
Differentially Private Federated Learning:
Privacy and Utility Analysis of

Output Perturbation and DP-SGD.
Anastasia Pustozerova

SBA Research, Vienna, Austria
apustozerova@sba-research.org

Rudolf Mayer
SBA Research, Vienna, Austria

rmayer@sba-research.org,

Abstract—Federated learning is a technique that enables multi-
ple parties to train a machine learning model collaboratively from
data already residing in different locations, e.g. data silos. Instead
of aggregating the private data from the silos to a central place,
federated learning requires only exchanging and aggregating the
machine learning models. These models are locally trained by the
parties on their private data, which thus never leaves the silo.
However, the models may still leak sensitive information about
the training data in the form of e.g. membership disclosure.
To mitigate these residual privacy risks in federated learning,
one has to use additional defence techniques such as Differential
Privacy (DP), which introduces noise into the training data or the
model. Differential Privacy provides a mathematical definition of
privacy and can be applied in machine learning via different
perturbation mechanisms. This work focuses on the analysis
of Differential Privacy in federated learning through (i) output
perturbation of the trained machine learning models and (ii)
a differentially-private form of stochastic gradient descent (DP-
SGD). We consider these two approaches in various settings and
analyse their performance in terms of model utility and achieved
privacy. To evaluate a model’s privacy risk, we empirically
measure the success rate of a membership inference attack.
We observe that DP-SGD allows for a better trade-off between
privacy and utility in most of the considered settings. In some
settings, however, output perturbation is able to provide a better
or similar privacy-utility trade-off and at the same time better
communication and computational efficiency.

Index Terms—Federated Learning, Differential Privacy, Out-
put Perturbation, DP-SGD

I. INTRODUCTION

Data used to train machine learning (ML) models is often
distributed among different entities, e.g. at various health-
care providers, mobile phones or IoT devices and has to
be collected at a centralised place for processing. In some
scenarios, aggregating data in one place may not be possible
due to regulatory or technical constraints, or the desire of the
data owners to preserve the privacy of their data. Federated
learning (FL) enables the training of machine learning models
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on distributed data without the need for sharing sensitive
training data with other parties. In FL, the participants (also
called clients or nodes) train models locally on their data
and share only the models’ updates with an aggregator. The
aggregator (or federated server) receives all locally trained
machine learning models and averages them into a global
model, using e.g. the federated averaging algorithm [1].

While enhancing clients’ data privacy is one of the main
motivations behind federated learning, there are still risks that
might threaten the privacy of this data. The models, which
are trained on private data and shared in FL, represent an
abstraction of the training data and, as was shown in several
works, are prone to data leakages [2]. Malicious actors with
access to models trained in FL can perform attacks to infer
sensitive information about the training data [3]. These attacks
include e.g. membership inference [4], or data reconstruction
attacks like model inversion [5], or a similar attack through
the gradient leakage [6]. Considering these residual privacy
risks in federated learning and to guarantee stronger privacy,
one should employ additional mitigation mechanisms. Popular
privacy-enhancing techniques in federated learning include
cryptographic approaches like Homomorphic Encryption (HE)
or Secure Multi-Party Computation (SMPC), and Differential
Privacy (DP) (see Section II for details). One can use either of
these three approaches or a combination of them, to mitigate
different privacy risks in federated learning.

In this work, we focus on the analysis of Differential
Privacy, as this technique can mitigate privacy risks caused
by various types of attackers (see Section II). By introducing
noise to the locally trained models, DP allows clients to protect
their private data from leaking information through local and
global models in FL, therefore mitigating privacy risks coming
not only from malicious clients, for which HE and SMPC can
be used as a defence too, but also from the malicious users of
intermediate and final global models.

One can use DP methods at different stages of the machine
learning process, e.g. a differentially-private form of stochastic
gradient descent (DP-SGD), output or objective perturbation
(see Section III). DP-SGD [7] is arguably the most popular
approach for applying DP in machine learning, as it can be
used on the wide range of machine learning models that
are trained with the SGD optimiser, e.g. neural networks.



Meanwhile, output perturbation [8] is less explored, as its
application is limited to machine learning models with known
sensitivity bound e.g. logistic regression or support vector ma-
chine (SVM) (see Section IV). However, output perturbation is
more efficient and easier to implement, as it requires adding
noise to the trained models, while in DP-SGD the noise is
generated and added during training at each iteration.

After analysing existing works and identifying the gaps in
the current research of DP in federated learning, we focus
on achieving DP through output perturbation in FL, and
contrast it to the DP-SGD algorithm applied in FL. We analyse
which of the considered approaches results in a better privacy-
utility trade-off. We perform a Membership Inference Attack
(MIA) to empirically measure the privacy loss of models
shared in FL, and analyse how it corresponds to the privacy
leakage parameter ϵ used in DP. We present a comprehensive
experimental analysis of output DP and DP-SGD in various
federated settings and then compare these two approaches in
terms of:

• Effectiveness: utility of the resulting global model in FL;
• Communication efficiency: the number of FL iterations

(rounds of models communication) required to train an
effective global model;

• Privacy leakage: leakage of clients’ data through locally
trained models in FL, measured by membership inference
attack accuracy on the models shared in FL.

