ResearchGate

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/367455450
An Efficient Approach for Anonymising the Structure of Heterogeneous Graphs

Conference Paper - December 2022

DOI: 10.1109/BigData55660.2022.10020301

CITATIONS READS
0 11

3authors, including:

Rudolf Mayer @ Andreas Ekelhart
o
TU Wien «%» SBAResearch
105 PUBLICATIONS 1,083 CITATIONS 72 PUBLICATIONS 1,413 CITATIONS
SEE PROFILE SEE PROFILE

All content following this page was uploaded by Rudolf Mayer on 01 February 2024.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/367455450_An_Efficient_Approach_for_Anonymising_the_Structure_of_Heterogeneous_Graphs?enrichId=rgreq-657e046fb6422d30dcbc7ac174ddfc1f-XXX&enrichSource=Y292ZXJQYWdlOzM2NzQ1NTQ1MDtBUzoxMTQzMTI4MTIyMTI2MDIzN0AxNzA2NzQ3NTE5MjI0&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/367455450_An_Efficient_Approach_for_Anonymising_the_Structure_of_Heterogeneous_Graphs?enrichId=rgreq-657e046fb6422d30dcbc7ac174ddfc1f-XXX&enrichSource=Y292ZXJQYWdlOzM2NzQ1NTQ1MDtBUzoxMTQzMTI4MTIyMTI2MDIzN0AxNzA2NzQ3NTE5MjI0&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-657e046fb6422d30dcbc7ac174ddfc1f-XXX&enrichSource=Y292ZXJQYWdlOzM2NzQ1NTQ1MDtBUzoxMTQzMTI4MTIyMTI2MDIzN0AxNzA2NzQ3NTE5MjI0&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Rudolf-Mayer?enrichId=rgreq-657e046fb6422d30dcbc7ac174ddfc1f-XXX&enrichSource=Y292ZXJQYWdlOzM2NzQ1NTQ1MDtBUzoxMTQzMTI4MTIyMTI2MDIzN0AxNzA2NzQ3NTE5MjI0&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Rudolf-Mayer?enrichId=rgreq-657e046fb6422d30dcbc7ac174ddfc1f-XXX&enrichSource=Y292ZXJQYWdlOzM2NzQ1NTQ1MDtBUzoxMTQzMTI4MTIyMTI2MDIzN0AxNzA2NzQ3NTE5MjI0&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/TU-Wien?enrichId=rgreq-657e046fb6422d30dcbc7ac174ddfc1f-XXX&enrichSource=Y292ZXJQYWdlOzM2NzQ1NTQ1MDtBUzoxMTQzMTI4MTIyMTI2MDIzN0AxNzA2NzQ3NTE5MjI0&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Rudolf-Mayer?enrichId=rgreq-657e046fb6422d30dcbc7ac174ddfc1f-XXX&enrichSource=Y292ZXJQYWdlOzM2NzQ1NTQ1MDtBUzoxMTQzMTI4MTIyMTI2MDIzN0AxNzA2NzQ3NTE5MjI0&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andreas-Ekelhart?enrichId=rgreq-657e046fb6422d30dcbc7ac174ddfc1f-XXX&enrichSource=Y292ZXJQYWdlOzM2NzQ1NTQ1MDtBUzoxMTQzMTI4MTIyMTI2MDIzN0AxNzA2NzQ3NTE5MjI0&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andreas-Ekelhart?enrichId=rgreq-657e046fb6422d30dcbc7ac174ddfc1f-XXX&enrichSource=Y292ZXJQYWdlOzM2NzQ1NTQ1MDtBUzoxMTQzMTI4MTIyMTI2MDIzN0AxNzA2NzQ3NTE5MjI0&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/SBA_Research?enrichId=rgreq-657e046fb6422d30dcbc7ac174ddfc1f-XXX&enrichSource=Y292ZXJQYWdlOzM2NzQ1NTQ1MDtBUzoxMTQzMTI4MTIyMTI2MDIzN0AxNzA2NzQ3NTE5MjI0&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andreas-Ekelhart?enrichId=rgreq-657e046fb6422d30dcbc7ac174ddfc1f-XXX&enrichSource=Y292ZXJQYWdlOzM2NzQ1NTQ1MDtBUzoxMTQzMTI4MTIyMTI2MDIzN0AxNzA2NzQ3NTE5MjI0&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Rudolf-Mayer?enrichId=rgreq-657e046fb6422d30dcbc7ac174ddfc1f-XXX&enrichSource=Y292ZXJQYWdlOzM2NzQ1NTQ1MDtBUzoxMTQzMTI4MTIyMTI2MDIzN0AxNzA2NzQ3NTE5MjI0&el=1_x_10&_esc=publicationCoverPdf

IEEE Big Data 2022

This is a self-archived pre-print version of this article.
The final publication is available at IEEE via
http://dx.doi.org/10.1109/BigData55660.2022.10020301.

http://dx.doi.org/10.1109/BigData55660.2022.10020301

An Efficient Approach for Anonymising the
Structure of Heterogeneous Graphs

Guillermo Alaman Requena
SBA Research, Vienna, Austria

Abstract—Personal, sensitive information contained in data
sets is often discouraging the exchange and sharing of data,
or even rendering it impossible. To still enable data sharing,
anonymisation is a strategy often employed to avoid possible
record identification or inference. Anonymisation strategies are
often data-type or modality dependent, as besides the actual
attributes contained within a dataset, also certain other aspects
might reveal information on the data subjects. For example in
graph data, such as knowledge graphs, the structure within the
graph, i.e. the connection between nodes, might allow to re-
identify a specific person, e.g. by knowledge of the number of
connections for some individuals within the dataset.

