'msg': 'Start
application', 'time': '2023-11-30T18:13:48Z'}
{'component': 'DOCKER', 'instance': '', 'level': 'info', 'msg': 'Attach to
internal network', 'time': '2023-11-30T18:13:48Z'}
{'component': 'TESTBED', 'instance': '1', 'level': 'info', 'msg': 'Append app
to list', 'time': '2023-11-30T18:13:50Z'}
{'component': 'DOCKER', 'instance': '', 'level': 'info', 'msg': 'Create volume
test_1_input_1_1701368030', 'time': '2023-11-30T18:13:50Z'}
{'component': 'DOCKER', 'instance': '', 'level': 'info', 'msg': 'Create volume
test_1_output_1_1701368030', 'time': '2023-11-30T18:13:50Z'}
{'component': 'TESTBED', 'instance': '1', 'level': 'info', 'msg': 'Move data
to workspace skipped, no source provided', 'time': '2023-11-30T18:13:50Z'}
{'component': 'TESTBED', 'instance': '1', 'level': 'info', 'msg': 'Move
generic data to input volume from /Users/me/Featurecloud/communication-
test/data/gdir', 'time': '2023-11-30T18:13:50Z'}
{'component': 'DOCKER', 'instance': '', 'level': 'info', 'msg': 'Move data to
workspace', 'time': '2023-11-30T18:13:50Z'}
{'component': 'DOCKER', 'instance': '', 'level': 'info', 'msg': 'Attach to
internal network', 'time': '2023-11-30T18:13:50Z'}
{'component': 'DOCKER', 'instance': '', 'level': 'info', 'msg': 'Remove
application', 'time': '2023-11-30T18:13:51Z'}

D7.7 – Report on implementation of assessment,
requirement criteria, and “stress testing”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 71 of 86

{'component': 'DOCKER', 'instance': '', 'level': 'info', 'msg': 'Intermediary
container used for moving data from host to volume has been removed', 'time':
'2023-11-30T18:13:52Z'}
{'component': 'TESTBED', 'instance': '1', 'level': 'info', 'msg': 'Start
application', 'time': '2023-11-30T18:13:52Z'}
{'component': 'DOCKER', 'instance': '', 'level': 'info', 'msg': 'Attach to
internal network', 'time': '2023-11-30T18:13:52Z'}
{'component': 'TESTBED', 'instance': '1', 'level': 'info', 'msg': 'Append app
to list', 'time': '2023-11-30T18:13:54Z'}
{'component': 'TESTBED', 'instance': '1', 'level': 'info', 'msg': 'Link
fc_communicationtest_157122670 with global socket server', 'time': '2023-11-
30T18:13:54Z'}
{'component': 'TESTBED', 'instance': '1', 'level': 'info', 'msg': 'Link
fc_communicationtest_777203380 with global socket server', 'time': '2023-11-
30T18:13:54Z'}
{'component': 'TESTBED', 'instance': '1', 'level': 'info', 'msg': 'Start local
socket server', 'time': '2023-11-30T18:13:54Z'}
{'component': 'TESTBED', 'instance': '1', 'level': 'info', 'msg': 'Start local
socket server', 'time': '2023-11-30T18:13:54Z'}
{'component': 'TESTBED', 'instance': '1', 'level': 'info', 'msg': 'Link to
global address', 'time': '2023-11-30T18:13:54Z'}
{'component': 'TESTBED', 'instance': '1', 'level': 'info', 'msg': 'Link to
global address', 'time': '2023-11-30T18:13:54Z'}
{'component': 'GLOBAL', 'instance': '', 'level': 'info', 'msg': 'Registered
new coordinator controller', 'time': '2023-11-30T18:13:54Z'}
{'component': 'GLOBAL', 'instance': '', 'level': 'info', 'msg': 'Registered
new participant controller', 'time': '2023-11-30T18:13:54Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'info', 'msg': 'Received setup
trigger', 'time': '2023-11-30T18:13:54Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'info', 'msg': 'Received setup
trigger', 'time': '2023-11-30T18:13:54Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'error', 'msg': 'Got error
during setup to http://172.24.0.4:9000: Post "http://172.24.0.4:9000/setup":
dial tcp 172.24.0.4:9000: connect: connection refused', 'time': '2023-11-
30T18:13:54Z'}
{'component': 'GLOBAL', 'instance': '', 'level': 'info', 'msg': 'Setup
53ed44c56459ee1a30295fd627fd44c800e67e2b068b1f0dc5145f019e213792', 'time':
'2023-11-30T18:13:55Z'}
{'component': 'TESTBED', 'instance': '1', 'level': 'info', 'msg': 'Setup
triggered', 'time': '2023-11-30T18:13:55Z'}
{'component': 'TESTBED', 'instance': '1', 'level': 'info', 'msg': '2 apps and
server created and running', 'time': '2023-11-30T18:13:55Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'info', 'msg':
'http://172.24.0.3:9000/status: New data available', 'time': '2023-11-
30T18:13:55Z'}

D7.7 – Report on implementation of assessment,
requirement criteria, and “stress testing”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 72 of 86

{'component': 'LOCAL', 'instance': '', 'level': 'info', 'msg': 'Mode: plain',
'time': '2023-11-30T18:13:55Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'debug', 'msg':
'http://172.24.0.3:9000/data: Fetched 40 bytes', 'time': '2023-11-
30T18:13:55Z'}
{'component': 'GLOBAL', 'instance': '', 'level': 'info', 'msg': 'Coordinator
(ID: 731caacdfca736bf) broadcasting 40 bytes', 'time': '2023-11-30T18:13:55Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'info', 'msg': 'received 40
bytes from Client 731caacdfca736bf', 'time': '2023-11-30T18:13:57Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'info', 'msg': 'POST to
http://172.24.0.4:9000/data?client=731caacdfca736bf [Try 1/3]', 'time': '2023-
11-30T18:13:57Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'info', 'msg':
'http://172.24.0.3:9000/status: New data available', 'time': '2023-11-
30T18:13:58Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'info', 'msg': 'Mode: p2p',
'time': '2023-11-30T18:13:58Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'info', 'msg': 'Applying DP',
'time': '2023-11-30T18:13:58Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'info', 'msg': 'DP was applied
sucessfully', 'time': '2023-11-30T18:13:58Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'debug', 'msg':
'http://172.24.0.3:9000/data: Fetched 74 bytes', 'time': '2023-11-
30T18:13:58Z'}
{'component': 'GLOBAL', 'instance': '', 'level': 'info', 'msg': '[GLOBAL]
Participant (ID: 731caacdfca736bf) sending 74 bytes to Participant (index:
1)', 'time': '2023-11-30T18:13:58Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'info', 'msg': 'received 74
bytes from Client 731caacdfca736bf', 'time': '2023-11-30T18:13:58Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'info', 'msg': 'POST to
http://172.24.0.3:9000/data?client=731caacdfca736bf [Try 1/3]', 'time': '2023-
11-30T18:13:58Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'info', 'msg':
'http://172.24.0.3:9000/status: New data available', 'time': '2023-11-
30T18:14:01Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'info', 'msg': 'Mode: plain',
'time': '2023-11-30T18:14:01Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'info', 'msg': 'Applying DP',
'time': '2023-11-30T18:14:01Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'info', 'msg': 'DP was applied
sucessfully', 'time': '2023-11-30T18:14:01Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'debug', 'msg':
'http://172.24.0.3:9000/data: Fetched 18 bytes', 'time': '2023-11-
30T18:14:01Z'}
{'component': 'GLOBAL', 'instance': '', 'level': 'info', 'msg': 'Coordinator