Conducting a comprehensive experimental evaluation of
output perturbation and DP-SGD in various federated learning
settings, we find that:

• DP-SGD exhibits a better trade-off between privacy and
utility than output perturbation in most of the considered
FL settings. However, for one of the considered datasets,
when data is equally distributed among the clients in FL,
output perturbation provides a better or similar privacy-
utility trade-off as DP-SGD, while requiring fewer FL
iterations for the global model to converge. Being more
communication and computationally efficient than DP-
SGD, output perturbation would be preferable to use in
such cases.

• Local models tend to leak more information about train-
ing data in the first FL iterations. Therefore, the recom-
mendation is to protect them better by using smaller ϵ
(privacy budget parameter) in the first few iterations of
federated learning.

• Both output perturbation and DP-SGD have a larger
impact on the privacy and utility of the models with the
larger number of nodes in the FL settings (more than
eight nodes).

• The same ϵ leads to different empirical privacy leakage
for output perturbation compared to DP-SGD and also
depends on the dataset and FL setting. There is no
universally ”good” epsilon – the privacy budget parameter
has to be tuned for specific machine learning tasks,
datasets and a used DP method.

The remainder of this paper is organised as follows. Sec-

tion II defines the threat model and considers mitigation
strategies in federated learning. In Section III, we discuss
different techniques for achieving DP in machine learning,
and existing works on DP in federated learning. Section IV
describes the DP mechanisms analysed in the current work. In
Section V, we detail our experimental setup for reproducibility
purposes. before we discuss and analyse the main findings
from the extensive experimental evaluation of DP in federated
learning in Section VI. We provide conclusions and an outlook
on future work in Section VII.

II. THREAT MODEL AND MITIGATION STRATEGIES IN
FEDERATED LEARNING

We distinguish three different attackers in federated learn-
ing, based on their goals and knowledge:

1) Malicious server (or other attackers obtaining that
access) having access to the local models. The attack
targets are thus the local models, and the goal for an
attacker in this scenario is to infer sensitive information
about training data from the local models, which are
shared in federated learning. Therefore, the privacy of
clients’ data in federated learning might be at risk.

2) Malicious client (or other users) having access to the
intermediate global models. The attack target is a global
model in its intermediate (after each FL iteration) and
final state. The goal of an attacker is to infer sensitive in-
formation about the training data of other FL participants
from the global model. An attacker can have knowledge
about training parameters and have white-box access to
the global model and some of the local models.

3) Malicious users of a final global model. The attack
target is the final (resulting) global model, which is
trained with federated learning and can be shared with
other parties for usage. In this scenario, the goal of the
attack is to infer information from the final global model.
An attacker can have white-box or black-box access to
the target model.

All considered attackers in federated learning target the
same goal – inference of the sensitive information about
clients’ training data. The attackers however differ in their
knowledge and model access. An attacker that has only access
to the global model has fewer chances to perform successful
MIA, as the global model is an averaged combination of local
models. A malicious server, on the other hand, is the most
dangerous attacker, as they have access to the local models
directly.

To reduce privacy risks in federated learning, one can apply
some or a combination of the following, frequently used
mitigation strategies:

a) Homomorphic encryption: (HE) [9]. In federated
learning, clients can encrypt their models before sending
them to the aggregation server. The server then performs
computations on this encrypted data (e.g. federated averaging)
without being able to decrypt it. The server then sends the
output of the computation, i.e. the global model, to the clients –
the only parties that can decrypt and use the output. Therefore,



HE can be used to mitigate privacy risks in the case of a
malicious server. The clients need to agree on key exchange
to facilitate encryption of the local models’ weights. One of
the main problems with applying HE is the computational
overhead that is caused by the encryption and decryption
processes. This can prohibitively reduce the efficiency of the
whole federated learning training, especially with large neural
networks [10].

b) Secure multi-party computation: (SMPC) [11] can be
used in federated learning to securely compute the average
of the models shared during federated training, providing
protection against malicious server, similar to HE. SMPC
is a cryptographic protocol that allows participants to jointly
compute a public function (e.g. averaging) over their private
data (local models’ weights). In SMPC, the model weights
are not accessible to any party, besides their owner. The main
drawback of SMPC is low efficiency, as it requires a significant
amount of additional communication between the clients.

c) Differential Privacy: (DP) provides a mathematical
definition of privacy, by introducing a level of uncertainty into
the model. In machine learning, Differential Privacy can be
applied by adding noise e.g. to the training data, trained model,
gradients or objective function (for more explanation about DP
see Section IV). DP can be applied before, during, or after
the training to ensure the privacy of the resulting output (the
model). This property makes DP a versatile solution that can
be used to secure from different types of attackers including
the malicious server, client and user of the final global
model. In fact, DP is the only of our discussed mitigation
techniques that can be used to defend against inference attacks
on the output of the FL training process, i.e. global model.
Nevertheless, one of the main drawbacks of DP is its effect
on machine learning model effectiveness. The noise added in
Differential Privacy inevitably causes a drop in the utility of
the model. Therefore, when applying Differential Privacy, one
always has to acknowledge the trade-off between the model’s
privacy and utility.

