

University of Southern Denmark

Federated Unsupervised Machine Learning

Hartebrodt, Anne

DOI:
10.21996/z4yw-jm67

Publication date:
2022

Document version:
Final published version

Citation for pulished version (APA):
Hartebrodt, A. (2022). Federated Unsupervised Machine Learning. [Ph.D. thesis, SDU]. Syddansk Universitet.
Det Naturvidenskabelige Fakultet. https://doi.org/10.21996/z4yw-jm67

Go to publication entry in University of Southern Denmark's Research Portal

Terms of use
This work is brought to you by the University of Southern Denmark.
Unless otherwise specified it has been shared according to the terms for self-archiving.
If no other license is stated, these terms apply:

 • You may download this work for personal use only.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying this open access version
If you believe that this document breaches copyright please contact us providing details and we will investigate your claim.
Please direct all enquiries to puresupport@bib.sdu.dk

Download date: 28. Feb.. 2024

https://doi.org/10.21996/z4yw-jm67
https://doi.org/10.21996/z4yw-jm67
https://portal.findresearcher.sdu.dk/en/publications/47172466-8697-40e9-9a06-0877fa970d7f

Federated Unsupervised
Machine Learning

Anne Hartebrodt

Supervisor
Assoc. Prof. Dr. Richard Röttger

Department of Mathematics
and Computer Science,
University of Southern Denmark

Feburary 2022Ph
D
Th

es
is

Abstract

Abstract
Federated learning (FL) is an emerging privacy-aware machine learning
paradigm motivated by an increasing request for confidential and private
data mining. Federated learning operates under the assumption that raw
data cannot leave the data owners computer. Instead, only aggregated
parameters can be exchanged between the participants. These can range
from simple summary statistics to entire gradients in deep learning. Since,
its formal conception in 2016, much effort has been put into the research
of federated learning, covering not only the development of efficient and
accurate algorithms suitable for decentralized data, but also their privacy.

The biomedical community is in the process of adopting federated learn-
ing to provide better care while remaining privacy-aware. In addition to
privacy considerations, biomedical data is challenging to work with due to
its high dimensionality and the absence of labels. Hence, traditional un-
supervised techniques, such as dimensionality reduction and clustering, are
widely used in the biomedical domain. However, classical data mining is
underrepresented in the federated learning literature.

In order to further promote the adoption of federated learning in biomedical
research, this thesis studies popular algorithms for the analysis of biomed-
ical data, more specifically dimensionality reduction and clustering. The
present work provides a general introduction to federated learning and the
relevant unsupervised algorithms. The remainder of the work consists of a
collection of manuscripts, followed by a general discussion.

The first three manuscripts included in this thesis map out the conception
of an efficient version of a federated singular value decomposition algorithm
(SVD) suitable for high dimensional data, beginning with an assessment of
suitable principal component analysis (PCA) schemes for horizontal cross-
silo federated learning. Motivated by specific requirements in Genome-Wide
Association Studies (GWAS), a federated PCA algorithm for vertically par-
titioned data is developed. This research is concluded by the conception of
a new generic and efficient algorithm for horizontal and vertical data parti-
tioning which, although motivated by the application to GWAS, is suitable
for any application in bioinformatics and data science in general.

The third and forth manuscript contain research on potential privacy leaks
in the studied algorithms, which includes iterative leakage and potential
data reconstruction in two of the PCA algorithms.

The fifth and final manuscript provides an overview and evaluation of fed-

i

erated clustering strategies using the K-Means algorithm. It then proceeds
to develop a strategy to infer the parameter k from the data, a step which
is neglected in previous publications, but crucial for the application of fed-
erated K-Means in realistic analysis scenarios.

Overall, this work addresses a few challenges in a rapidly developing field.
The relative recency of federated learning and the vast field of unsuper-
vised machine learning leave many challenges for future research, including
further improvements of the privacy and efficiency of the algorithms.

ii

Danish summary

Dansk resumé
Federated learning (FL) er et voksende fortrolighedsbevidst (privacy-aware)
machine learning paradigme, motiveret af en stigende efterspørgsel for for-
trolig og privat data mining. Federated learning opererer under præmisen
at rå data ikke må forlade ejerens computer. Istedet kan kun aggregerede
parametre blive udvekslet mellem deltagere. Disse parametre kan være alt
fra simple opsummerende statistikker til gradienter i deep learning. Siden
den formelle udformning i 2016 er der blevet lagt en stor indsats indenfor
forskning i federated learning, der ikke kun dækker idéen om effektive og
nøjagtige algoritmer, der er egnede til decentraliseret data, men også deres
fortrolighed og sikkerhed.

Det biomedicinske felt er igang med at vedtage federated learning for at
sikre bedre behandling, der stadig forbliver fortrolig. Udover hensynet til
fortrolighed er biomedicinsk data udfordrende at arbejde med på grund af
dataens høje dimensionalitet samt manglen på overbevisende labels. Derfor
er traditionelle unsupervised teknikker, såsom dimensionalitetsreduktion og
clustering, meget udbredte indenfor det biomedicinske felt. Klassisk data
mining er derimod underrepræsenteret indenfor federated learning litera-
turen.

For at fremme vedtagelsen af federated learning i biomedicinsk forskning un-
dersøger denne afhandling populærer algoritmer til analyse af biomedicinsk
data, mere specifikt dimensionalitetsreduktion og clustering. Afhandlin-
gen giver en generel introduktion til federated learning og de relevante
unsupervised algoritmer. Resten af afhandlingen består af samlinger af
manuskripter, efterfulgt af en generel diskussion.

De første tre manuskripter, der er inkluderet i denne afhandling, kortlæg-
ger idéen om en effektiv version af federated singular value decomposition
(SVD), der egner sig til data med høj dimensionalitet. Først er der en
vurdering af principal component analysis (PCA) strategier, der egner sig
til horisontal cross-silo federated learning. Motiveret af specifikke krav i
Genome-Wide-Association Studies (GWAS) leverer vi derefter en federated
PCA algoritme til vertikalt opdelt data. Dette afsluttes af en idé til en ny
generisk og effektiv algoritme til horisontal og vertikal dataopdeling, som,
selvom den er motiveret af applikationen til GWAS, er velegnet til enhver
applikation inden for bioinformatik.

Det fjerde manuskript indeholder forskning om potentielle fortrolighedslæk-
ager i tre federated QR algoritmer, som inkluderer potentiel datarekon-

iii

struktion i to af QR-algoritmerne. Kun QR dekomposition, som bruger
Gram-Schmidt algoritmen, tilfredstiller fortroligheds krav.

Det femte og sidste manuskript giver et overblik og en evaluering af feder-
ated clustering ved hjælp af K-Means-algoritmen. Dette efterfølges af en ny
strategi til at udlede k-parameteren udfra dataen, et skridt der er forsømt
i tidligere publikationer, men er afgørende for anvendelsen af federated K-
Means i realistiske analysescenarier.

Samlet set adresserer denne afhandling flere udfordringer indenfor dette
hastigt voksende felt. Da federated learning stadig er relativt nyt, mens
feltet indenfor unsupervised learning er så omfangsrigt, er der stadig mange
udfordringer der kræver videre forskning, herunder yderligere forbedringer
af fortroligheden og effektiviteten af algoritmerne.

iv

Acknowledgments

Acknowledgments
I sincerely thank my supervisor Richard Röttger for his guidance and advice
during the past three years. Thanks for leaving me the freedom to work on
my projects, yet always being there to support me in my research endeavors.

A big thanks to the members of the Computational Biology Group, Do-
minika, Mathias, Philipp, Tobias, Tobias, Maria, Juan, Johannes, and ev-
eryone else I met during my time at SDU. Without you my time as a PhD
student would not have been half as fun!

Thanks to Rudolf Mayer and the crew in Vienna for welcoming me during
my lab exchange at SBA Research. Thanks for all the discussions, and the
coffee ;)

Of course, thanks to everyone who proofread parts of this thesis. I hope
you learned something!

Thanks to my collaborators in the FeatureCloud Consortium1 and specif-
ically the Platform development group for the great collaboration we es-
tablished throughout the years. Special thanks to Reza Nasirigerdeh and
David Blumenthal for our collaboration on federated Singular Value De-
composition.

A big thanks to all my friends near and far for supporting me all those
years.

I am eternally grateful to my family for their love and support throughout
the years. I would not be the person I am today without my parents and
brothers.

1The FeatureCloud project has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement No 826078. This pub-
lication reflects only the authors’ view and the European Commission is not responsible
for any use that may be made of the information it contains.

v

List of publications
Submitted manuscripts included as chapters in this thesis:

1. Hartebrodt, A. and Röttger, R. (2021), Federated Horizontally Par-
titioned Principal Component Analysis for Biomedical Applications
(Under review)

2. Hartebrodt, A., Nasirigerdeh, R., Blumenthal, D. B., and Röttger,
R. (2021). Federated Principal Component Analysis for Genome-
Wide Association Studies, (ICDM), 1090–1095. https://doi.org/
10.1109/ICDM51629.2021.00127

3. Hartebrodt, A., Röttger, R. and Blumenthal, D. B., (2021). Feder-
ated Singular Value Decomposition for High Dimensional Data (Un-
der review)

4. Hartebrodt, A., and Röttger (2021). Federated QR decomposition
– algorithms, privacy, and applications (Submitted)

Notable publications not included in this thesis:

1. Matschinske, J., Späth, J., Nasirigerdeh, R., Torkzadehmahani, R.,
Hartebrodt, A., Orbán, B., ... & Baumbach, J. (2021). The Fea-
tureCloud AI Store for Federated Learning in Biomedicine and Be-
yond. arXiv preprint arXiv:2105.05734. (Under review)

vi

https://doi.org/10.1109/ICDM51629.2021.00127
https://doi.org/10.1109/ICDM51629.2021.00127

Overview

Overview
This thesis consists of an introductory chapter; a total of five manuscripts,
four of which are submitted at the time of writing; and a general discussion
of the work. The first chapter contains a general introduction to federated
learning (FL) and its challenges and a brief presentation of the relevant un-
supervised machine learning algorithms. It is followed by three manuscripts
discussing federated principal component analysis (PCA) in detail. The
third manuscript represents a consolidation of this work, in the sense that
it presents a generally applicable, efficient algorithm for federated singular
value decomposition (SVD). The fourth manuscript contains work on fed-
erated QR decomposition, as an extension of an algorithm presented in the
third manuscript, and includes further privacy considerations. The fifth
manuscript presents preliminary work on federated K-Means. The final
chapter is dedicated to a discussion of the work and a brief conclusion.

Federated Learning
The scope of the first chapter is a motivation and general introduction to
federated machine learning. It briefly discusses technical and privacy chal-
lenges. It also introduces privacy enhancing techniques, and how they can
be applied to make federated learning more resilient against threats. The
notion of federated learning is context dependent, therefore this chapter in-
troduces the specific assumptions on the federated learning setup assumed
in this thesis. A few of these assumptions are motivated by the Feature-
Cloud Platform which is described briefly. The presented algorithms are
Principal Component Analysis and Singular Values Decomposition, QR fac-
torization, as well as the popular K-Means algorithm.

Manuscript 1: Federated Horizontally Partitioned
Principal Component Analysis for Biomedical Applications
This paper represents initial work on Principal Component Analysis for
federated horizontally partitioned data. The notion of data partitioning
will be explained in the introduction, for now it is sufficient to understand
that these algorithms can be used for classical dimensionality reduction,
for instance as a preprocessing step in single cell data analysis. In this
article, the effect of limited data availability and biased sample distribution
on federated PCA is studied and algorithms are analyzed w. r. t. to their
data disclosure.

vii

Manuscript 2: Federated Principal Component Analysis
for Genome-Wide Association Studies
This manuscript treats the application of PCA for sample stratification in
the federated domain, motivated by, but not limited to, the use in feder-
ated Genome-Wide Association Studies (GWAS). Notably, the algorithm
presented in this article mitigates a potential privacy breach in the consec-
utive application of federated PCA and the association test, by the appli-
cation of federated Gram-Schmidt orthonormalization.

Manuscript 3: Federated Singular Value Decomposition
for High-Dimensional Data
The third manuscript is an extension of the previous work and includes
proofs for both federated SVD and Gram-Schmidt orthonormalization. It
extends the works by applying ideas from approximate federated hori-
zontally partitioned PCA and randomized PCA, making the algorithms
more communication efficient in terms of data volume and communication
rounds. The manuscript also investigates iterative leakage in power itera-
tion.

Manuscript 4: Federated QR decompositition –
algorithms, privacy, and applications
The focus of the article is on the suitability and privacy of three popu-
lar algorithms used for QR decomposition, Householder reflection, Givens
rotation, and Gram-Schmidt decomposition, when deployed in a federated
setting. This chapter describes the full Gram-Schmidt algorithm, extend-
ing the previous description of the method in Manuscripts 2 and 3 which
focused solely on the orthonormalization, but omitted the return of the up-
per triangular matrix. A specific algorithm for PCA, which can be solved
using federated QR decomposition is studied to understand, whether any
privacy can be gained by choosing this algorithm over the ones previously
discussed.

Manuscript 5: Federated K-means
This article contains an evaluation of existing federated initialization and
clustering strategies for the popular K-Means algorithm proposed in the
literature. Furthermore, a comprehensive evaluation strategy for federated
clustering of non-iid data is developed. A gap in research is the federated

viii

Overview

determination of a good choice of k, therefore in this chapter an approach
for this problem is presented and evaluated, using the suggested evaluation
scheme.