D7.7 – Report on implementation of assessment,
requirement criteria, and “stress testing”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 73 of 86

(ID: 731caacdfca736bf) broadcasting 18 bytes', 'time': '2023-11-30T18:14:01Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'info', 'msg': 'received 18
bytes from Client 731caacdfca736bf', 'time': '2023-11-30T18:14:01Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'info', 'msg': 'POST to
http://172.24.0.4:9000/data?client=731caacdfca736bf [Try 1/3]', 'time': '2023-
11-30T18:14:01Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'info', 'msg':
'http://172.24.0.4:9000/status: New data available', 'time': '2023-11-
30T18:14:03Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'info', 'msg': 'Mode: plain',
'time': '2023-11-30T18:14:03Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'info', 'msg': 'Applying DP',
'time': '2023-11-30T18:14:03Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'error', 'msg': "Error while
adding noise: Error while reading sent data: invalid character '\\u0080'
looking for beginning of value", 'time': '2023-11-30T18:14:03Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'error', 'msg': "Error while
reading sent data: invalid character '\\u0080' looking for beginning of
value", 'time': '2023-11-30T18:14:03Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'info', 'msg': 'Shutdown',
'time': '2023-11-30T18:14:04Z'}
{'component': 'GLOBAL', 'instance': '', 'level': 'error', 'msg': 'Participant
(ID: 731caacdfca736bf): relaying stopped due to: EOF', 'time': '2023-11-
30T18:14:04Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'info', 'msg': 'Shutdown',
'time': '2023-11-30T18:14:04Z'}
{'component': 'GLOBAL', 'instance': '', 'level': 'error', 'msg': 'Participant
(ID: f192abe67545f698): relaying stopped due to: EOF', 'time': '2023-11-
30T18:14:04Z'}
{'component': 'TESTBED', 'instance': '1', 'level': 'info', 'msg': 'Stopping
test id: 1', 'time': '2023-11-30T18:14:04Z'}
{'component': 'TESTBED', 'instance': '1', 'level': 'info', 'msg': 'Stopping
container fc_communicationtest_157122670', 'time': '2023-11-30T18:14:04Z'}
{'component': 'DOCKER', 'instance': '', 'level': 'info', 'msg': 'Move data to
host', 'time': '2023-11-30T18:14:04Z'}
{'component': 'DOCKER', 'instance': '', 'level': 'info', 'msg': 'Attach to
internal network', 'time': '2023-11-30T18:14:04Z'}
{'component': 'DOCKER', 'instance': '', 'level': 'info', 'msg': 'Remove
application', 'time': '2023-11-30T18:14:05Z'}
{'component': 'DOCKER', 'instance': '', 'level': 'debug', 'msg': 'Intermediary
container used for moving data from volume to host has been removed', 'time':
'2023-11-30T18:14:06Z'}
{'component': 'TESTBED', 'instance': '1', 'level': 'info', 'msg': 'Saved
output volume content to
/data/tests/results_test_1_client_0_fc_communicationtest_157122670.zip',

D7.7 – Report on implementation of assessment,
requirement criteria, and “stress testing”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 74 of 86

'time': '2023-11-30T18:14:07Z'}
{'component': 'DOCKER', 'instance': '', 'level': 'info', 'msg': 'Remove volume
test_1_output_0_1701368024', 'time': '2023-11-30T18:14:07Z'}
{'component': 'TESTBED', 'instance': '1', 'level': 'info', 'msg': 'Deleted
volume test_1_output_0_1701368024', 'time': '2023-11-30T18:14:07Z'}
{'component': 'DOCKER', 'instance': '', 'level': 'info', 'msg': 'Remove volume
test_1_input_0_1701368024', 'time': '2023-11-30T18:14:07Z'}
{'component': 'TESTBED', 'instance': '1', 'level': 'info', 'msg': 'Deleted
volume test_1_input_0_1701368024', 'time': '2023-11-30T18:14:07Z'}
{'component': 'TESTBED', 'instance': '1', 'level': 'info', 'msg': 'Stopping
container fc_communicationtest_777203380', 'time': '2023-11-30T18:14:07Z'}
{'component': 'DOCKER', 'instance': '', 'level': 'info', 'msg': 'Move data to
host', 'time': '2023-11-30T18:14:07Z'}
{'component': 'DOCKER', 'instance': '', 'level': 'info', 'msg': 'Attach to
internal network', 'time': '2023-11-30T18:14:07Z'}
{'component': 'DOCKER', 'instance': '', 'level': 'info', 'msg': 'Remove
application', 'time': '2023-11-30T18:14:08Z'}
{'component': 'DOCKER', 'instance': '', 'level': 'debug', 'msg': 'Intermediary
container used for moving data from volume to host has been removed', 'time':
'2023-11-30T18:14:09Z'}
{'component': 'TESTBED', 'instance': '1', 'level': 'info', 'msg': 'Saved
output volume content to
/data/tests/results_test_1_client_1_fc_communicationtest_777203380.zip',
'time': '2023-11-30T18:14:09Z'}
{'component': 'DOCKER', 'instance': '', 'level': 'info', 'msg': 'Remove volume
test_1_output_1_1701368030', 'time': '2023-11-30T18:14:09Z'}
{'component': 'TESTBED', 'instance': '1', 'level': 'info', 'msg': 'Deleted
volume test_1_output_1_1701368030', 'time': '2023-11-30T18:14:09Z'}
{'component': 'DOCKER', 'instance': '', 'level': 'info', 'msg': 'Remove volume
test_1_input_1_1701368030', 'time': '2023-11-30T18:14:09Z'}
{'component': 'TESTBED', 'instance': '1', 'level': 'info', 'msg': 'Deleted
volume test_1_input_1_1701368030', 'time': '2023-11-30T18:14:09Z'}