In this work, we focus on the DP approach, as it allows
for mitigating against different types of attackers. Differential
Privacy also enables quantifying privacy loss by a privacy
budget parameter - ϵ. The lower the ϵ, the less the leakage
from a differentially private machine learning model. There-
fore, the party training and contributing a machine learning
model in federated learning has an instrument to calibrate the
privacy level of the model that is acceptable to them.

III. RELATED WORK

Differential Privacy (DP) provides a formal mathematical
definition of privacy and de facto became a standard for
analysing privacy leakage [12]. DP was defined by Dwork et
al. [13] to secure a database containing sensitive information,
while being able to query statistics about the data. They
introduced a privacy budget parameter ϵ which one can use
to regulate the privacy level. Further, they showed several
critical properties of DP, such as sequential composition [14]
(see Section IV-C for more details). They also introduced the

Laplace and Gaussian mechanisms, enabling the calculation
of added noise in DP [14].

One of the first to apply DP mechanisms in machine
learning were Chaudhuri et al. [15]. They presented output
perturbation for training a privacy-preserving regularised Lo-
gistic Regression classifier. The approach is based on the
sensitivity method from [13]. It allows adding noise to a
trained Logistic Regression model and guarantees that it is
differentially private. Moreover, they present a new algorithm
to train privacy-preserving classifiers - objective perturbation.
In objective perturbation, the noise is added to the objective
function during training. Later, Chaudhuri et al. [8] extend
their work and show how output perturbation and objective
perturbation can be applied to regularised Empirical Risk
Minimisation and Support Vector Machine. For classifiers
using stochastic gradient descent (SGD) to optimise a loss
function, Song et al. [16] introduced the differentially private
stochastic gradient descent (DP-SGD). Later, Abadi et al.
[7] extended their approach and suggested a new method of
privacy budget accounting, which allowed for reducing the
amount of noise added in DP. DP-SGD became a widely
used approach to train differentially private machine learning
models and was implemented in many privacy libraries [12].

In federated learning, DP can be applied at different stages
of the training or communication, depending on the require-
ments of data models and a threat model:

• Central Differential Privacy is applied when users trust
the data aggregator, which in turn applies DP only on
the global model to protect data privacy when the global
model is shared for public usage.

• Local Differential Privacy [17] refers to the case when
an aggregator cannot be trusted and each party wants
to protect their data (local models) before sending it
to the aggregator (e.g. performing input perturbation or
training of differentially-private local models). As local
DP is stricter than central DP, it usually results in a more
significant drop in the utility of the model. Truex et al.
[18] consider local DP in federated learning with neural
networks and suggest a novel approach allowing clients in
FL to train complex models. They, however, achieve only
Condensed Local Differential Privacy (CLDP), which is
a relaxation of ϵ-DP. The approach is based on two steps:
perturbation of complex models’ parameters and selective
sharing of these parameters at different FL iterations.
Sun et al. [19] propose a mechanism to achieve local
DP when training neural networks in federated learning.
The method is based on adapting to the different model
weights’ ranges and parameter shuffling to make it harder
to find out from which client the updates came to the
aggregator.

• Distributed Differential Privacy aims to achieve the
utility of central DP, but without having to trust the
central aggregator. Distributed DP can be implemented
by using e.g. secure aggregation protocols like SMPC or
Homomorphic Encryption to protect the confidentiality
of the model parameters from the aggregator. At the



same time, clients can apply local DP in a manner that
after aggregation the global model will have the same
amount of noise as in central DP. In [20], the authors
suggested a differentially private FL system which allows
achieving distributed DP, when the sum of the clients’
local models is a DP function, and original local models
are protected by secure aggregation protocol. Jarin et al.
[21] use SMPC to secure local models and add DP noise
to the global model to secure it from the inference attacks
of malicious clients.

• Hybrid Differential Privacy [22] considers scenarios
when different clients have different privacy requirements
or restrictions: while some of them may desire to have
local DP guarantees, for others central DP or no DP at
all is a viable option. In this case, the utility of the global
model can be significantly improved.

In [23], the authors introduced DP-Federated Averaging and
DP-Federated SGD algorithms based on the idea from DP-
SGD suggested by [7]. Randomly sampling clients at each FL
iteration allows using the moment accountant method from
[7] (as randomly sampling instances) to provide a tighter
bound on the privacy loss for the whole federated learning
computation. The clients in FL locally train the model using
DP-SGD and send differentially private gradients to the server
for aggregation. In the experimental evaluation, they show that
given a sufficiently large number of clients in FL, DP does not
result in significant utility loss, but rather comes at the cost of
increased computation.

Jarin et al. [24] provide an analysis of Differential Privacy
in a centralised setting, considering input perturbation, output
perturbation, objective perturbation, gradient perturbation and
prediction perturbation approaches. Following their work, we
provide a comprehensive analysis of Differential Privacy in
a federated learning setting. We consider output and gradient
perturbation approaches for achieving local differential privacy
in different settings, including non-independent and identically
distributed (non-IID) data. Many related works (e.g. [18], [19],
[23]) focus on measuring only the utility loss when applying
DP in FL and try to optimise the privacy-utility trade-off where
privacy is defined by the ϵ parameter. In our work, we also
consider the empirical privacy loss measured by the success
rate of a membership inference attack. We show that the same
values of ϵ can correspond to very different empirical privacy
risks, depending on the dataset and model characteristics. By
conducting an extensive experimental evaluation, we assess
which DP technique provides a better privacy-utility trade-off
in federated learning.