Therefore, also the structure needs to undergo anonymisation
to achieve privacy. In this paper, we optimise an algorithm
that extended previous state of the art by considering multiple,
different types of connections (relations) between nodes to achieve
anonymity among each of these types. Our novel, open-source
implementation scales to much larger graphs than previous work,
which is important for efficiently anonymising ever-increasing
volumes of big, linked data.

Index Terms—Graph Structure Anonymisation, Multiple Re-
lational Types, Efficiency

I. INTRODUCTION

With increasing hardware resources, and a growing number
of collecting devices and applications, the amount of data
collected is ever increasing. Among those are data on e.g.
social networks, represented as graphs to store connections
between individuals, organisations, and other entities. Several
interesting data analysis tasks utilise such graphs, but as this
data is highly personal, data protection becomes an important
aspect. Besides social networks, many other domains use
graphs to represent knowledge, also often including sensitive
data. Anonymisation techniques try to address data protection
concerns by e.g. reducing the detail and granularity of the
data, often navigating the difficult task to preserve enough
information for the downstream analysis tasks. Tabular data

This work was partially funded by the European Union’s Horizon2020
research and innovation programme under grant agreement No 826078
(project FeatureCloud). This publication reflects only the authors’ view and
the European Commission is not responsible for any use that may be made
of the information it contains.

SBA Research (SBA-K1) is a COMET Centre within the framework of
COMET - Competence Centers for Excellent Technologies Programme and
funded by BMK, BMDW, and the federal state of Vienna; COMET is managed
by FFG.

978-1-6654-8045-1/22/$31.00 ©2022 IEEE

Rudolf Mayer
SBA Research, Vienna, Austria
rmayer @sba-research.org

Andreas Ekelhart
SBA Research, Vienna, Austria
aekelhart @sba-research.org,

was among the first types for which anonymisation methods
have been developed, for example to counter a re-identifcation
attack by k-anonymity [[1], or membership inference by dif-
ferential privacy [2]. For a re-identification attack, quasi-
identifying attributes [3] are of special concern. These are
attributes that by themselves are not uniquely identifying
an individual, but do so in combination with other quasi-
identifiers, at least for a (large) portion of the participants in
the dataset. Frequent examples are birth date, post (ZIP) codes,
and sex.

These anonymisation concepts can be applied also to other
types of data, but often, the peculiarities of these data have to
be considered. In graphs, the values within nodes can often be
treated in similar manner as tabular data, e.g. by applying k-
anonymity to all quasi-identifying attributes. However, also the
structural information encoded in the connections (edges) is of
concern. An attacker with sufficient background knowledge
might be able to re-identify an individual based on this graph
structure alone, for example if the background knowledge
includes detailed information on the number and types of
connections of an individual. This is specially of concern for
individuals that have highly unusual patterns of connections
(e.g. unusually few or many connections, or infrequent types of
connections in heterogenous graphs, etc.). As a consequence,
there is a growing body of literature developing methods for
anonymisation of the graph structure, for example adaptations
of the concept of k-anonymity to graph connections, and
combinations of node and structure anonymisation, in various
types of graphs.

Most existing works consider homogeneous graphs, i.e.
with only one type (e.g. the Friend of a Friend (FOAF)
foaf:knows connection). However, in heterogeneous graphs,
nodes are linked by potentially varying types of connections,
e.g. because they have different business relations to each
other. Heterogeneity provides additional information for an
attacker, who could exploit all the structural combinations
present in a heterogeneous graph to disclose individual’s iden-
tities and sensitive information. Heterogeneity makes structure
anonymisation more complex, as the search space for optimal,
anonymous perturbations of the original graph also expands.

Based on the ideas from [4], we presented initial im-
provements on this method in [5], where we adapted the
method to anonymise any type of heterogeneous RDF graph
with multiple connection types. The idea in [4] is that the

so-called one-hop neighbourhood of any resource should be
indistinguishable from the one-hop neighbourhood of at least
k-1 other resources, thus achieving k-anonymity of the neigh-
bourhoods. To that end, [4] developed a greedy heterogeneous
graph modification algorithm for a simplified RDF graph that
includes a limited number of at most four types of different
semantic connections. There is however only a pseudo-code
description of the algorithm, but no open-source or publicly
available implementation available. Based on their approach,
our contributions consist of

1) an extension to the approach of [4] to increase flexibility
of the anonymisation method,

2) improved efficiency of the anonymisation algorithm to
make it usable for larger graphs,

3) a freely available, open-source
Pythor'| and

4) an evaluation of the algorithm on synthetically generated
graphs, several orders of magnitude larger than [4].

implementation in

The remainder of this paper is organised as follows. Sec-
tion [II| provides an overview on related work. In Section [[II} a
detailed description of our method and extensions is provided,
before Section evaluates the approach and analyses the
efficiency of the algorithm. Finally, we provide conclusions
and an outlook on future work in Section [V]

II. RELATED WORK

While the term “knowledge graph” has been used in litera-
ture for a long time, with the announcement of the Google
Knowledge Graph in 2012 [6] major interest in industry
and academia followed [7]]. Other prominent companies that
introduced knowledge graphs include eBay, Facebook, IBM,
and Microsoft [8]. According to [7] a Knowledge Graph is
defined as “a graph of data intended to accumulate and convey
knowledge of the real world, whose nodes represent entities
of interest and whose edges represent potentially different
relations between these entities”. The graph-based data model
may be a directed edge-labelled graph, a heterogeneous graph,
a property graph, etc. We further distinguish open knowl-
edge graphs, published online and accessible for the public
(e.g., DBpedia, Freebase, Wikidata) and enterprise knowledge
graphs which are typically company internal and support
commercial use-cases [[7]-[9]. Applications taking advantage
of knowledge graphs include web search, social networks,
recommendation engines, personal agents, risk assessment,
and more besides.