10.4.5 Pickle Unpickling Stack Underflow Error
Client one (coordinator) log:
[Time: 30.11.23 18:30:07] [Level: info] id: e0e38bcda48fbb08
[Time: 30.11.23 18:30:07] [Level: info] coordinator: True
[Time: 30.11.23 18:30:07] [Level: info] clients: ['46cd4c65ff9b419a',
'e0e38bcda48fbb08']
[Time: 30.11.23 18:30:07] [Level: info] state: initial
[Time: 30.11.23 18:30:07] [Level: info] [State: initial] App is started...
[Time: 30.11.23 18:30:07] [Level: info] [State: initial] traffic_test: False ,
Data_Size: 100
[Time: 30.11.23 18:30:07] [Level: info] [State: initial] Coordinator broadcast

D7.7 – Report on implementation of assessment,
requirement criteria, and “stress testing”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 75 of 86

test settings...
[Time: 30.11.23 18:30:07] [Level: info] transition: loop_state
127.0.0.1 - - [30/Nov/2023 18:30:07] "POST /api/setup HTTP/1.0" 200 0
[CTRL] GET /status
127.0.0.1 - - [30/Nov/2023 18:30:07] "GET /api/status HTTP/1.0" 200 143
[CTRL] GET /data
127.0.0.1 - - [30/Nov/2023 18:30:07] "GET /api/data HTTP/1.0" 200 40
[Time: 30.11.23 18:30:08] [Level: info] state: loop_state
[Time: 30.11.23 18:30:08] [Level: info] transition: wait_data_state
[Time: 30.11.23 18:30:09] [Level: info] state: wait_data_state
[Time: 30.11.23 18:30:09] [Level: info] [State: wait_data_state] Round: 1 -
Scenario: 5 - DataType: 1 - SMPC: False - DP: False
[Time: 30.11.23 18:30:09] [Level: info] transition: client_state
[Time: 30.11.23 18:30:10] [Level: info] state: client_state
[Time: 30.11.23 18:30:10] [Level: info] [State: client_state] Sub_Scen: 5,
Round: 1, Communication: 0, client send data 1 to coordinator SMPC:
False, DP: True
[Time: 30.11.23 18:30:10] [Level: info] [State: client_state] Sub_Scen: 5,
Round: 1, Communication: 1, client send data 11 to coordinator SMPC:
True, DP: False
[Time: 30.11.23 18:30:10] [Level: info] [State: client_state] Sub_Scen: 5,
Round: 1, Communication: 2, client send data 21 to coordinator SMPC:
False, DP: True
[Time: 30.11.23 18:30:10] [Level: info] [State: client_state] Sub_Scen: 5,
Round: 1, Communication: 3, client send data 31 to coordinator SMPC:
True, DP: False
[Time: 30.11.23 18:30:10] [Level: info] transition: coordinator_state
[CTRL] GET /status
127.0.0.1 - - [30/Nov/2023 18:30:10] "GET /api/status HTTP/1.0" 200 219
[CTRL] GET /data
127.0.0.1 - - [30/Nov/2023 18:30:10] "GET /api/data HTTP/1.0" 200 1
[Time: 30.11.23 18:30:11] [Level: info] state: coordinator_state
[Time: 30.11.23 18:30:11] [Level: info] [State: coordinator_state] Coordinator
is launched...
[CTRL] GET /status
127.0.0.1 - - [30/Nov/2023 18:30:13] "GET /api/status HTTP/1.0" 200 219
[CTRL] GET /data
127.0.0.1 - - [30/Nov/2023 18:30:13] "GET /api/data HTTP/1.0" 200 2
[CTRL] POST /data
127.0.0.1 - - [30/Nov/2023 18:30:15] "POST /api/data?client=0000000000000000
HTTP/1.0" 200 0
[CTRL] GET /status
127.0.0.1 - - [30/Nov/2023 18:30:16] "GET /api/status HTTP/1.0" 200 267
[CTRL] GET /data
127.0.0.1 - - [30/Nov/2023 18:30:16] "GET /api/data HTTP/1.0" 200 2

D7.7 – Report on implementation of assessment,
requirement criteria, and “stress testing”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 76 of 86

[CTRL] POST /data
127.0.0.1 - - [30/Nov/2023 18:30:18] "POST /api/data?client=0000000000000000
HTTP/1.0" 200 0
[Time: 30.11.23 18:30:18] [Level: info] Traceback (most recent call last):
 File "/root/.local/lib/python3.8/site-
packages/FeatureCloud/app/engine/app.py", line 226, in guarded_run
 self.run()
 File "/root/.local/lib/python3.8/site-
packages/FeatureCloud/app/engine/app.py", line 241, in run
 transition = self.current_state.run()
 File "/app/states.py", line 465, in run
 data_to_collect = self.gather_data(is_json=flg)
 File "/root/.local/lib/python3.8/site-
packages/FeatureCloud/app/engine/app.py", line 618, in gather_data
 return self.await_data(len(self._app.clients), unwrap=False,
is_json=is_json)
 File "/root/.local/lib/python3.8/site-
packages/FeatureCloud/app/engine/app.py", line 648, in await_data
 return [_deserialize_incoming(d[0], is_json=is_json) for d in data]
 File "/root/.local/lib/python3.8/site-
packages/FeatureCloud/app/engine/app.py", line 648, in <listcomp>
 return [_deserialize_incoming(d[0], is_json=is_json) for d in data]
 File "/root/.local/lib/python3.8/site-
packages/FeatureCloud/app/engine/app.py", line 974, in _deserialize_incoming
 return pickle.loads(data)
_pickle.UnpicklingError: unpickling stack underflow

Client two (participant) log:

[Time: 30.11.23 18:30:09] [Level: info] id: 46cd4c65ff9b419a
[Time: 30.11.23 18:30:09] [Level: info] coordinator: False
[Time: 30.11.23 18:30:09] [Level: info] clients: ['46cd4c65ff9b419a',
'e0e38bcda48fbb08']
[Time: 30.11.23 18:30:09] [Level: info] state: initial
[Time: 30.11.23 18:30:09] [Level: info] [State: initial] App is started...
127.0.0.1 - - [30/Nov/2023 18:30:09] "POST /api/setup HTTP/1.0" 200 0
[Time: 30.11.23 18:30:09] [Level: info] [State: initial] traffic_test: False ,
Data_Size: 100
[CTRL] GET /status
127.0.0.1 - - [30/Nov/2023 18:30:09] "GET /api/status HTTP/1.0" 200 141
[CTRL] POST /data
127.0.0.1 - - [30/Nov/2023 18:30:09] "POST /api/data?client=e0e38bcda48fbb08
HTTP/1.0" 200 0
[Time: 30.11.23 18:30:09] [Level: info] transition: loop_state

D7.7 – Report on implementation of assessment,
requirement criteria, and “stress testing”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 77 of 86

[Time: 30.11.23 18:30:10] [Level: info] state: loop_state
[Time: 30.11.23 18:30:10] [Level: info] transition: wait_data_state
[Time: 30.11.23 18:30:11] [Level: info] state: wait_data_state
[Time: 30.11.23 18:30:11] [Level: info] [State: wait_data_state] Round: 1 -
Scenario: 5 - DataType: 1 - SMPC: False - DP: False
[Time: 30.11.23 18:30:11] [Level: info] transition: client_state
[CTRL] GET /status
127.0.0.1 - - [30/Nov/2023 18:30:12] "GET /api/status HTTP/1.0" 200 146
[Time: 30.11.23 18:30:12] [Level: info] state: client_state
[Time: 30.11.23 18:30:12] [Level: info] [State: client_state] Sub_Scen: 5,
Round: 1, Communication: 0, client send data 1 to coordinator SMPC:
False, DP: True
[Time: 30.11.23 18:30:12] [Level: info] [State: client_state] Sub_Scen: 5,
Round: 1, Communication: 1, client send data 11 to coordinator SMPC:
True, DP: False
[Time: 30.11.23 18:30:12] [Level: info] [State: client_state] Sub_Scen: 5,
Round: 1, Communication: 2, client send data 21 to coordinator SMPC:
False, DP: True
[Time: 30.11.23 18:30:12] [Level: info] [State: client_state] Sub_Scen: 5,
Round: 1, Communication: 3, client send data 31 to coordinator SMPC:
True, DP: False
[Time: 30.11.23 18:30:12] [Level: info] transition: loop_state
[Time: 30.11.23 18:30:13] [Level: info] state: loop_state
[Time: 30.11.23 18:30:13] [Level: info] transition: wait_data_state
[Time: 30.11.23 18:30:14] [Level: info] state: wait_data_state
[Time: 30.11.23 18:30:14] [Level: info] [State: wait_data_state] Round: 2 -
Scenario: 5 - DataType: 1 - SMPC: False - DP: False
[Time: 30.11.23 18:30:14] [Level: info] transition: client_state
[CTRL] GET /status
127.0.0.1 - - [30/Nov/2023 18:30:15] "GET /api/status HTTP/1.0" 200 214

The controller log:

{'component': 'MAIN', 'instance': '', 'level': 'info', 'msg': 'Controller
start', 'time': '2023-11-30T18:19:14Z'}
{'component': 'MAIN', 'instance': '', 'level': 'info', 'msg': 'Mode:
Dockerized (isolated)', 'time': '2023-11-30T18:19:14Z'}
{'component': 'MAIN', 'instance': '', 'level': 'info', 'msg': "Configuration
value 'HasGPU': false", 'time': '2023-11-30T18:19:14Z'}
{'component': 'DOCKER', 'instance': '', 'level': 'info', 'msg': 'Removing
leftover Docker entities for label: fc-controller-label', 'time': '2023-11-
30T18:19:15Z'}
{'component': 'DOCKER', 'instance': '', 'level': 'info', 'msg': 'Removed 0 of
0 leftover containers', 'time': '2023-11-30T18:19:15Z'}
{'component': 'DOCKER', 'instance': '', 'level': 'info', 'msg': 'Removed 0 of

D7.7 – Report on implementation of assessment,
requirement criteria, and “stress testing”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 78 of 86