Discussion and Conclusion
The last chapters are dedicated to a joint discussion of the articles with re-
spect to the challenges in federated learning introduced in the first chapter.
The major challenges addressed in the present work are privacy, commu-
nication efficiency, and data heterogeneity, as well as the accuracy of the
algorithms. Naturally, this discussion will reveal future research directions
in the field of unsupervised federated learning.

ix

Contents

Abstract . i
Danish summary . iii
Acknowledgments . v
List of publications . vi
Overview . vii

Contents x

1 Federated Learning 1
1.1 Motivation . 1
1.2 Federated learning . 4
1.3 Challenges and opportunities in federated learning 9
1.4 Private Federated Learning 13
1.5 The FeatureCloud Platform 20
1.6 Unsupervised Machine Learning 21
1.7 Summary & Aims of this thesis 25
References . 26

2 Manuscript 1: Federated Horizontally Partitioned Prin-
cipal Component Analysis for Biomedical Applications 33

3 Manuscript 2: Federated Principal Component Analysis
for Genome-Wide Association Studies 47

4 Manuscript 3: Federated Singular Value Decomposition
for High Dimensional Data 59

x

Contents

5 Manuscript 4: Federated QR decomposition – algorithms,
privacy, and applications 93

6 Federated K-Means 105
6.1 Summary . 105
6.2 Introduction . 106
6.3 Preliminaries . 108
6.4 Related work . 112
6.5 Systematization of evaluation of federated clustering 114
6.6 Practical federated clustering using federated k-means . . . 119
6.7 Practical evaluation of federated K-Means clustering 122
6.8 Test metrics . 123
6.9 Conclusion & Outlook . 128
References . 129

7 Discussion & Conclusion 133
7.1 Summary . 133
7.2 Communication and resource efficiency 134
7.3 Accuracy . 136
7.4 Privacy . 136
7.5 Future directions . 138
7.6 Conclusion . 138
References . 139

A Supplementary information 141
A.1 Web repositories . 141
A.2 Additional Literature . 141
References . 148

B Supplement Chapter 2 153

C Supplement Chapter 6 169

List of Figures 177

List of Tables 177

xi

Chapter 1
Federated Learning

1.1 Motivation
The growing availability of data and compute power has lead to a sharp
increase in the use of machine learning in areas ranging from commercial
applications to basic research. Machine learning relies on large data rather
than expert curation to create models for the prediction and understanding
of phenomena. The field can be broadly categorized into supervised and
unsupervised machine learning (Hastie 2017). Currently, (deep) neural
networks are the method of choice for many tasks in both supervised and
unsupervised machine learning.

A popular instance of supervised learning is classification where the task
is the prediction of the label for a data point which has previously not
been “seen” by the algorithm. Supervised learning requires the presence
of a labeled data set. During training the hyperparameters of the model
are adjusted to minimize the difference of the predicted class and the true
labels. A pitfall in supervised learning is “overfitting” which means the
model achieves very good accuracy on the training data, but generalizes
poorly, and cannot be used on new, unseen data. Overfitting is especially
difficult to overcome with small or biased data sets (Hastie 2017).

Unsupervised learning is a group of techniques relying on the intrinsic prop-
erties of the data to create explanatory models, and can therefore be used
on label free data. This includes for instance clustering, which has the goal
of finding subgroups in the data, and dimensionality reduction. In compu-
tational biology, unsupervised machine learning plays an equally important

1

1. Federated Learning

role as supervised learning, because biological data is not necessarily la-
beled, or the labels are biased and therefore not amenable to supervised
learning (F. Li et al. 2021). The recent trend towards deep-learning in
bioinformatics does not impede the use of the classical techniques. Karim
et al. (2021), for instance, suggest to combine deep learning based feature
embedding with traditional clustering. A practical instance of this approach
in modern bioinformatics is for example the combination of deep generative
modeling (Lopez et al. 2018) with neighborhood embedding (Mcinnes et al.
2018) and clustering (Traag et al. 2019) in single cell transcriptomics.

Both supervised and unsupervised machine learning rely on the availability
of high quality data. In many areas of computational biology, the number
of available data sets has risen in the recent past (Drysdale et al. 2020),
but not all have seen an equal trend in their growth. Areas that still suffer
from data scarcity are rare diseases, which affect fewer than 2000 patients,
according to the definition of the European Union (Kerr et al. 2020). It
has been shown that many trials in rare diseases fail due to the lack of a
large enough cohort (Rees et al. 2019). A second area in bioinformatics that
would benefit from larger data sets are Genome-Wide Association Studies
(GWAS). GWAS try to find associations between genotype and phenotype
using statistical tests and large cohorts. While with 500 000 participants,
the UK Biobank is sizable (ukbiobank.ac.uk 2022), this does not imply a
sufficient diversity (Sirugo et al. 2019). Many GWAS studies are performed
on cohorts of predominantly European ancestry which only represent a small
fraction of the world’s population (Mills and Rahal 2019). More diverse
studies would significantly strengthen the results of the analyses, but the
access to genetic data is understandably strictly regulated. Overall, the
data required to learn trustworthy models is not always as readily available
as it seems at the first glance.

Biomedical data contains many sensitive attributes and allows to infer a
high amount of information on the individual, such as genetic risk factors
and disease status. They must remain private to protect the individual
from harm. Furthermore, the data is at least partially immutable. The
genome is not only stable over an individuals lifetime, it is also partially
transmitted to the next generation (Bonomi et al. 2020). Bonomi et al.
(2020) provide an overview of attacks using public genetic data exposing
the individual and assess mitigation strategies. As a result, they suggest to
further research privacy-aware genomics. Infectious diseases such as HIV
can be managed well today, but may still expose the affected to serious
stigmatization, if this information is disclosed to a third party (Feyissa et

2

Motivation

al. 2019). Wearable devices such at fitness watches monitor daily activities
and physical conditions. While useful to assess the overall and individual
level of health of a population, the data should not be accessible to third
parties. Commercial solutions have been shown to be vulnerable to at-
tacks (Fereidooni et al. 2017). The public research must therefore promote
privacy-aware technologies and data mining.

The access to clinical data has always been tightly regulated (Veen 2018).
The introduction of the General Data Protection Regulation (GDPR) in Eu-
rope further discourages arbitrary data sharing to protect the individual.
It partially motivates the interest of the research community in data pri-
vacy. Two main avenues are under active investigation, (1) the generation
of synthetic data, and (2) federated learning. Synthetic data is generated
by machine learning models which have been trained to reflect the proper-
ties of the original data, for example the marginal distribution of covariates
(Gootjes-Dreesbach et al. 2020). Federated learning is a more generic ap-
proach making no assumptions on the nature of the question asked (Rieke
et al. 2020). Federated learning allows decentralized data to be analyzed
as if they were located on a single server, but the raw data is never moved
outside of the data owners computer. Local models are trained on the local
data and only the models are sent to an external party which aggregates the
model into a global model. The models are assumed to reflect only general
properties of the data not allowing to infer information on the individuals
in the study.

According to the GDPR, the data controllers are the instance that decides,
if and how the data is processed (Veen 2018). FL would allow data con-
trollers to join machine learning based studies, while complying with legal
regulations within their jurisdiction, because they retain the control over the
data. In medical research, the potential of federated learning has already
been demonstrated to outperform centralized models, as more data could
be used for the training. FL has been used for tasks such as physical and
mental disorder prediction and is applicable to the prevention, monitoring
and management of diseases (Yoo et al. 2021). While compelling, legal and
ethical hurdles are not the only argument for federated learning. Gaye et al.
(2014) raise the problem that even scientists are concerned about sharing
“their” raw data. They prefer to share analysis results because they invest
significant effort in the curation of the data sets and are concerned about
intellectual property. Federated learning allows partners who, in other cir-
cumstances would not be incentivized to collaborate, to perform a joint
study. This can for instance be private companies or banks (Liu, Fan, et al.

3

1. Federated Learning

2021) that do not want to share their data for economical reasons. Mobile
device users, who are reluctant to share their private information with a
global server, can participate in federated learning and profit from better
models trained on data that remains private (Hard et al. 2018).

As the potential benefits have been recognized by the biomedical commu-
nity, federated learning is an active area of research. Not all questions have
been answered to as satisfying consensus yet. A major question is whether
the privacy promises made by federated learning hold true in practice. Fur-
thermore, technical challenges such as communication efficiency and model
accuracy are not solved yet. The focus of many authors (Kairouz et al. 2021;
Q. Li et al. 2019) is on federated deep learning, and some admonish the lack
of “non-deep-learning” research. Therefore, this thesis is dedicated to the
study of unsupervised federated machine learning in the biomedical
domain. The thesis contains a general introduction to the relevant and
most prominent challenges in FL, followed by five manuscripts presenting
individual research projects. Chapters 2 to 4 study the specific problem of
federated Principal Component Analysis (PCA) and Singular Value Decom-
position (SVD). The fifth chapter presents insights into the privacy of QR
decomposition. Chapter 6 contains unpublished research on the K-Means
algorithm. The thesis concludes with a discussion of the presented work.

In the remainder of the current chapter, the concept and challenges in fed-
erated learning will be presented. In sections 1.2.1 to 1.2.3 the required
basic notions of federated machine learning will be introduced. The follow-
ing section 1.3.4 and section 1.4.1 will discuss threats to federated learning
and data privacy as well as mitigation strategies. An additional section is
dedicated to the brief presentation of the FeatureCloud platform. The final
section 1.6 of this chapter will introduce the relevant centralized unsuper-
vised algorithms and the aims of this thesis.

1.2 Federated learning
Motivated by the difficulties in accessing medical data, federated learning
has been introduced into the medical domain. The term federated learning
(FL) is relatively recent and is attributed to a publication by McMahan
et al. (2017) although the concept of decentralized computation has existed
previously. Federated learning is a branch of machine learning that deals
with data that is physically distributed among several machines or devices.
These machines are also referred to as clients or participants. The data is
private and cannot be send to a central server to be analyzed. Instead, the

4

Federated learning

(a) Centralized learning – data and
model in the cloud.

11:29

11:29

(b) Cross-device FL – data on device,
model in the cloud

(c) Cross-silo FL (Centralized) –
data in silos, model at the
aggregator

(d) Cross-silo FL (Decentralized) –
data in silos, model on the edge FL
is awesome

11:29

Models Compute server (private) data Device

Figure 1.1 – Different types of federated learning currently discussed in
the literature.

machines are connected via a network and exchange aggregated statistics
and parameters that can be combined in a global model. This learning pro-
cess can involve multiple rounds of network communication and arbitrarily
complex parameters, such as gradient updates in deep learning (Kairouz
et al. 2021).

5

1. Federated Learning

1.2.1 Cross-silo vs. cross-device federated learning
The data is distributed among several data holding machines. Two main
branches of FL have emerged, cross-silo and cross-device federated learn-
ing. The distinction is important because it has implications on the require-
ments of the federated learning system.

Cross-device FL is characterized by a very high number of loosely con-
nected devices (up to 1010) such as mobile phones or sensors which join the
learning process. These devices have access to limited data, such as the
data of one mobile phone user, and their compute power is limited. The
number of data points may vary from device to device. The system is as-
sumed to be dynamic, meaning the devices may join and drop out of the
learning process at any time, for instance through device failure and time
zone differences (Bonawitz et al. 2019). The devices are connected via slow
connections such as mobile or wireless networks which represents the major
bottleneck in cross-device federated learning. The high number of clients
popularizes stochastic learning processes where only a randomly selected
subset of clients sends their parameter updates in each round of federated
learning (Kairouz et al. 2021).

In contrast, cross-silo federated learning deals with a static network of a
few “data silos” connected by a high-speed internet connection. These data
silos have access to larger data bases including observations for multiple
individuals. Such data silos may be hospitals or public institutions dealing
with the conflicting interests of data protection and societal advancement.
Typical numbers of clients range between 2 to 100 sites connected in the
collaborative learning environment. The clients are assumed to be reliable,
meaning they remain online during the entire learning process. Due to
their low number and high reliability, the clients usually participate in every
round of computation. In cross-silo FL, network communication may not
be the major bottleneck, if time consuming local computations are required
(Kairouz et al. 2021).

Although the focus of this thesis is on cross-silo federated learning, both
cross-silo and cross-device federated learning promise benefits (Xu et al.
2021; Nguyen et al. 2021; Rieke et al. 2020) and are used for biomedical FL
(Yoo et al. 2021).

6

Federated learning

(a) Star-like (b) P2P (c) Hierarchical (d) CIFL

Figure 1.2 – Architectures in federated learning. (a) Star-like
architecture with a central server: the clients communicate only with the
aggregator. (b) Decentralized architecture: the clients use P2P
communication to exchange parameters. (c) Hierarchical architecture: the
clients communicate with a local hub, the hubs communicate with the
server. (d) Cyclic institutional FL: the clients receive parameters from a
single client and communicate the updated model to the next participant.

1.2.2 Federated system architectures
The design of a federated system is not trivial and subject to many consider-
ations. The base assumption is the availability of a set of machines that are
connected in a network. Depending on the number and nature of clients,
the computers can assume different roles in the system. Star-like architec-
tures rely on a single powerful aggregation server which receives updates
from the clients and orchestrates the learning process. This architecture is
used for instance in the FeatureCloud platform (Matschinske et al. 2021)
and the assumed federated learning architecture in this work. The central
server has high internet connection speed, and the centralized models have
favorable convergence properties (Q. Li et al. 2019). The disadvantage of
this architecture is that the central server is a “single-point-of-attack”, both
for the physical system and the learned models which can be problematic
for privacy and fairness (Yoo et al. 2021). Most proposed solutions assume
a trusted central sever which is difficult to achieve in realistic FL scenarios
(Q. Li et al. 2019). Furthermore, the system does not scale well to FL with
more participants, if the central aggregator works as the only aggregator
(Nguyen et al. 2021).