With this proliferation of networked data, also graph data
anonymisation has gained attention in the past years [[10]. At-
tackers may use structural information e.g. in social networks
to disclose personal information of individuals. In order to
protect privacy, several graph anonymisation methods have
been developed.

The most well-known approaches to combat sensitive infor-
mation disclosure using the structure of networked data rely
on the modification of the structure itself. Early works on this

Uhttps://github.com/sbaresearch/graph-anonymisation

line were based on the idea of randomly deleting, adding or
switching edges in order to prevent adversaries from using the
network structure to identify targeted individuals in it [11],
[12].

However, randomisation approaches do not take into ac-
count that privacy should be guaranteed for every node. k-
anonymisation approaches on graphs address this issue by
applying the idea of k-anonymity, a popular tabular data
anonymisation method [1]], [[13]]. (k,[) anonymity suggests that
for each node, there should be at least other k nodes with which
the node shares / neighbours. This is achieved by adding as
few edges as possible [14]. Based on [15]], [16]] presented the
idea of (k;, k,)-degree anonymity, which proposes that the in-
and out degree sequences of the graph should be respectively
k; and k, anonymous. This method relies on a combination
of addition, switch and extension of edges to achieve this k-
property. Several extensions and variants of k-anonymisation-
like methods such as k-automorphism proposed by [17], k-
RDF-neighbourhood by [4], or k-security and k-isomorphism
by [18] have been developed.

Clustering based approaches are also popular for graph
anonymisation. The idea behind those methods, firstly pur-
posed by [19]], is to cluster nodes together into super-nodes of
size k, where k is an anonymity parameter. How to achieve
this goal varies depending on the specificities of each method.
The most popular algorithm for cluster anonymisation is
SaNGreeA proposed in [20]]. This method builds clusters of
size k greedily according to a defined loss function. One of the
main contributions of SaNGreeA is that it goes a step further
by taking into account not only the structural information from
the graph data, but also descriptive attributes linked to each of
the nodes. [21] and [22] extended the ideas of [[20] to improve
SaNGreeA’s performance through improvements on the loss
function proposed in the original paper [20].

Similarly, researchers have tried to apply the intuition
behind differential privacy to networked data. As described
in [2], differential privacy “captures intuitively the increased
risk to one’s privacy incurred by participating in a database.”
The most popular approach on graphs is edge differential
privacy which focuses on preventing an adversary from dis-
closing the existence of sensitive information (e.g., sexual
relationships between individuals) from any single edge in a
graph while preserving relevant network structural properties.
Several work has been done on this field such as [23],
which provides a solution for the publication of non-interactive
networked data via differential privacy, [24]], which presents
a query-based differential privacy preserving graph generator,
or [25]] which proposes an edge differential privacy model for
graph clustering.

Furthermore, probabilistic approaches assign edge proba-
bilities to add uncertainty to graph data. For instance, (k, ¢)-
obfuscation proposed by [26] or random walk approaches
like [27]).

https://github.com/sbaresearch/graph-anonymisation

III. METHOD

Here, we describe our method, and extensions and adap-
tions of the k-RDF-Neighbourhood anonymisation approach
described by Heitmann et al. [4]. Since our method produces
an anonymised version of a heterogeneous RDF graph, we first
provide a formal definition of a heterogeneous graph, based
on [28]:

Definition 1. A heterogeneous graph is defined as a directed
graph G = (V, E, A, A) where each node v € V and each
edge € € E are associated with their type mapping functions
O(v):V — Aand w(e) : E — A, respectively.

Although there are many types of heterogeneous graphs,
we focus on those using the Resource Description Framework
(RDFY] and demonstrate our method on the Friend of a Friend
(FOAF) ﬂ vocabulary. However, we are not restricted to FOAF
— instead, our method can handle any RDF graph. Figure [I|
shows an example of a heterogeneous RDF graph, where
vertices of the type foaf:Person represent people, edges of
the type foaf-knows represent relations between individuals,
and edges of the type foaf:CurrentProject indicate projects
an individual is working on. Other edges primarily serve to
describe properties, such as foaf:Age or foaf:Name. The prop-
erty custom:has_disease is an example of a custom property,
defined outside the FOAF specification.

As our method addresses structural information, it operates
on neighbourhoods of individual nodes; most specifically, we
consider the so-called one-hop-neighbourhood.

Definition 2. The one-hop-neighbourhood of a node v is the
subgraph Gipop(V) = (Vihops E1hop) Where Vipop is the set
of all nodes vy directly connected to v (including v itself) and
E1nhop is the set of edges €y connecting v with vy € Vipep and
all the edges epsilony,,,, which connect vertices in Vipop
among one anothe

Figure [I] shows a simplified one-hop-neighbourhood of the
node foaf:Person ”Alice” as all components within the red-
dashed line. Following the methodology used in [29] and [4],
we will demonstrate our anonymisation method on the one-
hop neighbourhood of foaf: Person resources, which is a prime
candidate for anonymisation, since protecting the privacy of
individuals is the most common setting for anonymisation
tasks.