1 leftover volumes', 'time': '2023-11-30T18:19:15Z'}
{'component': 'DOCKER', 'instance': '', 'level': 'info', 'msg': 'Removed 1 of
1 leftover networks', 'time': '2023-11-30T18:19:15Z'}
{'component': 'GLOBAL', 'instance': '', 'level': 'info', 'msg': 'Listening on
port 9151', 'time': '2023-11-30T18:19:15Z'}
{'component': 'GLOBAL', 'instance': '', 'level': 'info', 'msg': 'Listening on
port 9150', 'time': '2023-11-30T18:19:15Z'}
{'component': 'TESTBED', 'instance': '', 'level': 'info', 'msg': 'Create new
test', 'time': '2023-11-30T18:29:58Z'}
{'component': 'TESTBED', 'instance': '1', 'level': 'info', 'msg': 'Create
volumes and containers...', 'time': '2023-11-30T18:29:58Z'}
{'component': 'DOCKER', 'instance': '', 'level': 'info', 'msg': 'Create volume
test_1_input_0_1701368998', 'time': '2023-11-30T18:29:58Z'}
{'component': 'DOCKER', 'instance': '', 'level': 'info', 'msg': 'Create volume
test_1_output_0_1701368998', 'time': '2023-11-30T18:29:58Z'}
{'component': 'TESTBED', 'instance': '1', 'level': 'info', 'msg': 'Move data
to workspace skipped, no source provided', 'time': '2023-11-30T18:29:58Z'}
{'component': 'TESTBED', 'instance': '1', 'level': 'info', 'msg': 'Move
generic data to input volume from /Users/me/Featurecloud/communication-
test/data/gdir', 'time': '2023-11-30T18:29:58Z'}
{'component': 'DOCKER', 'instance': '', 'level': 'info', 'msg': 'Move data to
workspace', 'time': '2023-11-30T18:29:58Z'}
{'component': 'DOCKER', 'instance': '', 'level': 'info', 'msg': 'Attach to
internal network', 'time': '2023-11-30T18:29:58Z'}
{'component': 'DOCKER', 'instance': '', 'level': 'info', 'msg': 'Remove
application', 'time': '2023-11-30T18:30:00Z'}
{'component': 'DOCKER', 'instance': '', 'level': 'info', 'msg': 'Intermediary
container used for moving data from host to volume has been removed', 'time':
'2023-11-30T18:30:01Z'}
{'component': 'TESTBED', 'instance': '1', 'level': 'info', 'msg': 'Start
application', 'time': '2023-11-30T18:30:01Z'}
{'component': 'DOCKER', 'instance': '', 'level': 'info', 'msg': 'Attach to
internal network', 'time': '2023-11-30T18:30:01Z'}
{'component': 'TESTBED', 'instance': '1', 'level': 'info', 'msg': 'Append app
to list', 'time': '2023-11-30T18:30:02Z'}
{'component': 'DOCKER', 'instance': '', 'level': 'info', 'msg': 'Create volume
test_1_input_1_1701369002', 'time': '2023-11-30T18:30:02Z'}
{'component': 'DOCKER', 'instance': '', 'level': 'info', 'msg': 'Create volume
test_1_output_1_1701369002', 'time': '2023-11-30T18:30:02Z'}
{'component': 'TESTBED', 'instance': '1', 'level': 'info', 'msg': 'Move data
to workspace skipped, no source provided', 'time': '2023-11-30T18:30:02Z'}
{'component': 'TESTBED', 'instance': '1', 'level': 'info', 'msg': 'Move
generic data to input volume from /Users/me/Featurecloud/communication-
test/data/gdir', 'time': '2023-11-30T18:30:02Z'}
{'component': 'DOCKER', 'instance': '', 'level': 'info', 'msg': 'Move data to

D7.7 – Report on implementation of assessment,
requirement criteria, and “stress testing”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 79 of 86

workspace', 'time': '2023-11-30T18:30:02Z'}
{'component': 'DOCKER', 'instance': '', 'level': 'info', 'msg': 'Attach to
internal network', 'time': '2023-11-30T18:30:02Z'}
{'component': 'DOCKER', 'instance': '', 'level': 'info', 'msg': 'Remove
application', 'time': '2023-11-30T18:30:03Z'}
{'component': 'DOCKER', 'instance': '', 'level': 'info', 'msg': 'Intermediary
container used for moving data from host to volume has been removed', 'time':
'2023-11-30T18:30:04Z'}
{'component': 'TESTBED', 'instance': '1', 'level': 'info', 'msg': 'Start
application', 'time': '2023-11-30T18:30:04Z'}
{'component': 'DOCKER', 'instance': '', 'level': 'info', 'msg': 'Attach to
internal network', 'time': '2023-11-30T18:30:04Z'}
{'component': 'TESTBED', 'instance': '1', 'level': 'info', 'msg': 'Append app
to list', 'time': '2023-11-30T18:30:06Z'}
{'component': 'TESTBED', 'instance': '1', 'level': 'info', 'msg': 'Link
fc_communicationtest_83010092 with global socket server', 'time': '2023-11-
30T18:30:06Z'}
{'component': 'TESTBED', 'instance': '1', 'level': 'info', 'msg': 'Link
fc_communicationtest_825977803 with global socket server', 'time': '2023-11-
30T18:30:06Z'}
{'component': 'TESTBED', 'instance': '1', 'level': 'info', 'msg': 'Start local
socket server', 'time': '2023-11-30T18:30:06Z'}
{'component': 'TESTBED', 'instance': '1', 'level': 'info', 'msg': 'Start local
socket server', 'time': '2023-11-30T18:30:06Z'}
{'component': 'TESTBED', 'instance': '1', 'level': 'info', 'msg': 'Link to
global address', 'time': '2023-11-30T18:30:06Z'}
{'component': 'TESTBED', 'instance': '1', 'level': 'info', 'msg': 'Link to
global address', 'time': '2023-11-30T18:30:06Z'}
{'component': 'GLOBAL', 'instance': '', 'level': 'info', 'msg': 'Registered
new coordinator controller', 'time': '2023-11-30T18:30:06Z'}
{'component': 'GLOBAL', 'instance': '', 'level': 'info', 'msg': 'Registered
new participant controller', 'time': '2023-11-30T18:30:06Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'info', 'msg': 'Received setup
trigger', 'time': '2023-11-30T18:30:06Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'info', 'msg': 'Received setup
trigger', 'time': '2023-11-30T18:30:06Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'error', 'msg': 'Got error
during setup to http://172.25.0.4:9000: Post "http://172.25.0.4:9000/setup":
dial tcp 172.25.0.4:9000: connect: connection refused', 'time': '2023-11-
30T18:30:06Z'}
{'component': 'GLOBAL', 'instance': '', 'level': 'info', 'msg': 'Setup
62d3d31c8111d096aab651193aa24541680bf9846808331e3a2dfbbe5821f4c7', 'time':
'2023-11-30T18:30:07Z'}
{'component': 'TESTBED', 'instance': '1', 'level': 'info', 'msg': 'Setup
triggered', 'time': '2023-11-30T18:30:07Z'}

D7.7 – Report on implementation of assessment,
requirement criteria, and “stress testing”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 80 of 86