In contrast, in a fully decentralized network all clients have the same privi-
lege. The model exists only on the “edge”, meaning it is created simultane-
ously at all clients, and not at a central aggregator (Warnat-Herresthal et
al. 2021; Roy et al. 2021). This has the advantage of not requiring a trusted
central party, but increases the communication overhead (Q. Li et al. 2019).

7

1. Federated Learning

The learning process in fully decentralized learning can involve randomized
client selection and “gossiping”, the communication with close neighbors in
the network Sluciak et al. 2012. Another coordinator free architecture is
a cyclic network where the model updates are made in a sequential fash-
ion and used for instance in the “Personal Health Train” (Beyan et al.
2020). This architecture achieved worse performance compared to aggre-
gator based FL due to “forgetting”, where more recent updates contribute
to the model overproportionally (Sheller, Edwards, et al. 2020). Therefore
it is less privacy aware, as the previous client in the chain can be attacked
more easily (Pustozerova and Mayer 2021). There are also hierarchical FL
systems, featuring local hubs which are interconnected (Rieke et al. 2020;
Liu, Ma, et al. 2020). Targeted more towards cross-device FL, Bonawitz et
al. (2019) suggest multiple roles, including a controller, which organizes the
learning, aggregators, which perform the model aggregation, and selectors
choosing the clients whose data is used for the updates. This system has a
larger emphasis on a variable number of devices which is not as crucial in
cross-silo FL. While the network determines the update strategies to some
extent, any system that is able to address all its clients (an assumption of
cross-silo FL (Kairouz et al. 2021)) can run the same algorithms and it is not
unlikely that other hybrid federated learning architectures will emerge. Q.
Li et al. (2019) briefly present a selection of open source federated learning
systems.

1.2.3 Data partitioning in federated learning
In federated learning, data is distributed over several distant sites and can-
not be shared in its raw form between the different participants. Data in
this context consists of data points, which may have an arbitrary number of
dimensions, and may also be referred to as samples, individuals, or patients
depending on the context. Dimensions are also referred to as features or
variables and represent measurements. In federated learning, data can be
partitioned in different ways.

Horizontal partitioning describes the case where the individuals are dis-
tributed over the sites, but all variables are measured for these individuals
(S. X. Wu et al. 2018; Kairouz et al. 2021; Yoo et al. 2021; Q. Li et al.
2019; Gaye et al. 2014). This would for instance be the case, if electronic
health records with the same features are available at all S sites for different
populations, resulting in tabular data with ns patients and d dimensions at
each client s ∈ [S].

8

Challenges and opportunities in federated learning

Vertical partitioning refers to the complementary case, where at sites s
for all n patients a different subset of features ds would be measured (S. X.
Wu et al. 2018). This is for example the case, if one participant has access to
the electronic health records of the population while another site possesses
other information such as tumor histology or laboratory results. It is still
challenging to obtain high quality test data for this scenario (Kairouz et al.
2021).

Arbitrary partitioning refers to the case where neither site possess the full
range of all samples or variables in the study. In this scenario federated
transfer learning can be used (Kairouz et al. 2021). The notion of data
partitioning is a factor influencing the design of the algorithms, as the
parameter integration differs depending on how the data is distributed.
According to Q. Li et al. (2019) the majority of the algorithms to date
are developed for horizontal partitioning, partially because it is the more
frequent case in commercial mobile applications.

sa
m

pl
es

n

features d

(a) Full data set
spa

n

d1 d2 d3

(b) Vertical
spapartitioning

d

n
1

n
2

n
3

(c) Horizontal
spapartitioning

Figure 1.3 – Data partitioning in FL. (a) The data consists of n samples
with d features. (b) Vertical partitioning: the clients have access to
different features for the same set of samples. (c) Horizontal partitioning:
the clients have different subsets of samples but the full feature space.

1.3 Challenges and opportunities in federated
learning

Federated learning is an emerging research field which presents ample op-
portunity to contribute to the solution of various open problems. The rel-
evance of the challenges depends on the subfield of federated learning, yet
some generally relevant challenges have emerged. This section will describe

9

1. Federated Learning

the more prominent open problems in the literature and briefly summarize
other miscellaneous issues raised by various authors in different contexts.
The major challenges are the design of resource and communication efficient
algorithms, their performance on non-iid data, as well as the privacy and
security of the learning process and the models.

1.3.1 Network communication
A major challenge for federated learning is the network communication that
the learning process requires, more specifically the size and the number of
updates. In classical data centers, the internal communication is fast and
usually not considered as much in performance optimization. In FL, every
network communication introduces a delay. In cross-device FL, device-to-
device communication is more expensive compared to the communication
with a server (Marfoq et al. 2020) and the communication is generally slow.
In cross-silo federated learning, with its relatively low number of clients and
higher network bandwidth, this problem is potentially less severe compared
to cross-device federated learning. Assuming that the system uses data cen-
ters that are connected by high speed internet connections, the delay may
even be neglected (Q. Li et al. 2019; Marfoq et al. 2020). However, Marfoq
et al. (2020) also show that by optimizing the topology of the network con-
nection, the time spent on the learning can be decreased in cross-silo FL,
making the system less prone to congestion at the aggregator. Regardless
of the type of FL, the number of communication steps is a novel factor to
be optimized and considered when studying the convergence of the algo-
rithms. Standard secure computation techniques (cf. section 1.3.4) increase
the number of required communication steps quadratically with the number
of clients, making an overall low number of steps beneficial.

A number of strategies have been introduced to decrease the number of
local parameter updates sent to the aggregation severs. An example is the
execution of multiple local rounds of parameter updates, before sending the
model to the aggregator (Xu et al. 2021; Sheller, Reina, et al. 2019). This
is not yet theoretically founded, and it is unclear whether the suggested
strategies are generically applicable, as they could negatively affect conver-
gence (Rieke et al. 2020; Kairouz et al. 2021). The size of the updates is
the other important factor to be optimized to reduce transmission costs and
avoid delays for networks with low upload speed, such as mobile networks.
Therefore, the compression of local and global parameters are under active
research (Q. Li et al. 2019; Kairouz et al. 2021; Xu et al. 2021). The reduc-
tion in size of the model has additional benefits such as increased scalability

10

Challenges and opportunities in federated learning

and easier model deployment (Kairouz et al. 2021). Overall, the communi-
cation overhead of federated learning is a novel factor to be considered in
the choice and development of the algorithms.

1.3.2 Heterogeneity of the data and compute resources
One challenge extensively researched is the resilience of federated learn-
ing against non independently and identically distributed data (“non-iid-
data”). As the data comes from many different servers or devices, the data
sourcing process is not identical. Kairouz et al. (2021) and Yoo et al. (2021)
review a number of challenges for federated learning, including covariate
shift, where the marginal distributions differ for groups of clients; prior
probability shift, where the prior probability of events differs for groups of
clients; concept drift, where similar concepts are expressed using different
features; concept shift, where the same concepts have different labels; and
quantity skew, where clients have different sample sizes. In cross-device
federated learning, the geographical location is a strong factor, because the
it influences not only the device availability but also the observable data
and labels (Kairouz et al. 2021; Yoo et al. 2021). For cross-silo FL, the
time-dependent availability of the compute severs is less problematic, due
to their higher compute power and dedicated purpose, however data-related
challenges remain (different ancestry, nutrition, exposure, ...).

The non-iid-ness of the data influences for instance the convergence be-
havior of gradient decent in the federated setting, which has been stud-
ied theoretically and practically (Sheller, Edwards, et al. 2020). Different
strategies have been introduced to adapt to the heterogeneity of the data
using specialized versions of gradient descent or other techniques such as
clustering (Q. Li et al. 2019; Yoo et al. 2021; Huang et al. 2019; Sattler et al.
2019). The decentralized nature of the data also introduces difficulties in
verifying the source of deleterious behavior in FL, intentional or uninten-
tional, and holding the responsible clients accountable (Yoo et al. 2021).
A potential medical federated learning system consists of participants with
different data quality and quantity as well as different access to resources.
The system should not encourage participants to influence the learning pro-
cess negatively, or non-contributors to profit inadequately. Game theoretic
approaches to optimize the value of participation have been suggested (Yoo
et al. 2021).

While non-iid-ness it is a challenge in federated learning, it also presents a
number of opportunities. For instance, instead of creating a single, global

11

1. Federated Learning

model which performs adequately for everyone, it is possible to create per-
sonalized models for subgroups of participants which perform better for
the respective cohort (Xu et al. 2021; Tan et al. 2021). Overall, the het-
erogeneity inherent to FL systems can be deleterious to the model if not
properly accounted for, but, on the other hand, represents an opportunity
for increasing the fairness of machine learning.

1.3.3 Other challenges in federated learning
While the aforementioned challenges are prominent in the literature, a num-
ber of additional challenges have been mentioned by various authors. Yoo
et al. (2021), Q. Li et al. (2019), and Rieke et al. (2020) raise the issue
of proper incentive to participate in federated learning. Medical data sets
are expensive to curate, therefore data providers might want to prevent
non-contributing parties to profit from their work. Consequently, proper
revenue models will have to be developed (Rieke et al. 2020). Furthermore,
the data acquisition process (Sheller, Edwards, et al. 2020) and hospital
infrastructure are heterogeneous (Rieke et al. 2020), making the data in-
tegration difficult even with willing participants. For medical applications,
the FL learning system also needs to be reproducible, traceable (Rieke et al.
2020) and auditable (Passerat-Palmbach et al. 2019). Additionally, the in-
corporation of expert knowledge, while beneficial, is challenging (Xu et al.
2021). Naturally, the model accuracy and fairness is primordial for fed-
erated learning with potential diagnostic application (Xu et al. 2021; Yoo
et al. 2021; Q. Li et al. 2019).

1.3.4 Privacy and Security
Although used interchangeably, privacy and security have different scopes
(Andriole 2014). In the medical domain, patient privacy refers to “the
right of patients to determine when, how, and to what extent their health
information is shared with others” (Andriole 2014). Security refers to the
measures taken to prevent harm from coming to the patient. Harm can
manifest physically, for instance if proper treatment cannot be guaranteed
due to nonavailability of the medical records. Therefore, secure systems
should allow only authenticated and authorized used to access the data,
keep the data confidential, and maintain data availability, integrity, and
auditability (Andriole 2014).

Initially, the promise of FL was that the privacy of the participants was
secured by not sharing their data with third parties. However, this view

12

Private Federated Learning

was very quickly abandoned as attacks on federated models in particular,
became known (Sun et al. 2019; Bagdasaryan et al. 2018; Nasr et al. 2019).
Due to their importance, threats to federated learning and mitigation strate-
gies will be discussed in more detail in the following section.

1.4 Private Federated Learning
In an ideal world, honest participants would join a learning process with
their data and no party would learn anything apart from the final global
model. Alas, we do not live in an ideal world. As explained in section 1.2,
FL makes more data available to train better models, while mitigating a
major concern of data controllers by preventing uncontrolled access. How-
ever, other threats to the data confidentiality and privacy remain, and novel
challenges emerge. For medical research for instance, we assume that the
learned models are published for public benefit. Publication does not neces-
sarily imply the full disclosure of the model, including all the weights; it can
also be deployed as a queryable model, such that only input and output are
observable. Regarding the final model FL is conceptually subjected to the
same threats as centralized machine learning, for example model stealing
(Paleyes et al. 2020).

FL introduces new challenges through the data federation. Since the data
remains in the silos, it is difficult to verify the integrity of the data, and
the local updates (Augenstein et al. 2019). Furthermore, the local updates
can disclose information about the local data that would not be inferrable
from a global model. Research on the the privacy of machine learning and
federated learning is a dynamic field with many emerging ideas. This sec-
tion gives an overview over the most popular strategies for data privacy
protection. Section 1.4.1 introduces the terminology and privacy challenges
specific to federated learning, the following sections 1.4.2 to 1.4.6 discuss
mitigation strategies, such as homomorphic encryption (HE), secure multi-
party computation (SMPC) and differential privacy (DP), as well as their
combination in hybrid federated learning.

1.4.1 Setting and terminology
In the context of federated learning, there are multiple actors which con-
tribute to the learning process. An actor in the system who tries to learn
more information than they should, according to the setup of the study, is
called an attacker or adversary. All participants in the process can techni-
cally be adversaries: the clients, the aggregators, the analyst, and outsiders

13

1. Federated Learning

who gain information for instance on the final model (Kairouz et al. 2021).
It is assumed that all technical measures to secure the system, such as en-
cryption of the transferred parameters and user authentication have been
taken, so that outsiders have a very limited view of the system. Hence,
the focus is on the information inferrable from the shared parameters and
models available to active participants.

“Insider attackers” have a functional role in the training and can gain in-
sight in the data, intermediate parameters, the architecture of the model,
and the final results or subsets of those. Their attacks are stronger, and
the main focus of the literature (Enthoven and Al-Ars 2021). There are
broadly two types of attackers. An honest-but-curious or passive ad-
versary follows the protocol, but tries to infer more information about the
other participants than they should (Snyder 2014). These attacks are diffi-
cult to detect because they leave no trace in the federated system (Enthoven
and Al-Ars 2021). A malicious participant can deviate arbitrarily from
the training process and protocol, such as disrupting the training or inject-
ing falsified data (Snyder 2014). Two or more attackers can collaborate,
to target another participant in the training. This is called collusion. In
healthcare consortia, Rieke et al. (2020) claim, that high trustworthiness
and contractual collaboration agreements can allow more lenient security
assumptions.