The user needs to specify a list of attributes to consider for
structure anonymisation, all other attributes will be removed
by our method. Furthermore, certain node and edge types can
be manually marked for removal or to be preserved as is, if
sensitive attributes are meant to be published. The remaining
edges form the so-called farget graph. Note that node value
anonymisation, if necessary, is a pre-requisite step to prevent

Zhttps://www.w3.org/RDF/

3http://www.foaf-project.org/

4The one-hop-neighbourhood of a node is sometimes referred as the 1.5
degree network of a node, especially in the context of egocentric networks in
social network analysis

re-identification, and not covered by our structure anonymisa-
tion method. However, it is possible to easily combine both.
Depending on the type of information they describe, edge
connections within the one-hop-neighbourhood of a node v of
a target graph can be grouped into three different categories:

« Attribute connections are those edges that connect a
node (e.g., foaf:Person) to a descriptive characteristic of
this node; the value of which is stored in a Literal.

o Unidirectional connections are directed edges that
connect a node (e.g., foaf:Person) to other entities,
such as a document (foaf:Document) or a project
(foaf:CurrentProject).

« Bidirectional connections are edges that symmetrically
connect nodes (e.g., foaf: Person) with each other, e.g. the
foaf:knows property.

With the list of edge types that exist in the one-hop-
neighbourhood of each node v of a target graph, we can
define the anonymisation criteria in terms of the one-hop-
neighbourhoods of v € N and the three types of connections
described above.

Definition 3. A heterogeneous RDF graph is said to be
k-anonymous if there are at least k identical one-hop-
neighbourhoods in the target graph for each node v € N.
Each group of nodes of size k with identical one-hop-
neighbourhoods are called anonymised neighbourhoods. We
consider that two attributes of the one-hop-neighbourhood of
a pair of nodes x and y, are identical if they are generalised
to the same level. We consider two unidirectional connections
of the one-hop-neighbourhood of a pair of nodes x and y
to be identical if they point exactly to the same resources.
We consider the bidirectional connections of the one-hop
neighbourhood of a pair of nodes x and y to be identical
if their one-hop-neighbourhoods are isomorphic.

We rely on three different steps or sub-algorithms (similar
to [4]) to achieve the anonymisation criteria defined above.
These algorithms are described below.

A. The Neighbourhood Code Extraction Algorithm

This step relies on comparing one-hop-neighbourhoods of
target nodes (e.g., foaf:Person) across the target graph. Thus,
we encode the node neighbourhood information into a more
efficient data structure than the raw RDF graph. Due to its
low indexing complexity (O(n)), a hashtable is well suited
for this representation. The information contained in the one-
hop-neighbourhood of a node v is stored in different ways,
depending on the type of edge connection, as follows:

o For attribute connections, the attributes of each node
are stored as key-value pairs (e.g. foaf:Age="40").

« Regarding unidirectional connections, the resources to
which each unidirectional connection of a node points
to are stored in a list. The type of connection is the
key and the list of resources is the value associated
with it (for example: foaf:CurrentProject= [’Projectl”,
“Project3”, Project7”’]).

https://www.w3.org/RDF/
http://www.foaf-project.org/

wvw. example arg/# Alice T

foaf:Name

www.example.org/#Bob

|
ease,

foaf:has_dis

Fig. 1: Example of a heterogeneous RDF graph using FOAF vocabulary and custom properties

« Bidirectional connections are the most complex case
in our structure anonymisation algorithm. This is due
to the inter-connectivity of the targets through this type
of connections. Multiple isomorphic tests have to be
conducted for each bidirectional connection, to deter-
mine if two graphs are the same. At this time, no
polynomial time algorithm for the general isomorphic
problem [29] is known. For that reason, we need a
better representation of the bidirectional connections of
the one-hop-neighbourhood of the foaf:Person nodes. In
our approach, we utilise the same string representation
of the edges as proposed in and based on [29].
We encode the information of each sub-graph Gy;q;; by
considering only one type of bidirectional connection
across the one-hop-neighbourhood of a node v. Thus, the
one-hop-neighbourhood of two foaf:Person nodes can be
considered isomorphic in terms of that type of bidirec-
tional connections if the generated codes are identical in
structure. To constructed this encoding, we need to first
find the minimum depth-first search (DFS) tree of each
component, before we concatenate it in a list where all
these minimum trees are stored [l
One of our key contributions in terms of implementation
efficiency is the design of an algorithm that simplifies
the search of the minimum DFS tree by dynamically
discarding candidate paths. In the worst case scenario,
which occurs if all the DFS trees in the subgraph fulfil
the criteria, one of the paths is taken randomly, and
the encoding algorithm then becomes O(n!) — which is
the same complexity as the original algorithm proposed
by [4]. However, this particular case only occurs when
all subgraphs are complete, and they then all have the
same encoding; we can then reduce the process to return

5The specific rules on what minimum means and how to concatenate the
codes can be found in [4] and [29]

only one DFS. Figure [2] shows and example of an
encoding of the bidirectional connections of the one-
hop-neighbourhood of a given node v. The first part of
the list representation of each of the edges (first two
numerical elements of the list) is the relevant one for
isomorphic tests. In fact, after anonymising the graph,
each node in the same neighbourhood as v should have
the same structure as v itself (i.e., identical numerical
representation within the encoded dictionary).
Following the terminology of [4]], we refer to the dictionary
encoding of the one-hop-neighbourhood of a node v as the
Full Neighbourhood Code of v (FNHC,).