{'component': 'TESTBED', 'instance': '1', 'level': 'info', 'msg': '2 apps and
server created and running', 'time': '2023-11-30T18:30:07Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'info', 'msg':
'http://172.25.0.3:9000/status: New data available', 'time': '2023-11-
30T18:30:07Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'info', 'msg': 'Mode: plain',
'time': '2023-11-30T18:30:07Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'debug', 'msg':
'http://172.25.0.3:9000/data: Fetched 40 bytes', 'time': '2023-11-
30T18:30:07Z'}
{'component': 'GLOBAL', 'instance': '', 'level': 'info', 'msg': 'Coordinator
(ID: e0e38bcda48fbb08) broadcasting 40 bytes', 'time': '2023-11-30T18:30:07Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'info', 'msg': 'received 40
bytes from Client e0e38bcda48fbb08', 'time': '2023-11-30T18:30:09Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'info', 'msg': 'POST to
http://172.25.0.4:9000/data?client=e0e38bcda48fbb08 [Try 1/3]', 'time': '2023-
11-30T18:30:09Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'info', 'msg':
'http://172.25.0.3:9000/status: New data available', 'time': '2023-11-
30T18:30:10Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'info', 'msg': 'Mode: smpc',
'time': '2023-11-30T18:30:10Z'}
{'component': 'GLOBAL', 'instance': '', 'level': 'info', 'msg': '[GLOBAL]
Participant (ID: e0e38bcda48fbb08) sending 82 bytes to Participant (index:
0)', 'time': '2023-11-30T18:30:10Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'info', 'msg': 'received 82
bytes from Client e0e38bcda48fbb08', 'time': '2023-11-30T18:30:10Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'debug', 'msg':
'http://172.25.0.3:9000/data: Fetched 1 bytes', 'time': '2023-11-
30T18:30:10Z'}
{'component': 'GLOBAL', 'instance': '', 'level': 'info', 'msg': '[GLOBAL]
Participant (ID: e0e38bcda48fbb08) sending 83 bytes to Participant (index:
1)', 'time': '2023-11-30T18:30:10Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'info', 'msg': 'Received shard
"i64:2299814188351802168" from Client e0e38bcda48fbb08', 'time': '2023-11-
30T18:30:10Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'info', 'msg': 'received 83
bytes from Client e0e38bcda48fbb08', 'time': '2023-11-30T18:30:10Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'info', 'msg': 'Received shard
"i64:-2299814188251802168" from Client e0e38bcda48fbb08', 'time': '2023-11-
30T18:30:10Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'info', 'msg':
'http://172.25.0.3:9000/status: New data available', 'time': '2023-11-
30T18:30:13Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'info', 'msg': 'Mode: smpc',

D7.7 – Report on implementation of assessment,
requirement criteria, and “stress testing”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 81 of 86

'time': '2023-11-30T18:30:13Z'}
{'component': 'GLOBAL', 'instance': '', 'level': 'info', 'msg': '[GLOBAL]
Participant (ID: e0e38bcda48fbb08) sending 82 bytes to Participant (index:
0)', 'time': '2023-11-30T18:30:13Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'info', 'msg': 'received 82
bytes from Client e0e38bcda48fbb08', 'time': '2023-11-30T18:30:13Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'info', 'msg': 'Received shard
"i64:-903095290487264450" from Client e0e38bcda48fbb08', 'time': '2023-11-
30T18:30:13Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'debug', 'msg':
'http://172.25.0.3:9000/data: Fetched 2 bytes', 'time': '2023-11-
30T18:30:13Z'}
{'component': 'GLOBAL', 'instance': '', 'level': 'info', 'msg': '[GLOBAL]
Participant (ID: e0e38bcda48fbb08) sending 81 bytes to Participant (index:
1)', 'time': '2023-11-30T18:30:13Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'info', 'msg': 'received 81
bytes from Client e0e38bcda48fbb08', 'time': '2023-11-30T18:30:13Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'info', 'msg': 'Received shard
"i64:903095291587264450" from Client e0e38bcda48fbb08', 'time': '2023-11-
30T18:30:13Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'info', 'msg':
'http://172.25.0.4:9000/status: New data available', 'time': '2023-11-
30T18:30:15Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'info', 'msg': 'Mode: smpc',
'time': '2023-11-30T18:30:15Z'}
{'component': 'GLOBAL', 'instance': '', 'level': 'info', 'msg': '[GLOBAL]
Participant (ID: 46cd4c65ff9b419a) sending 82 bytes to Participant (index:
0)', 'time': '2023-11-30T18:30:15Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'info', 'msg': 'received 82
bytes from Client 46cd4c65ff9b419a', 'time': '2023-11-30T18:30:15Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'info', 'msg': 'Received shard
"i64:8693413466922187797" from Client 46cd4c65ff9b419a', 'time': '2023-11-
30T18:30:15Z'}
{'component': 'GLOBAL', 'instance': '', 'level': 'info', 'msg': '[GLOBAL]
Participant (ID: 46cd4c65ff9b419a) sending 83 bytes to Participant (index:
1)', 'time': '2023-11-30T18:30:15Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'debug', 'msg':
'http://172.25.0.4:9000/data: Fetched 1 bytes', 'time': '2023-11-
30T18:30:15Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'info', 'msg': 'received 83
bytes from Client 46cd4c65ff9b419a', 'time': '2023-11-30T18:30:15Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'info', 'msg': 'Received shard
"i64:-8693413466822187797" from Client 46cd4c65ff9b419a', 'time': '2023-11-
30T18:30:15Z'}
{'component': 'GLOBAL', 'instance': '', 'level': 'info', 'msg': '[GLOBAL]

D7.7 – Report on implementation of assessment,
requirement criteria, and “stress testing”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 82 of 86

Participant (ID: 46cd4c65ff9b419a) sending 83 bytes to Participant (index:
1)', 'time': '2023-11-30T18:30:15Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'info', 'msg': 'received 83
bytes from Client 46cd4c65ff9b419a', 'time': '2023-11-30T18:30:15Z'}
{'component': 'GLOBAL', 'instance': '', 'level': 'info', 'msg': '[GLOBAL]
Participant (ID: e0e38bcda48fbb08) sending 82 bytes to Participant (index:
1)', 'time': '2023-11-30T18:30:15Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'info', 'msg': 'Received
aggregated shard "i64:-7453516418435561651" from Client 46cd4c65ff9b419a',
'time': '2023-11-30T18:30:15Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'info', 'msg': 'received 82
bytes from Client e0e38bcda48fbb08', 'time': '2023-11-30T18:30:15Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'info', 'msg': 'Received
aggregated shard "i64:7453516418635561651" from Client e0e38bcda48fbb08',
'time': '2023-11-30T18:30:15Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'info', 'msg': 'POST to
http://172.25.0.3:9000/data?client=0000000000000000 [Try 1/3]', 'time': '2023-
11-30T18:30:15Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'info', 'msg':
'http://172.25.0.3:9000/status: New data available', 'time': '2023-11-
30T18:30:16Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'info', 'msg': 'Mode: plain',
'time': '2023-11-30T18:30:16Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'info', 'msg': 'Applying DP',
'time': '2023-11-30T18:30:16Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'info', 'msg': 'DP was applied
sucessfully', 'time': '2023-11-30T18:30:16Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'debug', 'msg':
'http://172.25.0.3:9000/data: Fetched 17 bytes', 'time': '2023-11-
30T18:30:16Z'}
{'component': 'GLOBAL', 'instance': '', 'level': 'info', 'msg': 'Coordinator
(ID: e0e38bcda48fbb08) broadcasting 17 bytes', 'time': '2023-11-30T18:30:16Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'info', 'msg': 'received 17
bytes from Client e0e38bcda48fbb08', 'time': '2023-11-30T18:30:16Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'info', 'msg': 'POST to
http://172.25.0.4:9000/data?client=e0e38bcda48fbb08 [Try 1/3]', 'time': '2023-
11-30T18:30:16Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'info', 'msg':
'http://172.25.0.4:9000/status: New data available', 'time': '2023-11-
30T18:30:18Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'info', 'msg': 'Mode: smpc',
'time': '2023-11-30T18:30:18Z'}
{'component': 'GLOBAL', 'instance': '', 'level': 'info', 'msg': '[GLOBAL]
Participant (ID: 46cd4c65ff9b419a) sending 82 bytes to Participant (index:
0)', 'time': '2023-11-30T18:30:18Z'}