Q. Li et al. (2019) identify three major avenues of attacks: attacks on the
data, the learning process and the final model. Different information and
attack avenues are available at the client and server side. The client can see
the global model, and manipulate its own data and model updates, includ-
ing their importance. The server can see and manipulate the aggregated
model, and potentially see the local updates, allowing differentiation (En-
thoven and Al-Ars 2021). The aggregator as a privileged entity in the pro-
cess is a prime target for attack, however according to Lyu et al. (2020), it
is unclear whether peer-to-peer architectures mitigate the problem or open
new avenues for attacks. Usynin et al. (2021) differentiate between attacks
on utility (model poisoning, backdoor insertion and evasion) and attacks on
privacy (membership inference, attribute inference, model inversion, model
stealing).

In poisoning attacks, either the data or the model are modified such that the
federated model systematically misclassifies a set of inputs (Yoo et al. 2021;
Lyu et al. 2020). The goal can for instance be the creation of backdoors
(secondary tasks), decreasing model accuracy, or run time misclassification
to evade for example anomaly detection (Enthoven and Al-Ars 2021). Data

14

Private Federated Learning

can be poisoned by flipping labels or introducing trigger patterns into the
data. Models can also be poisoned by modifying gradients or other param-
eters (Sun et al. 2019; Bagdasaryan et al. 2018).

Inference attacks attempt to reconstruct class representatives, infer mem-
bership to the training data (i.e. whether a sample was part of the training
or not) (Pustozerova and Mayer 2021; Nasr et al. 2019), or properties of the
training data, such as training inputs and labels (Lyu et al. 2020; Enthoven
and Al-Ars 2021). Data reconstruction attempts to infer precise data points.
Depending on whether the attacker has knowledge of the model architecture
or not, the attacks are classified as white-box or black-box attacks.

Attacks can be mitigated by the use of generic cryptographic tools, such as
homomorphic encryption (HE), differential privacy (DP), and secure mul-
tiparty computation (SMPC), presented in the following. Other strategies
suggested in the context of deep learning attempt for example to limit the
information in the parameter updates, by compressing, regularizing, sub
sampling or using robust aggregation of the gradients (Usynin et al. 2021).
The term hybrid federated learning refers to a mixture of strategies where
these techniques are combined to achieve a practical level of privacy. Gen-
erally, mitigation strategies assume a threat model which defines against
which kind of adversary and which kind of attack the system gains re-
silience to by using the respective strategies. Enthoven and Al-Ars (2021)
and Usynin et al. (2021) come to the conclusion that no individual strategy
can mitigate all potential threats. Wainakh et al. (2021) also raise the issue
that current attacks might follow unrealistic assumptions and might not be
generically applicable yet.

1.4.2 Homomorphic Encryption
A homomorphic encryption scheme allows mathematical operations to be
performed in the encrypted space, as if they were performed on the non-
encrypted data. It has been suggested as a privacy preserving method for
cloud computing where users can store their encrypted sensitive data, for
example medical records, in the cloud. Computations and predictions are
performed on the encrypted data (Lauter et al. 2011). In federated learning,
HE could for instance be used for secure aggregation, however Kairouz et al.
(2021) see open problems regarding the ownership of the keys.

The term fully homomorphic encryption (FHE) refers to a general purpose
scheme, allowing all possible kinds of computation. Partially, or “some-
what” homomorphic encryption schemes allow a limited number of oper-

15

1. Federated Learning

ations, including additions and multiplications. For many purposes this
might be sufficient (Lauter et al. 2011). HE introduces a small amount of
noise for each computation in the encrypted domain. Additions can be com-
puted efficiently and require only a small amount of noise. Multiplications
are expensive, and require more noise. Therefore, only a limited number
of multiplications can be performed, before the noise becomes to large, in
which case the decryption of the result becomes impossible. The num-
ber of possible multiplications is referred to as the multiplicative depth.
Relinearization allows arbitrary depth circuits, however this procedure is
expensive as well (Dobraunig et al. 2021).

In federated learning, homomorphic encryption could be used to mask the
local updates from the server, if the aggregation step is performed under en-
cryption and the aggregator does not have access to the private key. This is
conceptually similar to the way one would perform secure aggregation using
SMPC (see next section), with the advantage that the number of commu-
nication rounds would not increase. Currently, the high computational
burden with high storage and time requirements even for small examples is
an obstacle in the practical application of homomorphic encryption. The
run times are still deemed unrealistic for the suggested applications, such as
secure diagnostics and payroll computations (Pallas and Grambow 2018).
Even state-of-the-art (Dobraunig et al. 2021) benchmarks using popular li-
braries are done on small examples and induce a high computational burden
on client or server sites. With the potential size of the models in machine
learning and the iterative, and interactive way of training, HE currently
creates too large of a computational overhead making SMPC the more at-
tractive choice for secure aggregation.

1.4.3 Secure Multiparty Computation
Secure Multiparty Computation (SMPC) is a group of techniques with the
basic premise to evaluate a function without any of the participants gaining
knowledge of the other parties inputs. Many of the techniques rely on secret
sharing, where the values are split into independent shards which disclose
nothing about the original value. A popular secret addition scheme relies
on modular arithmetic. The N participants agree on a fixed prime p. They
then mask their secret sn ∈ Zp by generating uniformly random numbers rn,i
for i ∈ [N−1] and computing the last random share as rn,N = sn−

∑N−1
i=1 rn,i

mod p. The participants send each of th N−1 shares rn,i to the N−1 players
and keep the Nth share themselves. The player sums up all the shares
they receive, including the one they kept for themselves, as ri =

∑N
n=1 rn,i

16

Private Federated Learning

and share ri with all other players, which can now compute the output
o =

∑N
i ri =

∑N
n=1 sn, the sum over all sn without gaining knowledge of the

private inputs. This protocol is correct and secure, but not fault tolerant in
the event that one of the parties drops out of the computation (Cramer et al.
2015). To gain fault tolerance, other schemes such as Shamir’s secret sharing
algorithm have been developed. Instead of creating random shares of the
value, the participants now choose a secret polynomial f of degree k which
evaluates to the secret value at f(0). The secret shares are points on this
polynomial. Using Lagrangian multipliers, the secret can be reconstructed
using k + 1 points of the polynomial. The advantage of this scheme is that
if k+1+k′ shares are distributed, k′ participants can fail and the secret can
still be recovered. The schemes are designed for integer valued numbers.
Float values can be processed using fixed-point arithmetic (Ryffel et al.
2018).

SMPC is not limited to addition. Much research has been done to allow
the evaluation of arbitrarily complex circuits, for instance Yao’s protocol
(Snyder 2014). This allows the computation of entire pipelines, broadcast-
ing only the final result of the computation, see for example Cho et al.
(2018). Unfortunately, complex circuit evaluation implies a high compu-
tational burden with a high number of communication steps, and a con-
siderable transmitted data volume. As a trade off, during the training of
a model, simple aggregation such as addition, which can be computed ef-
ficiently using secure multiparty computation, can be used to protect the
individual updates in each step, while allowing the broadcast of the global
aggregated parameter updates in clear text.

The choice of a secure multiparty computation scheme depends on the as-
sumptions on the adversary, the threat model. The aforementioned strate-
gies work in a honest-but-curious setting, with all participants proceeding
according to protocol. More advanced SMPC schemes are designed for
systems assuming a dishonest majority, active attackers or detection of
fraudulent behavior to protect honest participants Cramer et al. 2015.

Parameter obfuscation methods, such as HE and SMPC have the drawback
that the clients’ parameters cannot be inspected, so fraudulent updates,
or even deleterious updates by honest users, are harder to detect. As the
input data remains private, falsified or mislabeled data can be injected, a
problem that can not be solved using secure function evaluation.

17

1. Federated Learning

1.4.4 Differential Privacy
Differential privacy (DP) is a way of achieving privacy by perturbing the
input, intermediate results or outputs of a computation. Informally speak-
ing, DP is achieved if the results of a randomized algorithm applied on two
very similar databases are almost indistinguishable. This means it is very
hard to tell whether an individual participated in an analysis (was part of
the database) or not. This has the nice property, that it does not only
imply privacy but also statistical stability. Here, only the basic concepts
of DP will be discussed. A more in-depth explanation of DP can be found
in the monograph by Cynthia Dwork (Dwork and Roth 2014), a pioneer in
the field of differential privacy.

In Dwork’s work a view of a database is assumed where it is seen as a
histogram of records where each bin represents a record of type R. This al-
ready implies, that the database contains many records of type R, meaning
the data base should be large. In fact, “Differential Privacy was designed
with internet-scale data sets in mind.” (p.464, Dwork and Roth 2014).

Definition 1.4.1 (Differential Privacy). A mechanism M with output space
O ⊂ Range(M) is ϵ-differentially private if for every set of adjacent
databases D,D′ : Pr[M(D) ∈ O] = eϵ ∗ Pr[M(D′) ∈ O]

A way to achieve differential privacy is to add noise to the input data, during
the computation, or to the result. The noise can be generated from different
distributions, for instance the Laplace, the Exponential, or the Gaussian
distribution. The scale of the noise is determined by the sensitivity of
the function and the parameter ϵ which determines the privacy level. The
sensitivity is a measure for how much the output of a function can change,
when it is applied to similar data bases.

For example, in order to achieve ϵ-differential privacy using the Laplace
mechanism, one adds noise drawn from the Laplace distribution with scale
b = ∆f

ϵ
, where ∆f denotes the sensitivity.

Lap(x|b) = 1

2 ∗ b
∗ exp(−|x|

b
) (1.1)

Hence, the smaller the sensitivity and the larger ϵ, the lower is the variance
of the noise. Consequently, smaller ϵ imply better privacy.

There a more interesting properties of DP which make it a versatile cryp-
tographic tool. First, a notion called “Closure under postprocessing”. This

18

Private Federated Learning

simply means, that any computations performed of the result of a differen-
tially private analysis will remain differentially private. Second, the com-
position theorem, which states that two algorithms which are ϵ1 and ϵ2-DP
can be composed to obtain an (ϵ1 + ϵ2)-DP algorithm.

Differential Privacy is a statistical tool to achieve provable guarantees for
privacy. Closure under post-processing and composability allow us to prop-
agate the privacy guarantees beyond the initial application of the algorithm.
DP does not rely on encryption to achieve privacy, meaning the guarantees
will persist even if an encryption scheme is eventually broken.

Although in theory elegant, DP has drawbacks. There is a limitation to the
number of DP queries possible with an ϵ-DP mechanism, as with sufficient
queries, the probability distributions of the outcomes of the randomized al-
gorithm on two adjacent databases will become distinguishable (Bambauer
et al. 2014). Apart from these theoretical considerations, the implementa-
tion of DP in practice requires computing the sensitivity of a function as
well the choice of a suitable ϵ which may be hard for laymen to do. As the
sensitivity of a function often depends on the dimensionality of the data,
DP may be inapplicable to high dimensional data sets or the parameters
choices might be to lenient in practice (Domingo-Ferrer et al. 2021).

1.4.5 Private data release
A partially orthogonal approach to federated learning is the the private pub-
lication of data. Early research on private data release lead to the concep-
tion of “k-anonymity” (Sweeney 1997) and “l-diversity” (Machanavajjhala
et al. 2006). These techniques allow data release only, if a sufficient num-
ber of individuals have the same combination of a quasi-identifier and the
sensitive attribute, and in the case of l-diversity a sufficient diversity in the
sensitive attribute. However, these techniques are not sufficient to prevent
privacy breaches (Rieke et al. 2020). A more recent technique is the genera-
tion of synthetic data. This type of data is generated based on real data and
reflects its properties, but does not contain real samples. This data can for
instance be generated using autoencoders (Abay et al. 2019) or generative
adversarial networks (Beaulieu-Jones et al. 2019; Gootjes-Dreesbach et al.
2020). The concept is compatible with differential privacy, although strict
privacy parameters lead to a decrease in performance and an increase of
the cross-validation error (Hittmeir et al. 2019). Another similar technique
is the generation of differentially private core-sets (Feldman et al. 2017)
with the same goal of preserving statistical properties while allowing pri-

19

1. Federated Learning

vate queries. The concept of synthetic data generation has been combined
with federated learning explicitly in an attempt to overcome the problem
that the decentralized data cannot be inspected and therefore bugs in the
pipelines are hard to detect. By generating differentially private representa-
tives of the input data which can be published safely to a server. Augenstein
et al. (2019) directly combine the two domains. This approach could also
be used for quality control and batch effect correction in bioinformatics
pipelines.

1.4.6 Hybrid federated learning
A hybrid scheme combines FL with one or more privacy enhancing tech-
niques to prevent privacy breaches (Torkzadehmahani et al. 2022). A hybrid
scheme keeps the data in the silos, and additionally masks the parameters
sent to the other participants or the aggregator. Additional trust in the
aggregation server can be obtain through the use of a “Trusted Execution
Environment” (TEE). This trusted hardware allows the verification that a
computation is executed correctly, and has been suggested, although not
implemented, for secure GWAS (X. Wu et al. 2021). Hybrid federated learn-
ing is the strategy of choice adopted in this thesis, which aims to reconcile
data confidentiality and reasonable privacy guarantees with computational
feasibility. For instance, local parameters are protected using secure multi-
party computation, but intermediate aggregated parameters might become
available in clear text.