B. Dissimilarity Computation Algorithm

To obtain the dissimilarity score between each of the nodes,
we use the information stored in the Full Neighbourhood
Code of each node (e.g. a foaf:Person). This measure will
be used later on to build the neighbourhoods of size k.
The dissimilarity between the one-hop-neighbourhood of two
nodes =z and y is computed as the weighted sum of the
dissimilarity of each connection in that neighbourhood:

N
sim(FNHC,, FNHC,) =Y a;xsim;(FNHC,,, FNHC,,)

i=0

ey

where N is the set of connection types present in the one-

hop-neighbourhood, «; is the weight of the dissimilarity of

attribute ¢ (sim;) to the total dissimilarity between the nodes

x and y. For each of the three edge types described above, we
utilise a different type of dissimilarity function:

o The dissimilarity of attribute connections is computed
as the normalised distance of two attributes x; and y;
given a defined hierarchy tree. The dissimilarity ranges
between O (identical) and 1 (reached highest level of
hierarchy).

foaf:knows
foaf:workswith

v {

“foaf:knows™: [
[[e.1,Nene,"C"]],
[[.1,Mene,"0"]],
[[®,1,None, "6"], [1,2,78","a"7], [2,3,747,"F"]. [3,1,"F","8"]]

“foaf workshith”: [

[[®.3,Nene,"F], [1,2,°F","E"], [2,3,7E%,"0"]]

Fig. 2: Encoding Bidirectional Connections of a sample foaf:Person node v

o The dissimilarity of unidirectional connections between
two nodes x and y is based on the number of changes
required for them to become equal. Given a set of Literals
to which each connection points, the dissimilarity is thus
defined as the number of connections of that type that
have to be deleted, so that two nodes x and y are
connected to exactly the same Literals or resources.

o The dissimilarity of bidirectional connections between
two nodes x and y, given the one-hop-neighbourhood, is
determined by the amount of edges one needs to delete so
that one-hop-neighbourhoods of both nodes are identical
(i.e. they become isomorphic).

By computing the similarity of each of the connections us-
ing the corresponding functions described above and applying
the weighted sum provided in Equation (I]), one can compute
the complete dissimilarity between two nodes x and y.

C. The Graph Modification Algorithm

This is the third and final step of our method, which is
heavily based on the ideas presented by [4]], with several modi-
fications to improve the effectiveness and efficiency. The main
goal of this step is to transform the one-hop-neighbourhood
of a group of k given nodes, so that the anonymisation
criteria is fulfilled for all of them. In other words, these
are modified to become identical one-hop-neighbourhoods as
described in Definition [3] We call such a group of nodes
anonymised neighbourhoods or equivalence classes (following
the terminology of k-anonymity).

In the following, we describe how to transform each type
of connection.

« To generalise attribute connections, the attributes of
each of the k nodes are generalised to the value common
to them on the lowest level in the hierarchy tree provided.

« For generalising unidirectional connections, one should
remove edges so that each of the k£ nodes are connected
exactly to the same Literals and resources (via those
unidirectional connections). That is, the same edges as
when calculating the dissimilarity between each of the
unidirectional connections should be deleted. The mo-
tivation of only deleting edges, instead of adding new
edges (or a combination of both approaches) is to not

introduce false information (added edges) in the graph.
As pointed out by [4], moreover, the approach of deleting
edges complies with an open world assumption, which
suggests that missing statements can also be true.

o The same reasoning will apply to the generalisation of
bidirectional connections, which is the most complex
aspect of this step. It relies on the same type of calcu-
lations used when computing the dissimilarity for this
type of connections, as was the case for unidirectional
connections. Therefore, for each node in the k-sized
neighbourhood, one should delete all the necessary edges
so that the one-hop-neighbourhood of each of them is
isomorphic in terms of each of the bidirectional connec-
tions. In the case of dissimilarity, in order to calculate
which edges to be deleted, we make use of the encoded
full neighbourhood codes of each of the bidirectional
connections. In order to decide which edges to delete,
we make several pairwise comparisons between the one-
hop-neighbourhoods of the nodes in the neighbourhood
and update their codes accordingly at every step. In
our method, it is sufficient to take one of the nodes as
reference, and then perform this pairwise comparisons
to every other node twice (i.e. a double-pass). At every
comparison, the one-hop-neighbourhood of the reference
node and the second node under comparison are updated
via edge deletion, so that they are isomorphic. This way,
after the first pass, the reference one-hop-neighbourhood
takes the minimum isomorphic representation. In the
second pass, this structure is then acquired by all the
other nodes. This approach is a major improvement with
respect to the method shown in [4], since they perform
this comparisons k! times. Figure3]illustrates the intuition
behind this idea.

We would like to point out two of the key challenges that

arise when anonymising bidirectional connections.

1) First, when deleting edges during the described double
pass, the edges of other one-hop-neighbourhoods that
are also in the neighbourhood may be affected as well.
This leads to more edges being deleted than necessary,
and thus additional information loss and a lower utility
of the resulting graph. To circumvent this issue, during

Reference one-hop-

\ Original one-hop-neighborhood of a bidirectional connection of k nodes.

neighborhood

<

Reference one-hop-

One-hop-neighborhood of a bidirectional connection of k nodes after the first
round of pairwise comparisons with respect to the reference node.

neighborhood ~__———
e ~.

o

$

<

Reference one-hop-
neighborhood

One-hop-neighborhood of a bidirectional connection of k nodes after two
rounds of pairwise comparisons with respect to the reference node.

P

./

\
\\\;
y .

r/l

\
.

N

\\
l\
|
/l“
// g
\\
|
/.‘
S/
e - P

K.
"o
“e

e

Fig. 3: Illustration of our double pass method in order to generalise the structure of a bidirectional connection of in a
neighbourhood with k& = 4 nodes

2)

the double pass, we actually only store which edges
to delete. They are then only actually deleted when
the algorithm has finished, which reduces the number
of deleted edges. Edge deletion may still cause some
additional edges to be deleted in the neighbourhood, and
therefore, these neighbourhoods might not be isomorphic
anymore. However, since the calculation of which edges
to delete ensures that they are actually isomorphic in
first place, deleting additional edges of the structure of
each of the one-hop-neighbourhoods does not reveal any
additional information. Thus, we can still consider them
isomorphic in terms of the anonymisation goal.