IV. DIFFERENTIAL PRIVACY

Consider a function f mapping a database to reals f : D →
R. In machine learning, that function represents a machine
learning algorithm. Dwork et al. [13] proved that the privacy
of the database can be preserved by adding noise according to
the sensitivity of the function f . Essentially, the sensitivity of
f denotes the maximum possible impact on the output of the

function f , caused by removing or adding any single instance
to the database.

A. Differential Privacy via Output Perturbation

Output perturbation (short: Output DP) refers to the method
of modifying an already trained model’s weights (θ). To get
a differentially private model, noise is added to this trained
model: θdp = θ + noise. We use the Gaussian mechanism
[14] to add noise sampled from a Gaussian distribution. The
Gaussian mechanism guarantees (ϵ, δ)-Differential Privacy,
which is a relaxation of ϵ-DP, where δ is a parameter that
controls the strength of relaxation. In the Gaussian mechanism,
the noise is sampled from a normal distribution N(0, σ2),
where σ = S(f ; 2)

√
2ln(1.25/δ)/ϵ [14], S(f ; 2) denoting

the l2−sensitivity of the model. Chaudhuri et al. [15] proved
that the sensitivity of Logistic Regression with a regularisation
parameter λ is at most 2

nλ , where n is the number of
samples in the database. This allows the development of a
privacy-preserving Logistic Regression algorithm based on the
sensitivity approach. Finding the bound to the sensitivity is
only possible for simpler models, as more complex models
have complex relations between input and output [25].

B. Differentially Private Stochastic Gradient Decent

Differentially Private Stochastic Gradient Decent (DP-SGD)
[7] allows training a differentially private machine learning
model by injecting noise during the training. DP-SGD adds
two additional steps to the original mini-batch SGD algorithm:

1) When computing the gradient for the mini-batch of
samples from the original dataset, clip the l2 norm of
each per-example gradient g(xi), where xi is an instance
from the selected mini-batch and C is a gradient norm
bound:

g(xi)← g(xi)/max(1,
||g(xi)||2

C
)

2) Add noise to the aggregated gradient of the batch:

g ← 1

L
(
∑
i

g(xi) +N(0, σ2C2I)),

where L is a mini batch size, I is an identity matrix and
σ is a noise scale. Compute the gradient update based
on the noised gradient g:

θt+1 ← θt − αg,

where α is the learning rate and t is the iteration number.
DP-SGD is a widely used approach to achieve Differential

Privacy for machine learning models, as it, unlike output DP,
does not require knowledge of the model sensitivity.

C. Parallel and Sequential compositions

DP-SGD is a composition of t Gaussian mechanisms, which
makes it (ϵ, δ)-differentially private. Composition is an impor-
tant property of Differential Privacy. Sequential Composition
guarantees that the application of multiple DP mechanisms
on the same database is still differentially private [14]. For



the combination of several (ϵi, δi)-DP mechanisms applied on
the same dataset, the privacy loss ϵ is calculated as the sum
of privacy losses of each (ϵi, δi)-DP mechanism: ϵ =

∑
i ϵi

and δ =
∑

i δi. DP-SGD, for example, uses the sequential
composition property to guarantee Differential Privacy and
compute the privacy loss of SGD after multiple iterations.

Parallel composition allows computing the privacy loss of
the DP mechanisms applied on disjoint datasets. The Privacy
loss of a combination of several (ϵi, δi)-DP mechanisms, ap-
plied on disjoint datasets, is the maximal privacy loss from all
the (ϵi, δi)-DP mechanisms: ϵ = max(ϵi) and δ = max(δi).
Parallel composition allows computing the privacy loss in
federated learning when performing federated averaging after
the first federated learning iteration. The privacy loss for the
global model after the first aggregation is equal to the highest
privacy loss out of all local models. However, as of the second
iteration of federated learning, local models are trained based
on the global model, one cannot assume the independence of
the local models. Therefore, applying parallel composition is
no longer possible.

D. Privacy Budget in Federated Learning

In federated learning, we use the sequential composition
theorem to calculate the privacy loss for the local models after
several federated learning iterations. In our case, we consider
the clients to have the same privacy loss, therefore, the global
model is also (ϵi, δi)-differentially private due to the parallel
composition. The clients get the global model and proceed
to optimise it on the local data, applying again (ϵi, δi)-DP
mechanisms.

V. EXPERIMENTAL SETUP

To ensure the reproducibility of our work, we provide a
thorough description of the experimental setup, the datasets
preprocessing and the source code1.