1.5 The FeatureCloud Platform
FeatureCloud (Matschinske et al. 2021) is a platform for cross-silo federated
learning in the biomedical domain. The main features of the system will
be briefly discussed here, as they motivate the assumed federated learning
setup in this thesis. The system is designed with hospitals and research
institutions in mind. At the core of the platform is a workflow system,
which allows the execution of one or several federated algorithms to perform
a medical study. Algorithms are deployed as ’apps’ which can be obtained
from the FeatureCloud App store. Developers can contribute their own
app, if no suitable app is available, making this system versatile for any
kind of data mining or learning task.

The main components of the system are the “Controller”, a software in-
stalled on all participants’ IT infrastructure; a relay server, which can be

20

Unsupervised Machine Learning

reached by all Controllers; and a global backend, required for the manage-
ment of user data, authentication and the like. Users interact with the
system via a browser frontend which communicates with the Controller
and the global backend. The algorithms are deployed in virtualized con-
tainers which allows tight control over their access to data and resources,
and in particular restrict direct internet access. Instead, the Controller
polls the containers for updates and communicates with the relay server.
Apart from managing the communication with the other participants, the
Controller provides all workflow related functionalities such as the setup of
the workflows, loading of the data, the creation of the app containers and
shutdown after the termination of the workflow. The FeatureCloud plat-
form is technically a star-like system, as all the Controllers communicate
with the Relay server which receives and forwards the parameter updates
to the intended recipients. However, through public-key cryptography, the
peer-to-peer communication required for SMPC can be simulated. In Fea-
tureCloud, the relay server does not perform the aggregation, instead one of
the clients acts as the aggregator. The FeatureCloud platform comes with
a Development Environment, the “Testbed”, which allows the local simu-
lation of multiple clients and speeds up the development process. To avoid
malicious apps to be pushed into the app store, the FeatureCloud project
envisions a certification process where the correctness, and functionality of
the code, and the availability of the advertised privacy measures are certi-
fied. Most importantly the apps cannot send raw data and the source code
must be available. The certified app is built and pushed to the app store
by certificate issuer, not the developer.

1.6 Unsupervised Machine Learning
Unsupervised machine learning can be used on label free data and is a fre-
quent part of bioinformatics pipelines. In this thesis, principal component
analysis (PCA), the related singular value decomposition (SVD), QR de-
composition, and the K-Means algorithm are investigated. These are classi-
cal data mining algorithms which have been studied for decades. However,
the federated learning literature claims that there is a lack of research in
unsupervised federated learning and classical data mining (Kairouz et al.
2021). This thesis aims to make a contribution towards closing this gap.
The current section briefly introduced the centralized counterparts to the
federated methods studied in later chapters, to which their detailed descrip-
tions are deferred.

21

1. Federated Learning

A

sa
m

pl
es

n

features d

A⊤Ad

d

Vd

k

Σ

k

V⊤
d

AA⊤n

n

Un

k

Σ

k

U⊤
n

U

k

n

Σ

k

V⊤
d

Figure 1.4 – Relationship between covariance matrices, PCA, and SVD.

1.6.1 Principal Component Analysis
Principal Component Analysis (PCA) (Jolliffe 2002) is a popular dimen-
sionality reduction technique. It can summarize a high-dimensional data
set to a few meta-variables explaining the main variability of the data along
these axes. Conceptually, PCA is the Eigendecomposition of the covariance
matrix of the centered and scaled data. Let D ∈ Rn×d be the original data
matrix, where n is the number of samples and d is the number of features.
The data is assumed to be drawn from a multivariate Gaussian distribution.
Let µ̄ denote the column wise mean of D and σ denote the column-wise
variance of D. The data is then centered by subtracting the mean from
each variable and dividing by the standard deviation.

A =
D− µ̄√

σ
. (1.2)

Σ is a diagonal matrix containing the eigenvalues in non-increasing order,
V denotes the matrix of corresponding eigenvectors. The PCA can then be
computed as

1

n− 1
A⊤A = VΣV⊤. (1.3)

Singular value decomposition (SVD) is closely related to PCA and allows

22

Unsupervised Machine Learning

the decomposition of the scaled data matrix A as follows:

A = UΣV⊤. (1.4)

where U denotes the left singular vector, V denotes the right singular vector
and Σ the diagonal matrix of singular values. The vectors V computed using
singular value decomposition of A and computed via Eigendecomposition
of A⊤A are equivalent. Both PCA and SVD can be efficiently computed
using for instance power iteration (Halko et al. 2011). The relationship
between SVD and PCA is depicted in Figure 1.4.

In bioinformatics, PCA is for instance used to reduce the dimensionality of
high-throughput sequencing data, followed by the embedding into a neigh-
borhood graph and subsequent visualization via UMAP. In this case, the
PCA is computed on the d × d feature-by-feature covariance matrix, and
the data is projected onto the first k eigenvectors to form the principal
components (Theis 2019). An orthogonal use of PCA is population stratifi-
cation for instance used in Genome-Wide Association Studies. For GWAS,
the PCA is computed on the sample-by-sample covariance matrix and the
eigenvectors are included as covariates into the association test (Galinsky
et al. 2016). A general challenge in both applications is the high dimension-
ality of the data, which requires efficient algorithms for routine application.

1.6.2 QR decomposition
QR decomposition, is the process of factorizing a matrix A into a square ma-
trix Q with mutually orthonormal columns and an upper triangular matrix
R. In practice, the reduced QR decomposition which returns a rectangu-
lar Q is more memory efficient (Ford 2014). The three popular algorithms
for QR decomposition use Householder reflections, Givens rotations or the
Gram-Schmidt algorithm, although the latter is not recommended due to
numerical instabilities (Ford 2014).

A = QR (1.5)

In bioinformatics, QR decomposition is frequently used for the solution of
systems of linear equations for example when performing linear regression.
Linear regression in the programming language R for example, uses QR
decomposition as the default solver (R Core Team 2021). In the context of
power iteration, QR factorization can be used for the reorthogonalization of

23

1. Federated Learning

the eigenvectors in power iteration. The frequent application of the method
in centralized computation warrants an investigation of its federated coun-
terpart.

1.6.3 K-Means Clustering
Clustering is the process of finding a partition of the data which is optimal
with respect to some criterion. A popular and fast algorithm to perform this
task is the K-Means algorithm which clusters the data into k clusters based
for instance on the euclidean distance. This is done by iteratively minimiz-
ing the sum of the distances of the points to their respective cluster center
arriving at a locally optimal clustering (MacQueen 1967; Lloyd 1982). The
algorithm proceeds as follows: First, a set of k initial centroids C is chosen.
All points are assigned to their nearest centoids. Then the centroids are up-
dated by calculating the average over their assigned data points. Then, the
convergence criterion is evaluated. If it is not fulfilled, the assignment and
recomputation of new centroids is repeated. Once the termination crite-
rion is fulfilled, the algorithm terminates. A suitable convergence criterion
can for example be a fixed number of rounds, or convergence of the cluster
centers. This algorithm is relatively cheap to compute, and conceptually
simple. However, the performance of the algorithm crucially depends on
the selection of good initial centroids (Fränti and Sieranoja 2019). Further-
more, K-Means requires the choice of a suitable k prior to the execution of
the algorithm. This is inconvenient with novel data where the number of
clusters is not known a-priori. In the centralized execution of the algorithm,
these problems can be solved by repeated execution of K-Means. However,
this may not be practical in federated clustering.

Federated clustering is the process of creating partitions (clusters) of a data
set without having access to the entire data. It should not be confused
with “clustered federated learning” (CFL) which has been suggested in the
context of supervised FL. In CFL, the gradients are clustered, for instance
to facilitate multitask learning (Sattler et al. 2019).

1.6.4 Unsupervised federated learning
Certain authors (Kairouz et al. 2021) claim that there is a lack of research
in other areas than deep learning. While a comprehensive survey on unsu-
pervised federated learning is outside of the scope of this work, it should
be noted that the community has recognized the need for unsupervised
learning algorithms in FL. In fact, research interest in decentralized data

24

Summary & Aims of this thesis

analysis existed before the adoption of the term of “federated learning”.
Perhaps the use of different terminology and keywords popular prior to
the emergence of the term “federated learning” make this literature less
accessible. Table A.1 in Appendix A is non-exhaustive, yet shows an im-
pressive collection of publications regarding federated principal component
analysis over the years. Gaye et al. (2014) provide traditional tools such
as histograms and generalized linear models in their platform. Zolotareva
et al. (2020) provide federated differential testing. Several authors research
federated GWAS (Cho et al. 2018; Nasirigerdeh et al. 2020; X. Wu et al.
2021). Our contributions are based on the excellent groundwork of previous
researchers.

1.7 Summary & Aims of this thesis
This chapter introduced the relevant techniques in unsupervised learning
and the important concepts and terminology, including cross-silo and cross-
device FL, horizontal and vertical data partitioning, and possible architec-
tural choices for FL systems. Then, the privacy of federated learning, as
well as threats and mitigation strategies were discussed. The remainder of
this work assumes a cross-silo federated learning setup. The default archi-
tecture is a star-like architecture, which allows peer-to-peer communication
if required, motivated by the FeatureCloud platform.

The frequent application of PCA or SVD, QR decomposition and cluster-
ing in bioinformatics pipelines requires efficient versions of these methods
for federated learning. In general, challenges that exist in the centralized
computation are expected to remain relevant for the federated application
of these methods. For instance, the computation of the covariance matrix
in PCA should be avoided, as it requires a high availability of memory (see
chapter 3 and 4). Section 1.3 and section 1.4 introduced novel challenges in
federated learning, including communication efficiency, privacy and accu-
racy. Consequently, a federated algorithm should (a) require low resources
at the clients and the aggregator, (b) not disclose private information about
the input data, (c) be accurate, and (d) be communication efficient. The
goal of this thesis is the identification, improvement and development of
suitable federated algorithms for the aforementioned problems which fulfill
these requirements.

25

1. Federated Learning

References
Abay, N. C. et al. (2019). “Privacy Preserving Synthetic Data Release Using Deep

Learning”. In: Machine Learning and Knowledge Discovery in Databases. Ed.
by M. Berlingerio et al. Cham: Springer International Publishing, pp. 510–
526. isbn: 978-3-030-10925-7.

Andriole, K. P. (2014). “Security of Electronic Medical Information and Patient
Privacy : What You Need to Know”. In: Journal of the American College
of Radiology 11.12, pp. 1212–1216. issn: 1546-1440. doi: 10.1016/j.jacr.
2014.09.011. url: http://dx.doi.org/10.1016/j.jacr.2014.09.011.

Augenstein, S. et al. (2019). “Generative Models for Effective ML on Private,
Decentralized Datasets”. In: CoRR abs/1911.06679. arXiv: 1911.06679. url:
http://arxiv.org/abs/1911.06679.

Bagdasaryan, E. et al. (2018). “How To Backdoor Federated Learning”. In: 1.
issn: 0007-1250. doi: 10.1561/2200000016. arXiv: 1807.00459. url: http:
//arxiv.org/abs/1807.00459.

Bambauer, J., Muralidhar, K., and Sarathy, R. (2014). “Foolś Gold : An Illus-
trated Critique of Differential Privacy”. In:

Beaulieu-Jones, B. K. et al. (2019). “Privacy-preserving generative deep neu-
ral networks support clinical data sharing”. In: Circulation: Cardiovascu-
lar Quality and Outcomes 12.7, pp. 1–10. issn: 19417705. doi: 10.1161/
CIRCOUTCOMES.118.005122.

Beyan, O. et al. (2020). “Distributed Analytics on Sensitive Medical Data: The
Personal Health Train”. In: Data Intelligence 2.1-2, pp. 96–107. doi: 10 .
1162/dint_a_00032. url: https://www.mitpressjournals.org/doi/abs/
10.1162/dint_a_00032.

Bonawitz, K. et al. (2019). “Towards Federated Learning at Scale: System De-
sign”. In: issn: 2331-8422. arXiv: 1902.01046. url: http://arxiv.org/
abs/1902.01046.

Bonomi, L., Huang, Y., and Ohno-Machado, L. (2020). “Privacy challenges and
research opportunities for genomic data sharing”. In: Nature Genetics 52.7,
pp. 646–654. issn: 1061-4036. doi: 10.1038/s41588- 020- 0651- 0. url:
http://www.nature.com/articles/s41588-020-0651-0.

Cho, H., Wu, D. J., and Berger, B. (2018). “Secure genome-wide association anal-
ysis using multiparty computation”. In: Nature Biotechnology 36.6, pp. 547–
551. issn: 15461696. doi: 10.1038/nbt.4108. url: http://www.ncbi.
nlm.nih.gov/pubmed/29734293%20http://www.pubmedcentral.nih.gov/
articlerender.fcgi?artid=PMC5990440.

Cramer, R., Damgård, I. B., and Nielsen, J. B. (2015). Secure Multiparty Com-
putation and Secret Sharing. Cambridge University Press. doi: 10.1017/
CBO9781107337756.