D7.7 – Report on implementation of assessment,
requirement criteria, and “stress testing”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 83 of 86

{'component': 'LOCAL', 'instance': '', 'level': 'info', 'msg': 'received 82
bytes from Client 46cd4c65ff9b419a', 'time': '2023-11-30T18:30:18Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'info', 'msg': 'Received shard
"i64:6181063008565853832" from Client 46cd4c65ff9b419a', 'time': '2023-11-
30T18:30:18Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'debug', 'msg':
'http://172.25.0.4:9000/data: Fetched 2 bytes', 'time': '2023-11-
30T18:30:18Z'}
{'component': 'GLOBAL', 'instance': '', 'level': 'info', 'msg': '[GLOBAL]
Participant (ID: 46cd4c65ff9b419a) sending 83 bytes to Participant (index:
1)', 'time': '2023-11-30T18:30:18Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'info', 'msg': 'received 83
bytes from Client 46cd4c65ff9b419a', 'time': '2023-11-30T18:30:18Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'info', 'msg': 'Received shard
"i64:-6181063007465853832" from Client 46cd4c65ff9b419a', 'time': '2023-11-
30T18:30:18Z'}
{'component': 'GLOBAL', 'instance': '', 'level': 'info', 'msg': '[GLOBAL]
Participant (ID: 46cd4c65ff9b419a) sending 82 bytes to Participant (index:
1)', 'time': '2023-11-30T18:30:18Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'info', 'msg': 'received 82
bytes from Client 46cd4c65ff9b419a', 'time': '2023-11-30T18:30:18Z'}
{'component': 'GLOBAL', 'instance': '', 'level': 'info', 'msg': '[GLOBAL]
Participant (ID: e0e38bcda48fbb08) sending 83 bytes to Participant (index:
1)', 'time': '2023-11-30T18:30:18Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'info', 'msg': 'Received
aggregated shard "i64:5277967718078589382" from Client 46cd4c65ff9b419a',
'time': '2023-11-30T18:30:18Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'info', 'msg': 'received 83
bytes from Client e0e38bcda48fbb08', 'time': '2023-11-30T18:30:18Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'info', 'msg': 'Received
aggregated shard "i64:-5277967715878589382" from Client e0e38bcda48fbb08',
'time': '2023-11-30T18:30:18Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'info', 'msg': 'POST to
http://172.25.0.3:9000/data?client=0000000000000000 [Try 1/3]', 'time': '2023-
11-30T18:30:18Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'info', 'msg':
'http://172.25.0.3:9000/status: New data available', 'time': '2023-11-
30T18:30:19Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'info', 'msg': 'Mode: smpc',
'time': '2023-11-30T18:30:19Z'}
{'component': 'GLOBAL', 'instance': '', 'level': 'info', 'msg': '[GLOBAL]
Participant (ID: e0e38bcda48fbb08) sending 82 bytes to Participant (index:
0)', 'time': '2023-11-30T18:30:19Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'info', 'msg': 'received 82
bytes from Client e0e38bcda48fbb08', 'time': '2023-11-30T18:30:19Z'}

D7.7 – Report on implementation of assessment,
requirement criteria, and “stress testing”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 84 of 86

{'component': 'LOCAL', 'instance': '', 'level': 'info', 'msg': 'Received shard
"i64:8222125889749937863" from Client e0e38bcda48fbb08', 'time': '2023-11-
30T18:30:19Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'debug', 'msg':
'http://172.25.0.3:9000/data: Fetched 2 bytes', 'time': '2023-11-
30T18:30:19Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'info', 'msg':
'http://172.25.0.3:9000/status: Finished', 'time': '2023-11-30T18:30:19Z'}
{'component': 'GLOBAL', 'instance': '', 'level': 'info', 'msg': '[GLOBAL]
Participant (ID: e0e38bcda48fbb08) sending 83 bytes to Participant (index:
1)', 'time': '2023-11-30T18:30:19Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'info', 'msg': 'received 83
bytes from Client e0e38bcda48fbb08', 'time': '2023-11-30T18:30:19Z'}
{'component': 'GLOBAL', 'instance': '', 'level': 'info', 'msg': '[GLOBAL]
Participant (ID: e0e38bcda48fbb08) finished the current step', 'time': '2023-
11-30T18:30:19Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'info', 'msg': 'Received shard
"i64:-8222125886649937863" from Client e0e38bcda48fbb08', 'time': '2023-11-
30T18:30:19Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'info', 'msg': 'Shutdown',
'time': '2023-11-30T18:30:20Z'}
{'component': 'LOCAL', 'instance': '', 'level': 'info', 'msg': 'Shutdown',
'time': '2023-11-30T18:30:20Z'}
{'component': 'GLOBAL', 'instance': '', 'level': 'error', 'msg': 'Participant
(ID: e0e38bcda48fbb08): relaying stopped due to: EOF', 'time': '2023-11-
30T18:30:20Z'}
{'component': 'GLOBAL', 'instance': '', 'level': 'error', 'msg': 'Participant
(ID: 46cd4c65ff9b419a): relaying stopped due to: EOF', 'time': '2023-11-
30T18:30:20Z'}
{'component': 'TESTBED', 'instance': '1', 'level': 'info', 'msg': 'Stopping
test id: 1', 'time': '2023-11-30T18:30:20Z'}
{'component': 'TESTBED', 'instance': '1', 'level': 'info', 'msg': 'Stopping
container fc_communicationtest_83010092', 'time': '2023-11-30T18:30:20Z'}
{'component': 'DOCKER', 'instance': '', 'level': 'info', 'msg': 'Move data to
host', 'time': '2023-11-30T18:30:20Z'}
{'component': 'DOCKER', 'instance': '', 'level': 'info', 'msg': 'Attach to
internal network', 'time': '2023-11-30T18:30:21Z'}
{'component': 'DOCKER', 'instance': '', 'level': 'info', 'msg': 'Remove
application', 'time': '2023-11-30T18:30:22Z'}
{'component': 'DOCKER', 'instance': '', 'level': 'debug', 'msg': 'Intermediary
container used for moving data from volume to host has been removed', 'time':
'2023-11-30T18:30:23Z'}
{'component': 'TESTBED', 'instance': '1', 'level': 'info', 'msg': 'Saved
output volume content to
/data/tests/results_test_1_client_0_fc_communicationtest_83010092.zip',