In the same way, deleting edges may affect the one-hop-
neighbourhood of other nodes that are not in the same
neighbourhood as the £ target nodes being anonymised.
There are two different scenarios for this:

a) The one-hop-neighbourhood of non-anonymised nodes
is affected. In this case, one needs to simply update
the one-hop-neighbourhood of those nodes, but leave
everything else as is.

The one-hop-neighbourhood of anonymised nodes is
affected. We can observer that this is the exact same
situation as in a), and we can simply remove those
edges and note that those one-hop-neighbourhoods
are still anonymised — even if they are not exactly
isomorphic anymore.

b)

As we will show in Section [[V] due to these efficiency
improvements, our method is able to deal with larger
and more complex graphs than the earlier approach.
Note that the special cases described above were not
considered by [4]], and in turn, their method leads to larger

information loss.

IV. EVALUATION

TABLE I: Configuration to test overall scalability and runtime
of our algorithm

Number of graphs 81
Number of different graph sizes 23
k 3
Average proportion of bidirectional
connections per node

In this section, we focus on the evaluation of runtime per-
formance of our proposed algorithm. Showing correctness of
the anonymised graph, i.e. that it fulfils a certain k, is actually
a rather trivial problem, and can be verified in polynomial
time. However, as finding an optimal solution is generally
considered an NP-hard problem (cf. e.g. [30] for k-anonymity
of tabular data), runtime and scalability of heuristics to solve
the anonymisation problem are important practical aspect to
evaluate.

For evaluation purposes, we generated a dataset in the same
manner as described by [4]], that is, we fix certain properties
of the graph, for example the overall number of nodes, and the
average number of edges per node. The graph is then randomly
generated to match this configuration H

We will start by analysing the overall scalability and
efficiency of the algorithm. For this purpose, we run multiple
anonymisation rounds in several graphs with increasing sizes
(in terms of nodes), but the same characteristics as in [4],

%The generated graph data will be publicly available on Zenodo after the
blind review process

200000 -

175000 ~

150000 A

125000 A

100000 A

75000 -

Averaged Runtime in Seconds

50000 A

25000 A

5000 10000

o4

15000 20000 25000 30000

Graph size (number of nodes)

Fig. 4: Average runtime for different graph sizes, with £ = 3 and on average three bidirectional connections per node

that is, on average three bidirectional connections per node,
and a target value k 3. Table || shows the parameters
considered for this evaluation. Figure [] depicts the runtime
results averaged by the number of nodes (of type foaf:Person
in this setting).

As expected, the runtime increases with the size of the
graphs, since more neighbourhood structures need to be en-
coded, more similarity computations take place and more
generalisations of nodes are performed, regardless of k and
the average of bidirectional connections . We also observe a
significant improvement with respect to the limit described
by [4]. While they mention a limit for their algorithm for
graphs with 256 nodes, 3 bidirectional connections per node
on average and k equal to 3, we are able to successfully
anonymise graphs with up to 32,151 nodes. However, this
is not a hard upper limit for our solution, since due to our
improvements on the neighbourhood encodings, we do not
encounter memory issues as in [4f]. The graph with 32,151
nodes on our hardware took around two days to anonymise,
on a server-grade CPU from 2007[] used in single thread mode.
With more recent CPUs, we are confident that larger graphs
could be anonymised with our algorithm in reasonable time.

In order to get a better insight on the influence of the
properties of the graph and the anonymisation on the runtime,
we extended our search over hyper-parameters: we varied the
average number of connections, and k, for two graph sizes,
namely with 256 and 512 nodes.The results for graphs of size
256 are shown in Table |lI| — the results for graph size of 512

"Intel(R) Xeon(R) CPU E5-2697 v3 @ 2.60GHz

are almost identical, and thus omitted. We can observe two
main patterns:

o For a fixed k, the larger the average of bidirectional
nodes per person, the longer the average runtime of
our anonymisation algorithm. The reason for this is the
influence of the density of links for the anonymisation of
the structure.

o In general, for a fixed average number of bidirectional
connections per person, the larger the k, the smaller
the runtime. This means that it is faster to compute few
generalisations with large neighbourhoods (large k) than
many generalisations with small neighbourhoods (small
k).

Overall, the influence of the average bidirectional connec-
tions per person plays a more important role than the parameter
k in terms of runtime, as we can also see from Figure El,
where the influence of the number of connections shows an
exponential growth.

Since runtime may become an issue for very large graphs
(as shown in Figure {] a graph with 32,151 nodes takes around
2 days to be anonymised), we explored the possibility of
paralellising parts of our algorithm. However, we empirically
discovered that generalisation takes on average 85% of the
total runtime, but this step is not parallelisable due to the
influence that edge deletion has on neighbourhoods.