A. Datasets

For the experimental evaluation, we use two datasets:
Purchase-100 (Purchase) dataset is frequently used in

works carrying out a membership inference attack, as it
was introduced by Shokri et al. in the MIA-defining paper
[4]. We utilise the preprocessed version of the dataset2 (for
the preprocessing steps and the original data, see [4]). The
preprocessed version of the dataset contains almost 200K
samples, representing customers, where 600 binary attributes
describe whether they were buying a specific product or not.
The classification task is to determine the purchase behaviour
group for each customer. There are 100 different groups (i.e.
100 classes in a classification task). Similar to the experi-
ment setup by [4], for our empirical evaluation, we use 10K
randomly selected samples for training, 2K for validation
(hyperparameters tuning), 10K for testing and the rest for
building shadow models for MIA. Using Logistic Regression,

1https://github.com/sbaresearch/Differential Privacy in Federated
Learning

2https://www.comp.nus.edu.sg/∼reza/files/datasets.html

we achieve an accuracy score of 0.56 with a learning rate of
0.001, l2-regularisation of 1e− 4 and 50 iterations. Shokri et
al. [4] achieve an accuracy of 0.67 with neural network and
0.504 using the Amazon ML-as-a-service platform.

LendingClub-Loan (Loan) dataset was used in a re-
cent work evaluating Differential Privacy approaches in ma-
chine learning in a centralised setting [24]. We obtain the
LendingClub-Loan dataset from Kagle3 and preprocess the
dataset using the Juypter notebook from the [24]. The dataset
contains information about borrowers and the loans they
want to take. The classification task is to determine one of
the six risk groups, based on which the bank defines the
interest rate for the client. The full dataset contains 100K
samples. To be in line with the Purchase dataset, we also use
randomly selected 10K samples for training, 2K for validation
(hyperparameters tuning), 10K for testing and the rest for
building shadow models for MIA. The baseline accuracy score
for the centralised setting is 0.86, with a learning rate of 0.01,
l2-regularisation of 1e − 6 and 200 iterations. In [24], the
authors do not report accuracy, but only utility loss, however
from their code available on GitHub, we find that our model
achieves almost 10% higher accuracy than in [24].

B. Differential Privacy

To find optimal hyper-parameters in the setting with DP,
we use grid search and find that in order to achieve higher
effectiveness of the global model when using DP-SGD, each
client in federated learning has to train the model locally with a
larger number of epochs, compared to no DP case. To achieve
a centralised baseline accuracy score for the Purchase dataset,
we need to increase the number of iterations from 50 (without
DP) to 200. This happens due to the dependency of the amount
of noise on the number of iterations in SGD. To achieve the
best performance with DP-SGD we also tuned the mini-batch
size and for final evaluation used 20 samples for both Purchase
and Loan datasets. After the grid search, the norm bound in
DP-SGD was set to 2 for the Purchase dataset and 10 for the
Loan dataset. For output Differential Privacy, we tuned the l2-
regularisation parameter: for both Purchase and Loan datasets,
we use l2-regularisation of 1e − 4 when applying output DP.
The recommendation in literature for the parameter δ is to use
δ << 1/n, where n is the number of samples [12]. As both
of our datasets contain 10K samples, we use δ = 1e− 5.

C. Membership Inference Attack

The Membership Inference Attack (MIA) is widely used in
privacy-preserving machine learning research to estimate (and
compare) privacy leakage. The goal of an attacker performing
MIA is to infer whether some particular sample was used
for training the target machine learning model. Therefore, the
membership of a sample in the training set is the sensitive
information that an attacker is aiming to infer, from having
access to the target model.

We use attack models based on shadow models as described
in [4]. To train different attack models, we vary the number of

3https://www.kaggle.com/datasets/wordsforthewise/lending-club

https://github.com/sbaresearch/Differential_Privacy_in_Federated_Learning
https://github.com/sbaresearch/Differential_Privacy_in_Federated_Learning
https://www.comp.nus.edu.sg/~reza/files/datasets.html
https://www.kaggle.com/datasets/wordsforthewise/lending-club


shadow models (1,5,10), shadow models training set size (10K,
15K, 20K) and attack models hyper-parameters (learning rate:
[0.01, 0.001, 0.0001] and epochs number: [100,200,500]).
From all the attack models (trained with different parameter
combinations), we select five of the best-performing attack
models for each dataset. For the shadow models, we used
Logistic Regression with the same hyper-parameters as the
target model. For the attack models, we chose a neural network
with one hidden layer of 64 neurons and a ReLU activation
function similar to [4]. All the target models in federated
settings, i.e. the local and global models, were attacked by five
attack models. In the empirical evaluation (see Section VI),
MI attack accuracy represents the mean attack accuracy from
the 5 attack models. The attack model represents a binary
classifier which predicts if some particular instance was in
the training set of the model, or not. Therefore, the higher
the attack accuracy - the higher the privacy leakage of the
model. The attack model test set always contains 50% samples
that were in the training data of the target model and 50%
of samples that were not used for training the target model.
Therefore, the baseline for attack accuracy is 0.5, representing
the accuracy of random guessing. In the Figures presented in
Section VI, we denote this baseline as ”no privacy leakage”

D. Federated Learning Setup

We consider a federated learning setting with 2, 4, 8, 16
and 32 nodes (or clients). We consider IID and non-IID data
distributions. In the first case, the whole training dataset is
randomly and evenly distributed between the clients. In the
second case, we simulate a quantity skew in the federated
setting. For computing the global model, we use federated
averaging algorithms, where we average the weights of the
local models to get a global model [1]. Each client has the
same hyper-parameters for training local models.