Dobraunig, C. et al. (2021). “Pasta: A Case for Hybrid Homomorphic Encryp-
tion; Pasta: A Case for Hybrid Homomorphic Encryption”. In: pp. 1–42. url:

26

https://doi.org/10.1016/j.jacr.2014.09.011
https://doi.org/10.1016/j.jacr.2014.09.011
http://dx.doi.org/10.1016/j.jacr.2014.09.011
https://arxiv.org/abs/1911.06679
http://arxiv.org/abs/1911.06679
https://doi.org/10.1561/2200000016
https://arxiv.org/abs/1807.00459
http://arxiv.org/abs/1807.00459
http://arxiv.org/abs/1807.00459
https://doi.org/10.1161/CIRCOUTCOMES.118.005122
https://doi.org/10.1161/CIRCOUTCOMES.118.005122
https://doi.org/10.1162/dint_a_00032
https://doi.org/10.1162/dint_a_00032
https://www.mitpressjournals.org/doi/abs/10.1162/dint_a_00032
https://www.mitpressjournals.org/doi/abs/10.1162/dint_a_00032
https://arxiv.org/abs/1902.01046
http://arxiv.org/abs/1902.01046
http://arxiv.org/abs/1902.01046
https://doi.org/10.1038/s41588-020-0651-0
http://www.nature.com/articles/s41588-020-0651-0
https://doi.org/10.1038/nbt.4108
http://www.ncbi.nlm.nih.gov/pubmed/29734293%20http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5990440
http://www.ncbi.nlm.nih.gov/pubmed/29734293%20http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5990440
http://www.ncbi.nlm.nih.gov/pubmed/29734293%20http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5990440
https://doi.org/10.1017/CBO9781107337756
https://doi.org/10.1017/CBO9781107337756

References

https://eur- lex.europa.eu/legal- content/EN/ALL/?uri=celex:
32016R0679.

Domingo-Ferrer, J., Sánchez, D., and Blanco-Justicia, A. (2021). “The limits of
differential privacy (and its misuse in data release and machine learning)”.
In: Communications of the ACM 64.7, pp. 33–35. issn: 0001-0782. doi: 10.
1145/3433638. arXiv: 2011.02352.

Drysdale, R. et al. (2020). “The ELIXIR Core Data Resources : fundamental
infrastructure for the life sciences”. In: 36.January, pp. 2636–2642. doi: 10.
1093/bioinformatics/btz959.

Dwork, C. and Roth, A. (2014). “The Algorithmic Foundations of Differential
Privacy”. In: 9.2013, pp. 211–407. doi: 10.1561/0400000042.

Enthoven, D. and Al-Ars, Z. (2021). “An Overview of Federated Deep Learn-
ing Privacy Attacks and Defensive Strategies”. In: Federated Learning Sys-
tems: Towards Next-Generation AI. Ed. by M. H. u. Rehman and M. M.
Gaber. Cham: Springer International Publishing, pp. 173–196. isbn: 978-3-
030-70604-3. doi: 10.1007/978-3-030-70604-3_8. url: https://doi.
org/10.1007/978-3-030-70604-3_8.

Feldman, D. et al. (2017). “Coresets for differentially private k-means clustering
and applications to privacy in mobile sensor networks”. In: Proceedings -
2017 16th ACM/IEEE International Conference on Information Processing
in Sensor Networks, IPSN 2017, pp. 3–15. doi: 10.1145/3055031.3055090.

Fereidooni, H. et al. (2017). “Fitness Trackers: Fit for Health but Unfit for Secu-
rity and Privacy”. In: Proceedings - 2017 IEEE 2nd International Conference
on Connected Health: Applications, Systems and Engineering Technologies,
CHASE 2017, pp. 19–24. doi: 10.1109/CHASE.2017.54.

Feyissa, G. T. et al. (2019). “Reducing HIV-related stigma and discrimination in
healthcare settings: A systematic review of quantitative evidence”. In: PLoS
ONE 14.1, pp. 1–23. issn: 19326203. doi: 10.1371/journal.pone.0211298.

Ford, W. (2014). Numerical Linear Algebra with Applications : Using MATLAB.
Elsevier Science & Technology.

Fränti, P. and Sieranoja, S. (2019). “How much can k-means be improved by
using better initialization and repeats?” In: Pattern Recognition 93, pp. 95–
112. issn: 00313203. doi: 10.1016/j.patcog.2019.04.014.

Galinsky, K. J. et al. (2016). “Fast Principal-Component Analysis Reveals Con-
vergent Evolution of ADH1B in Europe and East Asia”. In: The American
Journal of Human Genetics 98.3, pp. 456–472. issn: 00029297. doi: 10 .
1016/j.ajhg.2015.12.022. url: http://dx.doi.org/10.1016/j.ajhg.
2015.12.022%20https://linkinghub.elsevier.com/retrieve/pii/
S0002929716000033.

Gaye, A. et al. (2014). “DataSHIELD: Taking the analysis to the data, not
the data to the analysis”. In: International Journal of Epidemiology 43.6,
pp. 1929–1944. issn: 14643685. doi: 10.1093/ije/dyu188.

27

https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex:32016R0679
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex:32016R0679
https://doi.org/10.1145/3433638
https://doi.org/10.1145/3433638
https://arxiv.org/abs/2011.02352
https://doi.org/10.1093/bioinformatics/btz959
https://doi.org/10.1093/bioinformatics/btz959
https://doi.org/10.1561/0400000042
https://doi.org/10.1007/978-3-030-70604-3_8
https://doi.org/10.1007/978-3-030-70604-3_8
https://doi.org/10.1007/978-3-030-70604-3_8
https://doi.org/10.1145/3055031.3055090
https://doi.org/10.1109/CHASE.2017.54
https://doi.org/10.1371/journal.pone.0211298
https://doi.org/10.1016/j.patcog.2019.04.014
https://doi.org/10.1016/j.ajhg.2015.12.022
https://doi.org/10.1016/j.ajhg.2015.12.022
http://dx.doi.org/10.1016/j.ajhg.2015.12.022%20https://linkinghub.elsevier.com/retrieve/pii/S0002929716000033
http://dx.doi.org/10.1016/j.ajhg.2015.12.022%20https://linkinghub.elsevier.com/retrieve/pii/S0002929716000033
http://dx.doi.org/10.1016/j.ajhg.2015.12.022%20https://linkinghub.elsevier.com/retrieve/pii/S0002929716000033
https://doi.org/10.1093/ije/dyu188

1. Federated Learning

Gootjes-Dreesbach, L. et al. (2020). “Variational Autoencoder Modular Bayesian
Networks for Simulation of Heterogeneous Clinical Study Data”. In: Frontiers
in Big Data 3.May, pp. 1–15. issn: 2624909X. doi: 10.3389/fdata.2020.
00016.

Halko, N., Martinsson, P. G., and Tropp, J. A. (2011). “Finding structure with
randomness: probabilistic algorithms for constructing approximate matrix
decompositions”. In: pp. 1–74. arXiv: arXiv:0909.4061v2.

Hard, A. et al. (2018). “Federated Learning for Mobile Keyboard Prediction”. In:
arXiv: 1811.03604. url: http://arxiv.org/abs/1811.03604.

Hastie, T. T. (2017). “The Elements of Statistical Learning Second Edition”.
In: Math. Intell. 27.2, pp. 83–85. issn: 03436993. doi: 111. eprint: arXiv:
1011.1669v3.

Hittmeir, M., Ekelhart, A., and Mayer, R. (2019). “On the utility of synthetic
data: An empirical evaluation on machine learning tasks”. In: Pervasive-
Health: Pervasive Computing Technologies for Healthcare. issn: 21531633.
doi: 10.1145/3339252.3339281.

Huang, L. et al. (2019). “Patient clustering improves efficiency of federated ma-
chine learning to predict mortality and hospital stay time using distributed
electronic medical records”. In: Journal of Biomedical Informatics 99.Septem-
ber, p. 103291. issn: 15320464. doi: 10.1016/j.jbi.2019.103291. url:
https://doi.org/10.1016/j.jbi.2019.103291.

Jolliffe, I. (2002). Principal Component Analysis. Springer-Verlag. doi: 10.1007/
b98835. url: https://doi.org/10.1007/b98835.

Kairouz, P. et al. (2021). “Advances and open problems in federated learning”.
In: Foundations and Trends in Machine Learning 14.1-2, pp. 1–210. issn:
19358245. doi: 10.1561/2200000083. arXiv: 1912.04977.

Karim, M. R. et al. (2021). “Deep learning-based clustering approaches for bioin-
formatics”. In: Briefings in Bioinformatics 22.1, pp. 393–415. issn: 14774054.
doi: 10.1093/bib/bbz170.

Kerr, K. et al. (2020). “A scoping review and proposed workflow for multi-omic
rare disease research”. In: Orphanet Journal of Rare Diseases 15.1, pp. 1–18.
issn: 17501172. doi: 10.1186/s13023-020-01376-x.

Lauter, K., Naehrig, M., and Vaikuntanathan, V. (2011). “Can homomorphic en-
cryption be practical?” In: Proceedings of the ACM Conference on Computer
and Communications Security, pp. 113–124. issn: 15437221. doi: 10.1145/
2046660.2046682.

Li, F. et al. (2021). “Positive-unlabeled learning in bioinformatics and computa-
tional biology: a brief review”. In: Briefings in Bioinformatics 23.September
2021, pp. 1–13. issn: 1467-5463. doi: 10.1093/bib/bbab461.

Li, Q. et al. (2019). “A Survey on Federated Learning Systems: Vision, Hype and
Reality for Data Privacy and Protection”. In: CoRR abs/1907.09693. arXiv:
1907.09693. url: http://arxiv.org/abs/1907.09693.

28

https://doi.org/10.3389/fdata.2020.00016
https://doi.org/10.3389/fdata.2020.00016
https://arxiv.org/abs/arXiv:0909.4061v2
https://arxiv.org/abs/1811.03604
http://arxiv.org/abs/1811.03604
https://doi.org/111
arXiv:1011.1669v3
arXiv:1011.1669v3
https://doi.org/10.1145/3339252.3339281
https://doi.org/10.1016/j.jbi.2019.103291
https://doi.org/10.1016/j.jbi.2019.103291
https://doi.org/10.1007/b98835
https://doi.org/10.1007/b98835
https://doi.org/10.1007/b98835
https://doi.org/10.1561/2200000083
https://arxiv.org/abs/1912.04977
https://doi.org/10.1093/bib/bbz170
https://doi.org/10.1186/s13023-020-01376-x
https://doi.org/10.1145/2046660.2046682
https://doi.org/10.1145/2046660.2046682
https://doi.org/10.1093/bib/bbab461
https://arxiv.org/abs/1907.09693
http://arxiv.org/abs/1907.09693

References

Liu, Y., Fan, T., et al. (2021). “FATE: An industrial grade platform for collabora-
tive learning with data protection”. In: Journal of Machine Learning Research
22, pp. 1–6. issn: 15337928.

Liu, Y., Ma, Z., et al. (2020). “Privacy-preserving fe derate d k -means for proac-
tive caching in next generation cellular networks”. In: Information Sciences
521, pp. 14–31. doi: 10.1016/j.ins.2020.02.042. url: https://doi.org/
10.1016/j.ins.2020.02.042.

Lloyd, S. P. (1982). “Least Squares Quantization in PCM”. In: IEEE Transactions
on Information Theory 28.2, pp. 129–137. issn: 15579654. doi: 10.1109/TIT.
1982.1056489.

Lopez, R. et al. (2018). “Deep generative modeling for single-cell transcriptomics”.
In: Nature Methods 15.12, pp. 1053–1058. issn: 15487105. doi: 10.1038/
s41592-018-0229-2.

Lyu, L. et al. (2020). “Threats to Federated Learning”. In: Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics) 12500 LNCS, pp. 3–16. issn: 16113349.
doi: 10.1007/978-3-030-63076-8_1. arXiv: arXiv:2003.02133v1.

Machanavajjhala, A. et al. (2006). “L-diversity: privacy beyond k-anonymity”. In:
22nd International Conference on Data Engineering (ICDE’06), pp. 24–24.
doi: 10.1109/ICDE.2006.1.

MacQueen, J. (1967). “SOME METHODS FOR CLASSIFICATION AND ANAL-
YSIS OF MULTIVARIATE OBSERVATIONS”. In: 233.233, pp. 281–297.

Marfoq, O. et al. (2020). “Throughput-optimal topology design for cross-silo
federated learning”. In: Advances in Neural Information Processing Systems
2020-December.NeurIPS. issn: 10495258. arXiv: 2010.12229.

Matschinske, J. et al. (2021). “The FeatureCloud AI Store for Federated Learning
in Biomedicine and Beyond”. In: pp. 1–32.

Mcinnes, L., Healy, J., and Melville, J. (2018). “UMAP : Uniform Manifold Ap-
proximation and Projection for Dimension Reduction arXiv : 1802 . 03426v2
[stat . ML] 6 Dec 2018”. In: arXiv: arXiv:1802.03426v2.

McMahan, H. B. et al. (2017). “Communication-Efficient Learning of Deep Net-
works from Decentralized Data”. In: 54, p. 10.

Mills, M. C. and Rahal, C. (2019). “A scientometric review of genome-wide as-
sociation studies”. In: Communications Biology 2.1. issn: 23993642. doi: 10.
1038/s42003-018-0261-x. url: http://dx.doi.org/10.1038/s42003-
018-0261-x.

Nasirigerdeh, R. et al. (2020). “sPLINK: A Federated, Privacy-Preserving Tool as
a Robust Alternative to Meta-Analysis in Genome-Wide Association Studies”.
In: 6.Figure 1, pp. 1–16. doi: 10.1101/2020.06.05.136382.