Finally, we also explored the influence of different settings
on edge deletion during the generalisation phase. In general,
bigger graphs have a higher likelihood of common structures
within and hence, result in a smaller number of deleted
bidirectional connections. A smaller k (Figure @, as well as

TABLE II: Average runtime in seconds for different combinations of k and average number of bidirectional connections in
graphs of size 256 nodes. N.b.: seconds are rounded to integers for clarity

K

3 5 7 9 11 13 15 17 19

3 14 9 7 6 5 5 4 4 4

4 15 10 8 7 6 6 6 6 5

5 16 12 10 9 9 8 8 7 7
6 19 15 13 12 12 11 11 10 10
Average 7 22 19 18 16 16 15 15 14 14
Bidirec ti%mal 8 28 26 25 24 22 22 21 21 20
Connections 9 36 36 36 34 34 32 31 30 29
er Person 10 | 51 51 50 50 47 46 44 43 42
P 11 | 70 74 74 72 69 66 65 62 58
12 | 102 | 110 | 108 | 104 | 99 96 91 88 82
13 | 126 | 132 | 129 | 125 | 120 | 114 | 107 | 100 | 96

14 | 205 | 201 | 194 | 185 | 176 | 168 | 158 | 148 | 138
15 | 357 | 352 | 322 | 308 | 291 | 270 | 258 | 238 | 219
350
350
£ £
] 2
0 T 0 T T v v v
- 6 8 10 12 14 16 18 4 6 8 10 12 14 16
K Average Bidirectional Connections
(a) (b)

Fig. 5: Average runtime in seconds for graphs of size 256 with (a) different £ and on average three bidirectional connections
per node, and (b) different average connections per node, for a fixed k = 3

a higher density of bidirectional connections, also lead to a
smaller number of deleted edges (Figure [7).

X — k=3
45 k=5
2 40
S
.G
© ".éu 35
$8E
e [T}
5aE P
B S
& Tg pL
b=}
220
15
0 2000 4000 6000 8000 10000
Graph Size

Fig. 6: Deletion of bidirectional connections for different graph
sizes and k=3 (blue) and k=5 (orange)

V. CONCLUSIONS

Anonymisation of graph data differs from relational data —
besides the content of nodes (and potentially also the edges,
e.g. labels attached to them), also the structure of graphs can
become information that an attacker can utilise to perform.

45
—— Avg. Bidirectional COnnections = 3
Avg. Bidirectional COnnections = 4
40 - Avg. Bidirectional COnnections = 5
@
S
% E 5
£
g5
€8 x
B
£
20
__‘-"“‘-x-.______‘___
15
0 2000 4000 6000 8000 10000
Graph Size

Fig. 7: Deletion of bidirectional connections for different graph
sizes and average bidirectional connections equal to 3 (blue),
4 (orange) and 5 (green)

For example, in a re-identification attack, knowing how many
connections of a certain type a certain person has to others,
might allow to uniquely identify them.

In this paper, we have thus presented an improved algorithm
for anonymising the structure of graphs. We extended previous
work by (i) allowing heterogeneous graph structures with
multiple types of nodes and edges, and (ii) providing an

efficient implementation with several modifications to the
original algorithm, to scale up the size of problems that can
be tackled. As we demonstrated on graphs that we generated
analogous to the approaches in previous works, we are able to
process graphs that are at least two orders of magnitude larger
than earlier work.

Future work will focus on evaluating our approach in more
diverse settings, including benchmark datasets, and measure
the effects of the anonymisation on the utility.

[1]

[2]

[3]
[4]

[5]

[6]

[8]

[9]

[10]

[11]

(12]

REFERENCES

P. Samarati, “Protecting respondents identities in microdata release,”
IEEE Transactions on Knowledge and Data Engineering, vol. 13, no. 6,
pp. 1010-1027, 2001.

C. Dwork, “Differential Privacy,” in Automata, Languages and Pro-
gramming, ser. Lecture Notes in Computer Science, vol. 4052. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2006, pp. 1-12.

T. Dalenius, “Finding a needle in a haystack or identifying anonymous
census records,” Journal of official statistics, vol. 2, no. 3, 1986.

B. Heitmann, F. Hermsen, and Decker, Stefan, “k - RDF-Neighbourhood
Anonymity: Combining Structural and Attribute-based Anonymisation
for Linked Data,” in Proceedings of the 5th Workshop on Society,
Privacy and the Semantic Web - Policy and Technology (PrivOn)
co-located with 16th International Semantic Web Conference (ISWC),
2017. [Online]. Available: http://ceur-ws.org/Vol-1951/PrivOn2017_
paper_3.pdf

G. Alamin Requena, R. Mayer, and A. Ekelhart, “Anonymisation of
Heterogeneous Graphs with Multiple Edge Types,” in Database and
Expert Systems Applications, vol. 13426. Cham: Springer International
Publishing, 2022, pp. 130-135.

A. Singhal. (2012) Introducing the knowledge graph: things, not
strings. 2020-11-13. [Online]. Available: https://www.blog.google/
products/search/introducing-knowledge- graph- things-not/

A. Hogan, E. Blomqvist, M. Cochez, C. D’amato, G. D. Melo, C. Gutier-
rez, S. Kirrane, J. E. L. Gayo, R. Navigli, S. Neumaier, A.-C. N.
Ngomo, A. Polleres, S. M. Rashid, A. Rula, L. Schmelzeisen, J. Sequeda,
S. Staab, and A. Zimmermann, “Knowledge graphs,” ACM Computing
Surveys, vol. 54, no. 4, July 2021.

N. Noy, Y. Gao, A. Jain, A. Narayanan, A. Patterson, and J. Taylor,
“Industry-Scale Knowledge Graphs: Lessons and Challenges,” Commu-
nications of the ACM, vol. 62, no. 8, p. 36-43, July 2019.

G. Hiibscher, V. Geist, D. Auer, A. Ekelhart, R. Mayer, S. Nadschlédger,
and J. Kiing, “Graph-based managing and mining of processes and data
in the domain of intellectual property,” Information Systems, May 2022.
S. Ji, P. Mittal, and R. Beyah, “Graph Data Anonymization, De-
Anonymization Attacks, and De-Anonymizability Quantification: A Sur-
vey,” IEEE Communications Surveys & Tutorials, vol. 19, no. 2, pp.
1305-1326, 2017.