E. Evaluation Metrics

The main goal of the current work is to find the DP strategy
in federated learning that results in the best privacy-utility
trade-off. Therefore, during the evaluation, we especially focus
on metrics like the accuracy and utility loss of the global
model, and the MIA accuracy on the local models.

The global model accuracy shows if federated learning is
a useful solution for the considered classification task. In
federated learning, the global model should achieve higher
performance in terms of effectiveness than the local models.
Ideally, the effectiveness of the global model should be close to
a model trained on the centralised data – through a centralised
model is often not possible due to e.g. data protection regula-
tions. Still, in the evaluation of the experiment, we compare
the accuracy of the global models in federated learning to the
centralised baseline (see Section V-A) as an upper bound. We
also use utility loss to evaluate the effect of DP on models’
effectiveness. Utility loss is defined by the difference between
the highest reached global model accuracy in the FL setting
with the corresponding number of nodes without DP and

global model accuracy with output perturbation or DP-SGD
approach and different epsilon values.

The second metric helps us to analyse empirical privacy
risks in federated learning. The privacy budget parameter ϵ
is used in DP to regulate privacy leakage. We evaluate how
ϵ corresponds to the empirical privacy leakage measured in
the accuracy of membership inference attacks. We especially
focus on attacks on the local models in federated learning,
as we consider a threat model with a malicious aggregator
(see Section II) and these local models tend to leak more
information about training data than global models.

VI. RESULTS AND DISCUSSION

In the following section, we will provide results and discuss
several aspects of our experimental evaluation. We start with
evaluating the impact of DP on the efficiency of an FL process
by analysing how many FL iterations is needed for a global
model to converge with different privacy budget. We then
discuss the effect of having different numbers of nodes in
the federation, before we specifically contrast the DP-SGD
and Output DP approaches to show which of them provides
a better privacy-utility trade-off. Finally, we also investigate
settings where the amount of training data in each node is
different (non-IID) and how that affects the privacy and utility
trade-off when using output perturbation and DP-SGD.

A. Federated Learning Iterations

Communication costs pose a challenge in FL: to train
effective global models, one might need to perform several
federated learning iterations (or federated learning cycles).
Each federated learning iteration reduces the efficiency of the
whole federated learning process, as it requires an additional
round of communication. Thus, it is important to analyse how
different DP techniques influence the number of iterations
required for the global model to converge. The privacy loss
parameter ϵ for local models in different FL iterations is calcu-
lated based on the sequential composition theorem described
in Section IV-D.

Considering the different numbers of nodes in FL without
DP protection, we find that the global model converges faster
(within the first two FL iterations) in the settings with two,
four, and eight nodes. With 16 and 32 nodes, more than ten
FL iterations are needed for the global model to converge.
Therefore, we expect similar trends when applying DP and
we use more FL iteration in the settings with more nodes.

Focusing on the number of FL iterations, we find that
applying output DP results in global models with high
accuracy already after the first FL iteration for both Loan
and Purchase datasets (see Figures 1a and 1c), while DP-SGD
requires more FL iterations to train a better global model.
On the Loan dataset, in terms of privacy leakage, DP-SGD
performs very similarly after the first and fifth FL iterations
(Figure 1b bottom). At the same time, after the fifth iteration,
the global model achieves a better accuracy score. In terms of
privacy-utility trade-off, neither of the DP approaches seems



(a) Loan: OutpDP (b) Loan: DP-SGD (c) Purchase: OutDP (d) Purchase: DP-SGD

Fig. 1: Output DP and DP-SGD (2 nodes in FL) performance comparison based on global model accuracy and attack accuracy
against local models, on different numbers of FL iterations. The colour indicates the point of testing (blue: results after the first
federated iteration; orange: results after the fifth federated iteration); dotted lines indicate the baseline when no DP is applied.

(a) OutpDP (b) DP-SGD (c) OutpDP; ϵ = 104 (d) DP-SGD; ϵ = 104

Fig. 2: Output DP and DP-SGD performance on Loan dataset in FL settings with a different number of nodes. The global
model’s utility loss (GM utility loss) is computed as the difference between the global model’s accuracy in FL without DP and
with the corresponding DP approach. LM attack acc denotes the mean attack accuracy of all local models in the FL setting.

to perform better than the other on the Loan dataset in FL
with two nodes.

Analysing DP-SGD on the Purchase dataset (Figure 1d), we
observe that training DP-SGD with one FL iteration results in
a global model accuracy at the best case 10% lower than the
baseline. At the same time, this does not bring any privacy
gains, as in that case the ϵ is very high. When we train for
more federated iterations, we achieve a better global model
accuracy, which is in the best case 5% worse than the baseline.
Nevertheless, in this case, the attack accuracy stays the same as
the baseline without DP; thus, in order to gain more privacy in
DP-SGD, one needs to sacrifice a large amount of the models’
utility. On the Purchase dataset, we, therefore, note that output
DP achieves a better trade-off between privacy and utility.
Already at the first FL iteration output DP allows achieving
global model accuracy only 3% lower than the baseline and at
the same time reducing local models attack accuracy by 3%.