Nasr, M., Shokri, R., and Houmansadr, A. (2019). “Comprehensive Privacy Anal-
ysis of Deep Learning”. In: 2019 IEEE Symposium on Security and Privacy
(SP), pp. 739–753. issn: 10816011. arXiv: arXiv:1812.00910v1.

29

https://doi.org/10.1016/j.ins.2020.02.042
https://doi.org/10.1016/j.ins.2020.02.042
https://doi.org/10.1016/j.ins.2020.02.042
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1038/s41592-018-0229-2
https://doi.org/10.1038/s41592-018-0229-2
https://doi.org/10.1007/978-3-030-63076-8_1
https://arxiv.org/abs/arXiv:2003.02133v1
https://doi.org/10.1109/ICDE.2006.1
https://arxiv.org/abs/2010.12229
https://arxiv.org/abs/arXiv:1802.03426v2
https://doi.org/10.1038/s42003-018-0261-x
https://doi.org/10.1038/s42003-018-0261-x
http://dx.doi.org/10.1038/s42003-018-0261-x
http://dx.doi.org/10.1038/s42003-018-0261-x
https://doi.org/10.1101/2020.06.05.136382
https://arxiv.org/abs/arXiv:1812.00910v1

1. Federated Learning

Nguyen, D. C. et al. (2021). “Federated Learning for Smart Healthcare: A Sur-
vey”. In: CoRR abs/2111.08834. arXiv: 2111.08834. url: https://arxiv.
org/abs/2111.08834.

Paleyes, A., Urma, R.-G., and Lawrence, N. D. (2020). “Challenges in Deploying
Machine Learning: a Survey of Case Studies”. In: pp. 1–21. arXiv: 2011.
09926.

Pallas, F. and Grambow, M. (2018). “Three Tales of Disillusion: Benchmarking
Property Preserving Encryption Schemes”. In: Trust, Privacy and Security
in Digital Business. Ed. by S. Furnell, H. Mouratidis, and G. Pernul. Cham:
Springer International Publishing, pp. 39–54. isbn: 978-3-319-98385-1.

Passerat-Palmbach, J. et al. (2019). “A blockchain-orchestrated Federated Learn-
ing architecture for healthcare consortia”. In: arXiv: 1910.12603. url: http:
//arxiv.org/abs/1910.12603.

Pustozerova, A. and Mayer, R. (2021). “Information Leaks in Federated Learn-
ing”. In: February, pp. 1–6. doi: 10.14722/diss.2020.23004.

R Core Team (2021). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing. Vienna, Austria. url: https://
www.R-project.org/.

Rees, C. A. et al. (2019). “Noncompletion and nonpublication of trials studying
rare diseases: A cross-sectional analysis”. In: PLoS Medicine 16.11, pp. 1–16.
issn: 15491676. doi: 10.1371/journal.pmed.1002966.

Rieke, N. et al. (2020). “The future of digital health with federated learning”. In:
npj Digital Medicine, pp. 1–7. issn: 2398-6352. doi: 10.1038/s41746-020-
00323-1. url: http://dx.doi.org/10.1038/s41746-020-00323-1.

Roy, A. G. et al. (2021). “BrainTorrent : A Peer-to-Peer Environment for Decen-
tralized Federated Learning”. In: pp. 1–9. arXiv: arXiv:1905.06731v1.

Ryffel, T. et al. (2018). “A generic framework for privacy preserving deep learn-
ing”. In: arXiv: 1811.04017. url: http://arxiv.org/abs/1811.04017.

Sattler, F., Möller, K. R., and Samek, W. (2019). “Clustered federated learn-
ing: Model-Agnostic distributed multi-Task optimization under privacy con-
straints”. In: arXiv, pp. 1–16. issn: 23318422. doi: 10.1109/tnnls.2020.
3015958. arXiv: 1910.01991.

Sheller, M. J., Edwards, B., et al. (2020). “Federated learning in medicine : facil-
itating multi ‑ institutional collaborations without sharing patient data”. In:
Scientific Reports, pp. 1–12. issn: 2045-2322. doi: 10.1038/s41598-020-
69250-1. url: https://doi.org/10.1038/s41598-020-69250-1.

Sheller, M. J., Reina, G. A., et al. (2019). “Multi-institutional Deep Learning
Modeling Without Sharing Patient Data: A Feasibility Study on Brain Tu-
mor Segmentation”. In: Brainlesion: Glioma, Multiple Sclerosis, Stroke and
Traumatic Brain Injuries. Ed. by A. Crimi et al. Cham: Springer Interna-
tional Publishing, pp. 92–104. isbn: 978-3-030-11723-8.

Sirugo, G., Williams, S. M., and Tishkoff, S. A. (2019). “The Missing Diversity
in Human Genetic Studies”. In: Cell 177.1, pp. 26–31. issn: 10974172. doi:

30

https://arxiv.org/abs/2111.08834
https://arxiv.org/abs/2111.08834
https://arxiv.org/abs/2111.08834
https://arxiv.org/abs/2011.09926
https://arxiv.org/abs/2011.09926
https://arxiv.org/abs/1910.12603
http://arxiv.org/abs/1910.12603
http://arxiv.org/abs/1910.12603
https://doi.org/10.14722/diss.2020.23004
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.1371/journal.pmed.1002966
https://doi.org/10.1038/s41746-020-00323-1
https://doi.org/10.1038/s41746-020-00323-1
http://dx.doi.org/10.1038/s41746-020-00323-1
https://arxiv.org/abs/arXiv:1905.06731v1
https://arxiv.org/abs/1811.04017
http://arxiv.org/abs/1811.04017
https://doi.org/10.1109/tnnls.2020.3015958
https://doi.org/10.1109/tnnls.2020.3015958
https://arxiv.org/abs/1910.01991
https://doi.org/10.1038/s41598-020-69250-1
https://doi.org/10.1038/s41598-020-69250-1
https://doi.org/10.1038/s41598-020-69250-1

References

10.1016/j.cell.2019.02.048. url: https://doi.org/10.1016/j.cell.
2019.02.048.

Sluciak, O. et al. (2012). “Distributed Gram-Schmidt orthogonalization based
on dynamic consensus”. In: Conference Record - Asilomar Conference on
Signals, Systems and Computers, pp. 1207–1211. issn: 10586393. doi: 10.
1109/ACSSC.2012.6489213.

Snyder, P. (2014). “Yao ’ s Garbled Circuits : Recent Directions and Implemen-
tations”. In:

Sun, Z. et al. (2019). “Can You Really Backdoor Federated Learning?” In: issn:
2331-8422. arXiv: 1911.07963. url: http://arxiv.org/abs/1911.07963.

Sweeney, L. (1997). “Weaving Technology and Policy Together to Maintain Con-
fidentiality”. In: Journal of Law, Medicine and Ethics 25.2-3, pp. 98–110.
issn: 10731105. doi: 10.1111/j.1748-720X.1997.tb01885.x.

Tan, A. Z. et al. (2021). “Towards Personalized Federated Learning”. In: arXiv:
2103.00710. url: http://arxiv.org/abs/2103.00710.

Theis, F. J. (2019). “Current best practices in single-cell RNA-seq analysis : a
tutorial”. In: Mol Syst Biol. doi: 10.15252/msb.20188746.

Torkzadehmahani, R. et al. (2022). “Privacy-Preserving Artificial Intelligence
Techniques in Biomedicine”. In: Methods of Information in Medicine. issn:
0026-1270. doi: 10.1055/s-0041-1740630. arXiv: 2007.11621. url: http:
//arxiv.org/abs/2007.11621%20http://dx.doi.org/10.1055/s-0041-
1740630%20http://www.thieme-connect.de/DOI/DOI?10.1055/s-0041-
1740630.

Traag, V. A., Waltman, L., and Eck, N. J. van (2019). “From Louvain to Leiden:
guaranteeing well-connected communities”. In: Scientific Reports 9.1, pp. 1–
12. issn: 20452322. doi: 10.1038/s41598-019-41695-z. arXiv: 1810.08473.

ukbiobank.ac.uk (2022). About us — ukbiobank.ac.uk. https://www.ukbiobank.
ac.uk/learn-more-about-uk-biobank/about-us. [Accessed 04-01-2022].

Usynin, D. et al. (2021). “Adversarial interference and its mitigations in privacy-
preserving collaborative machine learning”. In: Nature Machine Intelligence
3.9, pp. 749–758. issn: 25225839. doi: 10.1038/s42256-021-00390-3. url:
http://dx.doi.org/10.1038/s42256-021-00390-3.

Veen, E. B. van (2018). “Observational health research in Europe: understanding
the General Data Protection Regulation and underlying debate”. In: European
Journal of Cancer 104, pp. 70–80. issn: 18790852. doi: 10.1016/j.ejca.
2018.09.032. url: https://doi.org/10.1016/j.ejca.2018.09.032.

Wainakh, A. et al. (2021). “Federated Learning Attacks Revisited: A Critical
Discussion of Gaps, Assumptions, and Evaluation Setups”. In: arXiv: 2111.
03363. url: http://arxiv.org/abs/2111.03363.

Warnat-Herresthal, S. et al. (2021). “Swarm Learning for decentralized and con-
fidential clinical machine learning”. In: Nature 594.7862, pp. 265–270. issn:
14764687. doi: 10.1038/s41586-021-03583-3.

31

https://doi.org/10.1016/j.cell.2019.02.048
https://doi.org/10.1016/j.cell.2019.02.048
https://doi.org/10.1016/j.cell.2019.02.048
https://doi.org/10.1109/ACSSC.2012.6489213
https://doi.org/10.1109/ACSSC.2012.6489213
https://arxiv.org/abs/1911.07963
http://arxiv.org/abs/1911.07963
https://doi.org/10.1111/j.1748-720X.1997.tb01885.x
https://arxiv.org/abs/2103.00710
http://arxiv.org/abs/2103.00710
https://doi.org/10.15252/msb.20188746
https://doi.org/10.1055/s-0041-1740630
https://arxiv.org/abs/2007.11621
http://arxiv.org/abs/2007.11621%20http://dx.doi.org/10.1055/s-0041-1740630%20http://www.thieme-connect.de/DOI/DOI?10.1055/s-0041-1740630
http://arxiv.org/abs/2007.11621%20http://dx.doi.org/10.1055/s-0041-1740630%20http://www.thieme-connect.de/DOI/DOI?10.1055/s-0041-1740630
http://arxiv.org/abs/2007.11621%20http://dx.doi.org/10.1055/s-0041-1740630%20http://www.thieme-connect.de/DOI/DOI?10.1055/s-0041-1740630
http://arxiv.org/abs/2007.11621%20http://dx.doi.org/10.1055/s-0041-1740630%20http://www.thieme-connect.de/DOI/DOI?10.1055/s-0041-1740630
https://doi.org/10.1038/s41598-019-41695-z
https://arxiv.org/abs/1810.08473
https://www.ukbiobank.ac.uk/learn-more-about-uk-biobank/about-us
https://www.ukbiobank.ac.uk/learn-more-about-uk-biobank/about-us
https://doi.org/10.1038/s42256-021-00390-3
http://dx.doi.org/10.1038/s42256-021-00390-3
https://doi.org/10.1016/j.ejca.2018.09.032
https://doi.org/10.1016/j.ejca.2018.09.032
https://doi.org/10.1016/j.ejca.2018.09.032
https://arxiv.org/abs/2111.03363
https://arxiv.org/abs/2111.03363
http://arxiv.org/abs/2111.03363
https://doi.org/10.1038/s41586-021-03583-3

1. Federated Learning

Wu, S. X. et al. (2018). “A Review of Distributed Algorithms for Principal Com-
ponent Analysis”. In: Proceedings of the IEEE 106.8, pp. 1321–1340. issn:
00189219. doi: 10.1109/JPROC.2018.2846568.

Wu, X. et al. (2021). “A novel privacy-preserving federated genome-wide associ-
ation study framework and its application in identifying potential risk vari-
ants in ankylosing spondylitis”. In: Briefings in Bioinformatics 22.3, pp. 1–
10. issn: 14774054. doi: 10.1093/bib/bbaa090.

Xu, J. et al. (2021). “Federated Learning for Healthcare Informatics”. In: Journal
of Healthcare Informatics Research 5.1, pp. 1–19. issn: 2509498X. doi: 10.
1007/s41666-020-00082-4. arXiv: 1911.06270.

Yoo, J. H. et al. (2021). “Federated Learning: Issues in Medical Application”. In:
pp. 3–22. issn: 16113349. doi: 10.1007/978- 3- 030- 91387- 8_1. arXiv:
2109.00202.

Zolotareva, O. et al. (2020). “Flimma: a federated and privacy-preserving tool
for differential gene expression analysis”. In: arXiv: 2010.16403. url: http:
//arxiv.org/abs/2010.16403.