X. Ying and X. Wu, “Randomizing Social Networks: a Spectrum
Preserving Approach,” in Proceedings of the SIAM International Confer-
ence on Data Mining. Society for Industrial and Applied Mathematics,
2008, pp. 739-750.

——, “On link privacy in randomizing social networks,” Knowledge and
Information Systems, vol. 28, no. 3, pp. 645-663, 2011.

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

[28]

[29]

[30]

L. Sweeney, “K-anonymity: A Model for Protecting Privacy,” Interna-
tional Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,
vol. 10, no. 5, pp. 557-570, 2002.

T. Feder, S. U. Nabar, and E. Terzi, “Anonymizing Graphs,”
arXiv:0810.5578 [cs], 2008. [Online]. Available: http://arxiv.org/abs/
0810.5578

K. Liu and E. Terzi, “Towards identity anonymization on graphs,” in
Proceedings of the SIGMOD International Conference on Management
of data (SIGMOD). Vancouver, Canada: ACM Press, 2008, p. 93.

J. Casas-Roma, J. Salas, F. D. Malliaros, and M. Vazirgiannis, “k-Degree
anonymity on directed networks,” Knowledge and Information Systems,
vol. 61, no. 3, pp. 1743-1768, 2019.

L. Zou, L. Chen, and M. T. Ozsu, “k-automorphism: a general frame-
work for privacy preserving network publication,” Proceedings of the

VLDB Endowment, vol. 2, no. 1, pp. 946-957, 2009.
J. Cheng, A. W.-c. Fu, and J. Liu, “K-isomorphism: privacy preserving

network publication against structural attacks,” in Proceedings of the
2010 ACM SIGMOD International Conference on Management of data.
Indianapolis Indiana USA: ACM, 2010, pp. 459-470.

E. Zheleva and L. Getoor, “Preserving the Privacy of Sensitive Relation-
ships in Graph Data,” in Privacy, Security, and Trust in KDD. Berlin,
Heidelberg: Springer, 2008, pp. 153-171.

A. Campan and T. M. Truta, “Data and structural k-anonymity in social
networks,” in International Workshop on Privacy, Security, and Trust in
KDD, 2008, pp. 33-54.

T. Tassa and D. J. Cohen, “Anonymization of Centralized and Distributed
Social Networks by Sequential Clustering,” [EEE Transactions on
Knowledge and Data Engineering, vol. 25, no. 2, pp. 311-324, 2013.
D. Mohapatra and M. R. Patra, “Anonymization of attributed social
graph using anatomy based clustering,” Multimedia Tools and Appli-
cations, vol. 78, no. 18, pp. 25455-25486, 2019.

R. Chen, B. C. M. Fung, P. S. Yu, and B. C. Desai, “Correlated network
data publication via differential privacy,” The VLDB Journal, vol. 23,
no. 4, pp. 653-676, 2014.

Y. Wang and X. Wu, “Preserving Differential Privacy in Degree-
Correlation Based Graph Generation,” Trans. Data Privacy, vol. 6, no. 2,
pp. 127-145, 2013, place: Bellaterra, Catalonia, ESP Publisher: IIIA-
CSIC.

Y. Miille, C. Clifton, and K. Bohm, “Privacy-Integrated Graph Clustering
Through Differential Privacy,” in Proceedings of the Workshops of
the EDBT/ICDT 2015 Joint Conference, Brussels, Belgium, 2015, pp.
247-254. [Online]. Available: http://ceur-ws.org/Vol- 1330/paper-39.pdf]
F. Bonchi, A. Gionis, and T. Tassa, “Identity obfuscation in graphs
through the information theoretic lens,” in 27th International Conference
on Data Engineering. Hannover, Germany: IEEE, 2011, pp. 924-935.
P. Mittal, C. Papamanthou, and D. X. Song, “Preserving Link Privacy
in Social Network Based Systems,” in 20th Annual Network and
Distributed System Security Symposium (NDSS). The Internet Society,
2013.

Z. Hu, Y. Dong, K. Wang, and Y. Sun, “Heterogeneous Graph Trans-
former,” in Proceedings of The Web Conference 2020. Taipei Taiwan:
ACM, Apr. 2020, pp. 2704-2710.

B. Zhou and J. Pei, “Preserving Privacy in Social Networks Against
Neighborhood Attacks,” in 24th International Conference on Data
Engineering. Cancun, Mexico: IEEE, 2008, pp. 506-515.

A. Meyerson and R. Williams, “On the complexity of optimal K-
anonymity,” in Proceedings of the 23rd ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems (PODS). Paris,
France: ACM Press, 2004, p. 223.

http://ceur-ws.org/Vol-1951/PrivOn2017_paper_3.pdf
http://ceur-ws.org/Vol-1951/PrivOn2017_paper_3.pdf
https://www.blog.google/products/search/introducing-knowledge-graph-things-not/
https://www.blog.google/products/search/introducing-knowledge-graph-things-not/
http://arxiv.org/abs/0810.5578
http://arxiv.org/abs/0810.5578
http://ceur-ws.org/Vol-1330/paper-39.pdf
https://www.researchgate.net/publication/367455450

	Introduction
	Related Work
	Method
	The Neighbourhood Code Extraction Algorithm
	Dissimilarity Computation Algorithm
	The Graph Modification Algorithm

	Evaluation
	Conclusions
	References