Comparing leakage from the models in the first and the
last iteration of federated training, we see that models at
the last FL iteration leak less data. The attack accuracy on
local models is decreasing with each FL iteration, which can
be explained by averaging the models in federated learning,
better generalisation of local models and thus less overfitting

to specific instances from the training set. That effect is
especially pronounced on the Purchase dataset for both Output
DP and DP-SGD (see Figures 1c and 1d). Therefore one
should consider using lower ϵ in the first FL iterations,
as local models trained before the first aggregation are the
most vulnerable to membership inference.

B. Number of Nodes in Federated Learning

In this section, we consider the case when the training
set is split with equal size between the clients: e.g. in the
case of eight clients, each client has 10K/8 samples for local
training. Membership inference attack performs better on the
local models when there is less training data at each client,
as it is easier for local models to overfit the training data,
which in turn benefits the MIA success rate. Therefore, we
observe higher membership inference accuracy in the setting
with more clients in FL without DP.

Utility loss in Figure 2 stands for the difference between
the accuracy of the global model in FL without DP and the
accuracy of the global model with DP (with the corresponding
number of nodes in FL). For both output DP and DP-SGD,
with a larger amount of nodes in FL, it is more difficult to
achieve an accuracy comparable to FL without DP. With two,
four and eight nodes, we still achieve a global model accuracy
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Fig. 3: Output DP and DP-SGD on Purchase dataset with different ϵ values (depicted on the plots near the data points) in
Federated Learning with different numbers of nodes in the setting.

(a) Two nodes (b) Four nodes (c) Eight nodes (d) 16 nodes

Fig. 4: Output DP and DP-SGD with different ϵ values (depicted on the plots near the data points) on the Loan dataset in
Federated Learning with different numbers of nodes in the setting.

similar to FL without DP (i.e. with a utility loss close to
zero). At the same time, we observe that output DP provides
a better trade-off between privacy and utility, allowing us to
achieve low utility loss, while reducing the attack accuracy
(see Figure 2a). For a larger number of nodes in FL, both
considered DP approaches result in higher utility loss. They
are comparable to each other in magnitude, losing at most 7%
of the accuracy, but at the same time significantly reducing
privacy risks. The attack accuracy is 10% lower for the setting
with 32 nodes and 5% lower for the setting with 16 nodes
when using DP-SGD (see Figure 2b). With output DP and
32 nodes in FL, the attack accuracy on the local models is
almost 15% lower than FL without DP (see Figure 2a). With
16 nodes, we lose a bit less in utility (around 5% ), and reduce
the attack accuracy by 7%.

From Figures 2c and 2d, one can observe that with a larger
number of nodes in FL, it takes more iterations for the model
to converge to a lower utility loss. MIA accuracy decreases as
well with utility loss. As mentioned above, this effect can be
explained by the fact that local models generalise better after
each FL iteration, due to the federated averaging. We showed
that regardless of the number of nodes in FL, one should use a
lower ϵ in the first few iterations to reduce the risk of inference
from the local models.

C. DP-SGD versus Output DP

Figures 3 and 4 show the utility loss against the attack
accuracy for models trained with different DP approaches and
different ϵ. Both Figures 3 and 4 demonstrate how higher ϵ
leads to higher privacy risks, confirmed by the attack accuracy.
With an ϵ <= 5, the attack accuracy for DP-SGD is close to
a random guessing baseline, which implies that the model is
immune to membership inference. At the same time, utility
loss increases to 55%, which makes the global model useless
for its actual classification task. One can see that for the
Purchase dataset DP-SGD provides a better privacy-utility

trade-off than output perturbation for FL settings with all
considered different number of nodes (see Figure 3).

For the Location dataset, however, output perturbation out-
performs DP-SGD in the settings with two (Figure 4a) and
four (Figure 4b) nodes: e.g. in the setting with two nodes
(Figure 4a) and an attack accuracy less than 52%, output
perturbation with result in only 10% utility loss, while DP-
SGD will achieve the same privacy level only with a cost
of 25% utility loss. In FL scenarios with more modes (see
Figure 4c, 4d), both considered DP approaches provide a very
similar trade-off between privacy and utility. Nevertheless,
the usage of output perturbation can be preferable in
cases when DP-SGD and output perturbation result in
a similar privacy-utility trade-off, as output perturbation
is computationally more efficient and requires fewer FL
iterations to achieve an effective global model.

D. Quantity skew in Federated Learning

In a real-world federated setting, different clients often have
data of different quantities and distributions. Non-IID data
poses challenges for global model convergence in federated
learning [26]. Another challenge that such data distribution
entails is uneven privacy risks for different clients. Here, we
consider the case of data quantity skew in federated learning,
i.e. the data is unequally distributed among the clients. To
investigate how DP will perform in such settings, first, we
consider models trained on a different number of training
samples in a centralised setting.