D7.7 – Report on implementation of assessment,
requirement criteria, and “stress testing”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 85 of 86

'time': '2023-11-30T18:30:23Z'}
{'component': 'DOCKER', 'instance': '', 'level': 'info', 'msg': 'Remove volume
test_1_output_0_1701368998', 'time': '2023-11-30T18:30:23Z'}
{'component': 'TESTBED', 'instance': '1', 'level': 'info', 'msg': 'Deleted
volume test_1_output_0_1701368998', 'time': '2023-11-30T18:30:23Z'}
{'component': 'DOCKER', 'instance': '', 'level': 'info', 'msg': 'Remove volume
test_1_input_0_1701368998', 'time': '2023-11-30T18:30:23Z'}
{'component': 'TESTBED', 'instance': '1', 'level': 'info', 'msg': 'Deleted
volume test_1_input_0_1701368998', 'time': '2023-11-30T18:30:23Z'}
{'component': 'TESTBED', 'instance': '1', 'level': 'info', 'msg': 'Stopping
container fc_communicationtest_825977803', 'time': '2023-11-30T18:30:23Z'}
{'component': 'DOCKER', 'instance': '', 'level': 'info', 'msg': 'Move data to
host', 'time': '2023-11-30T18:30:24Z'}
{'component': 'DOCKER', 'instance': '', 'level': 'info', 'msg': 'Attach to
internal network', 'time': '2023-11-30T18:30:24Z'}
{'component': 'DOCKER', 'instance': '', 'level': 'info', 'msg': 'Remove
application', 'time': '2023-11-30T18:30:25Z'}
{'component': 'DOCKER', 'instance': '', 'level': 'debug', 'msg': 'Intermediary
container used for moving data from volume to host has been removed', 'time':
'2023-11-30T18:30:26Z'}
{'component': 'TESTBED', 'instance': '1', 'level': 'info', 'msg': 'Saved
output volume content to
/data/tests/results_test_1_client_1_fc_communicationtest_825977803.zip',
'time': '2023-11-30T18:30:26Z'}
{'component': 'DOCKER', 'instance': '', 'level': 'info', 'msg': 'Remove volume
test_1_output_1_1701369002', 'time': '2023-11-30T18:30:26Z'}
{'component': 'TESTBED', 'instance': '1', 'level': 'info', 'msg': 'Deleted
volume test_1_output_1_1701369002', 'time': '2023-11-30T18:30:26Z'}
{'component': 'DOCKER', 'instance': '', 'level': 'info', 'msg': 'Remove volume
test_1_input_1_1701369002', 'time': '2023-11-30T18:30:26Z'}
{'component': 'TESTBED', 'instance': '1', 'level': 'info', 'msg': 'Deleted
volume test_1_input_1_1701369002', 'time': '2023-11-30T18:30:26Z'}

D7.7 – Report on implementation of assessment,
requirement criteria, and “stress testing”

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 826078.

Page 86 of 86

10.5 Controller’s Dockerfile

ENV FC_DOCKERIZED=1

WORKDIR /go/src/fc_controller

COPY go.* /go/src/fc_controller/
RUN go mod download

COPY cmd/controller cmd/controller
COPY pkg pkg

RUN go install fc_controller/cmd/controller

COPY config.docker.yml config.yml

RUN rm -r pkg && rm -r cmd

EXPOSE 8000

ENTRYPOINT ["/go/bin/controller"]

	1 Table of acronyms and definitions
	2 Objectives of the deliverable based on the Description of Action (DoA)
	3 Executive Summary
	4 Introduction (Challenge)
	5 Methodology
	5.1 Stress testing
	5.2 Tools and scripts
	5.2.1 Test workflow
	5.2.2 Communication test app
	5.2.3 Test Environment
	5.2.4 Security testing

	5.3 Designed tests
	5.3.1 FeatureCloud pip package
	5.3.1.1 Test Environment Setup
	5.3.1.2 Test Scenarios

	5.3.2 FeatureCloud Controller
	5.3.2.1 Test Scenarios

	5.3.3 Web Security and Workflow Execution Platform
	5.3.3.1 Test Environment Setup
	5.3.3.2 Test Scenarios

	6 Results
	6.1 Implementation of assessment and requirement criteria
	6.2 Pip package
	6.2.1 Execution
	6.2.2 Communication memo
	6.2.2.1 Pip package
	6.2.2.2 Controller

	6.3 Controller
	6.4 Web Security
	6.4.1 Unauthenticated user access
	6.4.2 Common Vulnerabilities and Exposures
	6.4.3 Brute-force attack
	6.4.4 Manipulate the confidentiality and integrity of data
	6.4.5 SSL Stripping attacks

	7 Open issues
	8 Deviations
	9 Conclusion
	10 Other supporting documents / figures / tables
	10.1 Communication test app
	10.2 stress testing the Controller
	10.2.1 Controller Fails the stress test
	10.2.2 Controller survives the stress test

	10.3 Aira Server Test Environment
	10.4 Stress Testing the Pip Package
	10.4.1 Incorporation of the feedback into the pip package
	10.4.2 Data misplacement
	10.4.3 Simple-SMPC Pickle error
	10.4.4 Binary-Text Data Decoding Error
	10.4.5 Pickle Unpickling Stack Underflow Error

	10.5 Controller’s Dockerfile