Figure 5 shows how output DP and DP-SGD perform on the
models trained on datasets of different sizes, from 500 samples
to 10K samples. One can observe that generally, membership
inference attack accuracy is lower when attacking the models
trained on a larger training set. That can be explained by the
fact that models can remember and overfit training data better
when they are trained with fewer samples, and, therefore, MIA
works better on such models [27]. Interestingly, even with



(a) Output DP (b) DP-SGD

Fig. 5: Output DP and DP-SGD performance in centralised
settings on Purchase dataset. Models trained with a different
number of training samples (training set size). Target model
utility loss denotes the difference between the accuracy of the
target models trained without DP and the accuracy of the target
models trained with DP.

(a) Output DP (b) DP-SGD

Fig. 6: Output DP and DP-SGD performance in FL with two
nodes (client:1 and client:2) on Purchase dataset and skewed
data distribution among the clients. Faded lines correspond to
the first FL iteration, bright lines correspond to the results after
the fifth FL iteration.

a very high ϵ, DP-SGD mitigates privacy risks better than
output DP for the models which had smaller training sets.
When the training set size is set to 1,000 samples (orange
line), the attack accuracy goes up to 95% when using output
DP (Figure 5a) and 85% when using DP-SGD (Figure 5b).
When the number of training samples is more than 1,000, both
approaches achieve quite similar results and show that privacy
comes at a large utility cost. That leads us to the conclusion
that clients who train their models on small datasets should
use DP-SGD rather than output DP, as the first one allows
for a better privacy-utility trade-off in that case.

To simulate quantity skew in federated learning we consider
the case with two clients in FL and assign to the first client
25% of the data, while the second receives the remaining 75%;
thus, client:1 has 2,500 samples, and client:2 has 7,500 sam-
ples. Figure 6 shows the corresponding FL training after the

first and fifth FL iterations. When we apply output perturbation
to achieve DP, we observe that client:1 has higher risks of
privacy leakage, as it has relatively few samples compared to
client:2 (see Figure 6a). We also notice that on the first FL
iteration, the risk of privacy leakage for the client:1 is very
high, and increases to 85% when using high ϵ. At the same
time, on the fifth iteration, the attack accuracy on the client:1
local model is only around 70% with an ϵ > 103. For the
client:2 the results are the opposite: at the first FL iteration,
the local model leaks less data than at the fifth FL iteration.

In Figure 6b), we observe, that DP-SGD manages to mit-
igate privacy risks for the client:1 at the first iteration even
with a very high ϵ: the attack accuracy is close to the 50%
(random guessing baseline). However, on the fifth FL iteration,
the leakage from the client:1’s local model increases up to
70%. On the fifth iteration, both DP-SGD and output DP
suggest a similar trade-off between privacy and utility. This
analysis of DP in FL with data distribution skew shows that
different clients are affected differently by both DP-SGD and
output DP. In future work, we aim to extend the current
analysis to more non-IID settings in FL with DP and consider
settings combining both DP approaches at different stages of
the training.

VII. CONCLUSION AND FUTURE WORK

In this paper, we conducted a comprehensive analysis of DP
through output perturbation and DP-SGD in various federated
learning settings. We considered the performance of these two
approaches in terms of the utility of the global model and
local models’ privacy. We measured the empirical privacy risks
via a membership inference attack, attacking both local and
global models. We considered settings with different numbers
of nodes in federated learning and also analysed the effect of
different numbers of federated learning iterations.

From the experimental evaluation we can draw the following
main findings:

• When applying output DP in FL, one can use fewer FL
iterations to reach an optimal global model. Output DP
is thus more communication efficient than DP-SGD.
Output perturbation is also more computationally ef-
ficient than DP-SGD, as DP-SGD requires an increasing
number of local iterations during gradient optimisation.
Output DP is a computationally ”cheap” privacy, as the
noise is added only once after the model has been trained,
while in DP-SGD the noise has to be added to the
gradient after each batch.

• In FL settings with more than eight nodes, both output
perturbation and DP-SGD have a larger impact on
the privacy and utility of the models and result in
higher utility loss.

• The privacy loss parameter ϵ results in different levels
of leakage for the different DP approaches – and even
for the same approach on different datasets or in different
settings. Therefore, to find the best trade-off between
privacy and utility, one has to investigate how different



ϵ influence the performance of the models and inference
attacks for the particular case, dataset and DP approach.

• DP-SGD suggests a better trade-off between privacy
and utility compared to output perturbation in most of
the considered settings. However, in some settings the
privacy-utility trade-off achieved by output perturbation
and DP-SGD is similar, and due to higher efficiency, the
output perturbation would be preferable to use. One of
the main issues with output perturbation, however, is the
limitation of the machine learning models to which output
DP can be applied, as it requires deriving the sensitivity
of the algorithm.

• Finding a good trade-off is a difficult task, as DP has
a potentially large impact on the model quality. In
some settings, neither of the considered DP approaches
allowed for improved privacy without a (too) substantial
reduction of the global model utility.

• In non-IID settings, FL clients with smaller training
sets are more prone to data leakage through the local
models, especially on the first FL iteration.

In future work, we aim to extend our evaluation of non-
IID data scenarios in federated learning and consider dif-
ferent noise-adding strategies (e.g. more noise in the first
iterations) to optimise the privacy-utility trade-off when using
DP. We plan to consider other machine learning algorithms
with known sensitivity bounds to combine them with output
perturbation, e.g. SVM [28].
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