32

https://doi.org/10.1109/JPROC.2018.2846568
https://doi.org/10.1093/bib/bbaa090
https://doi.org/10.1007/s41666-020-00082-4
https://doi.org/10.1007/s41666-020-00082-4
https://arxiv.org/abs/1911.06270
https://doi.org/10.1007/978-3-030-91387-8_1
https://arxiv.org/abs/2109.00202
https://arxiv.org/abs/2010.16403
http://arxiv.org/abs/2010.16403
http://arxiv.org/abs/2010.16403

Chapter 2
Manuscript 1

Federated Horizontally
Partitioned Principal Component

Analysis for Biomedical
Applications

33

Journal Title Here, 2019, 1–12

doi: DOI HERE

Advance Access Publication Date: Day Month Year

Paper

Federated Horizontally Partitioned Principal
Component Analysis for Biomedical Applications

Anne Hartebrodt1,∗ and Richard Röttger1

1Department of Mathematics and Computer Science, University of Southern Denmark, Campusvej 55, 5230

Odense, Denmark

∗Corresponding author. hartebrodt@imada.sdu.dk

FOR PUBLISHER ONLY Received on Date Month Year; revised on Date Month Year; accepted on Date Month Year

Abstract

Motivation: Federated learning enables privacy preserving machine learning in the medical domain because

the sensitive patient data remains with the owner and only parameters are exchanged between the data

holders. The federated scenario introduces specific challenges related to the decentralized nature of the

data, such as batch effects and differences in study population between the sites. Here, we investigate the

challenges of moving classical analysis methods to the federated domain, specifically principal component

analysis, a versatile and widely used tool, often serving as an initial step in machine learning and visualization

workflows. We provide implementations of different federated PCA algorithms and evaluate them regarding

their accuracy for high dimensional biological data using realistic sample distributions over multiple data

sites, and their ability to preserve downstream analyses.

Results: Federated subspace iteration converges to the centralized solution even for unfavorable data

distributions, while approximate methods introduce error. Larger sample sizes at the study sites lead to better

accuracy of the approximate methods. Approximate methods may be sufficient for coarse data visualization,

but is vulnerable to outliers and batch effects. Before the analysis, the version of PCA, as well as the number

of eigenvectors should be considered carefully to avoid unnecessary communication overhead.

Availability: Simulation code and notebooks for federated PCA can be found at https://gitlab.

com/roettgerlab/federatedPCA; the code for the federated app is available at https://github.com/

AnneHartebrodt/fc-federated-pca

Contact: hartebrodt@imada.sdu.dk

Supplementary information: Supplementary data are available at Bioinformatics Advances online.

Key words: PCA, horizontal data partitioning, federated machine learning, unsupervised learning

Introduction

Federated learning (FL) has recently gained attention in the

machine learning (ML) community as a privacy preserving

alternative to centralized computation. Contrary to classical

machine learning, where the data is consolidated into a single

machine or cloud, the data stays with the owner during

the entire learning process and only model parameters are

exchanged between the participants. The concept has potential

applications in domains where the volume of data is too large

to be stored at a single location, and in domains where the

owners have concerns about losing agency over their data or

are not allowed to share their data. This is especially important

in the medical domain, where, due to patient confidentiality,

doctors and hospitals are rightfully unable or unwilling to share

their data with a third party. Outside of academic applications

or in hybrid settings, federated learning can enable (industry)

partners who are unwilling to disclose their raw data, but willing

to join an analysis, to contribute to studies. These scenarios are

cases of cross-silo federated learning where larger chunks of data

are stored in ’data silos’. Another type of federated learning is

cross-device federated learning popular in particular for mobile

applications, where each participant has only access to their own

data (for example on their phone). Another, complementary

approach for private data analysis currently discussed is the

generation of synthetic data with the same properties as the raw

data. This approach is a valid option if sufficiently trustworthy

generators can be created. The advantage of FL is that it is a

c© The Author 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1

Article under review at Bioinformatics Advances at time of submission

2 Hartebrodt et al.

generic approach while synthetic data could suffer the biases of

the training data and crucial, subtle information can potentially

be lost in the generation process.

In the last decade, high throughput techniques have been

routinely used to generate vast amounts of biomedical data

[25]. Nevertheless, to this day, studies are commonly reporting

a lack of data as a main limitation of their study, resulting

in insufficiently validated, and potentially confounded, or

unstable predictors [21]. An investigation of the causes for trial

termination in rare diseases showed that 30% of non-completed

clinical trials were terminated due to insufficient patient accrual

[31]. Furthermore, many diagnostic tools are biased towards

the predominant demographic at the site of the study, leading

to potentially inapplicable results in other demographic groups

posing an ethical problem [41]. A very prominent example of this

bias are Genome-Wide Association studies which suffer from a

massive bias towards population of European ancestry [34] and

very small cohorts otherwise. This problem arises because the

data generated in a research facility or hospital may only leave

this institution under restricted conditions [37]. To overcome

this challenge, federated learning has been brought forward as a

solution to work with sensitive medical data without breaching

patient privacy.

A popular method for the analysis of biomedical data is

principal component analysis (PCA). It is a dimensionality

reduction technique frequently used for count data, including

bulk and single cell transcriptome data [36]. Several algorithms

have been proposed for PCA in a federated setting. However,

these algorithms were mainly evaluated using ’standard’ test

data sets and rarely with biomedical applications in mind. For

instance, where the popular MNIST [22] data set comprises 60,000

samples with 784 pixels (dimensions), bulk transcriptome data

usually only has a few hundred samples but measurements for

about 20000 coding genes. The dimensionalities of these data

sets are fundamentally different with large n, moderate d in the

classical case and small n, large d in the biomedical scenario.

To enable the routine use of federated PCA in biomedicine,

the existing algorithms must be evaluated for their suitability

to analyze medical data. A major concern is the accuracy

of the methods, given that the outcome of the studies will

be included into medical decision making. Here, we will

investigate the suitability of various approaches to federated

PCA with varying, but realistic sample distributions using

data from The Cancer Genome Atlas (TCGA). TCGA is a

large scale project with multiple participating research centers

[40] which profiled various cancer types using different OMICS

technologies, including genome and transcriptome sequencing.

According to a survey on multi-omics studies on rare diseases

many of the cancers included indeed count as a rare disease [20].

The decentralized nature of the TCGA sampling process makes

it suitable to study the feasibility of federated learning using

real medical data: At the tissue source site (TSS) a sample was

collected, and the RNA was extracted. The processed sample

was then shipped to a central sequencing center, sequenced,

and processed according to a standardized protocol. In this

setup, the sequencing was done at a central facility, which is

a slight deviation from a truly federated sample acquisition

process where every TSS would perform the sequencing itself.

However, it is a realistic example with respect to the number

and distribution of participants, potential batch effects through

different population demographics per sample site, and batch

effects due to the sample preparation as it would occur in a

truly federated analysis. Additionally, we use simulated single

cell data to illustrate the problem in a practical fashion. Single

cell studies inherently contain more ’samples’, as each individual

cell constitutes an observation. While this might alleviate the

issue of limited sample availability, other problems such as batch

effects in the data remain.

Lastly, many methods exist only on paper, making it

hard to judge the practicalities of the suggested approaches.

Computational biology is a notoriously heterogeneous research

field with many practitioners not having a profound background

in computer science and programming. Here, we provide

simulation code and a federated app which allows users to run

federated PCA. Based on our considerations, we support the

users with our derived guidelines to choose the appropriate

algorithm for their purpose.

Overall, our contributions are:

• A comprehensive overview of different federated PCA

algorithms, including simulation code and a federated app.

• Performance comparisons of those approaches including

communication overhead and different accuracy metrics.

• Evaluation of the algorithms using realistic data partitions

derived from the sample distributions from TCGA.

• A practical illustration of the application of federated PCA

using single-cell data, in particular to highlight the feasibility

and potential problems of federated biomedical studies.

• Guidelines for the selection of the best algorithmic approach.

The remainder of this article is structured as follows. In

section 2 we discuss the relevant data, algorithms and test

setup. In section 3.1 we describe our theoretical and practical

findings. Section 4 puts the results into perspective and provides

guidelines for the interested reader, and section 5 concludes the

work.

Data owners

Untrusted aggregator

Local
data

Global
model

Data owners

Untrusted aggregator

Local
models

Global
model

Fig. 1: Comparison of cloud learning and federated learning. In

cloud learning (left panel) the data is consolidated at a central

server which computes the global model. In federated learning

(right panel), the different sites (e.g., hospitals) calculate a local

model on their private data and send only the model parameters

to an untrusted aggregator. The global model is computed and

can be sent back to the local sites.

Article under review at Bioinformatics Advances at time of submission

Federated PCA for horizontally partitioned data 3

Material and Methods

Distributed data model

The distributed setting for the remainder of the paper is as

follows: The data A is stored in s distinct subsets A = A1 ∪
· · · ∪ As at s different sites (e.g., hospitals) and constitutes

a total of n patients with d dimensions. Rows correspond to

patients, columns correspond to variables. Every site has a

different subset of ns patients but the full set of observed

variables. Using terminology established by [32] and [43], we

speak of distributed rows or horizontal partitioning of the data.

Due to privacy constraints the sites are only allowed to exchange

aggregated parameters. We are assuming a client-server/star-

like architecture [35, 17], where sites communicate with a

central server which performs the aggregation step. Peer-to-

peer architectures, such as proposed in the concept of swarm

learning and the personal health train [39, 6] could be used at

the cost of additional communication steps and conceptually

more involved protocols. The data sets at the distant sites will

be called local data sets and the parameters or models learned

using this data will be called local parameters or local models,

while the final aggregated model will be called global model and

considered optimal when it equals the result of the conventional

model, the centralized model, calculated on all data.

High dimensional biomedical data

One common property of OMICS data is that it typically

contains significantly more features than samples are available,

i.e, d >> n.The dimensionality of OMICS data can be quite

unfavorable, with a high number of features compared to the

number of available samples (d > n). Although the trend

towards more granular (e.g. single cell) analyses alleviates this

problem, and PCA is a method applied to all types of data,

there are applications where the number of samples remains

low. Therefore, it is interesting to evaluate, how well federated

methods perform on data with a high number of features

compared to the number of samples. This setting is rarely

considered in typical test scenarios for new algorithms, where

usually the sample size of the test data exceeds the number

of dimensions. For this study we selected all publicly available

gene expression studies on TCGA in form of the processed

count tables downloaded from the web repository (https:

//www.cancer.gov/tcga). These contain FPKM normalized

counts, according to the unified TCGA pipeline. We scaled

and normalized the data to unit variance, but did no further

processing. We chose to divide the data according to the cancer

type annotated in TCGA. We narrowed down the data selection

to studies containing more than 300 individuals. We split the

data into subsets according to the TSS. The sample distribution

over different sites varies greatly between the studies. Most

of the studies have skewed sample distributions with one site

contributing considerably more samples than others. Please

refer to supplementary figure 1 and table 1 for an overview of

the number of samples and the number of TSS per study after

filtering. We want to emphasize that this setup is distinctively

different than the usual test setup of federated algorithms,

where large data sets are split into a few equally sized chunks

with iid data distribution with respect to the classes.

Table 1. Summary of number of samples and number of sites per cancer

type.

Data set No. Samples No. Sites

Kidney 887 24

Thyroid gland 504 11

Liver and intrahepatic bile ducts 404 8

Bladder 408 14

Ovary 377 9

Brain 679 20

Prostate gland 495 14

Corpus uteri 547 12

Breast 1093 19

Cervix uteri 304 8

Colon 458 12

Bronchus and lung 1017 34

Stomach 386 9

Skin 468 11

Principal Component Analysis

Principal component analysis is used to calculate a low

dimensional approximation of the data [19]. Intuitively, the data

is projected into a lower dimensional representation using the

directions which maximise the variance. Let the global data be

given as a matrix A ∈ Rn×d. The PCA is the decomposition of

the covariance matrix M = 1
n

A>A into M = VΣV>. Σ is a

diagonal matrix containing the non-negative eigenvalues σi in

non-increasing order. V is a matrix containing the eigenvectors

vi corresponding to the eigenvalues σi with vi column vectors.

Note: As we are solving the eigendecomposition of a n×d matrix

where d >> n the maximal number of non-zero eigenvalues is

n − 1. The top k- eigenvalues and corresponding eigenvectors

are called a k-subspace and denoted as (Vk,Σk).

Federated Principal Component Analysis for horizontally

partitioned data

In the federated case the data is distributed over s sites with

ns samples, such that n =
∑s

i=1 ni. The goal of distributed

principal component analysis is to find an eigendecomposition

of A without having all the local data sets As at a central

site. The data is assumed to be centered, and if applicable

scaled to unit variance which can be achieved easily using

federated summary statistics. There are broadly two groups

of algorithms, single round approaches which communicate

only once between the clients and the aggregator and iterative

approaches which require multiple communication rounds. The

single-round approaches follow the same main idea, but have

different implementation details. Generally, a local summary

statistic is computed and sent to the central aggregator, where

it is merged to a global model.

Reconstitution of the covariance matrix

The reconstitution of the global (approximated) covariance

matrix is a popular approach which has been implemented in

different variations. They all rely on the observation that the

covariance matrix can be computed exactly at the global server

by adding up the local covariance matrices. This basic version is,

for instance, used in [23]. In this version, the covariance matrices

of the local data sets are computed and sent to the aggregator.

Article under review at Bioinformatics Advances at time of submission

4 Hartebrodt et al.

At the aggregator the local covariance matrices are summed up

element-wise. The Eigendecomposition of this exact covariance

matrix is computed and shared with the clients. We denote this

version P-COV. A means to significantly reduce the transmission

costs is to approximate the local subspaces and send these to

the aggregator. In this case, a local SVD is computed and the

top-k eigenspace is sent to the aggregator, where k is fixed but

arbitrary [29, 38, 17, 42, 1, 23, 10]. More precisely, in these

algorithms the local subspace (Vk
s ,Σ

k
s) is computed at each site

and sent to the aggregator (lines 2 to 3) . At the aggregator,

a proxy covariance matrix Mp
s = Vk

sΣk
sV> for each site is

reconstituted using (Vk
s ,Σ

k
s), and added up element-wise such

that an approximation of the global covariance matrix Mp is

obtained (line 8). As only a limited number k of eigenvectors is

transmitted Mp is an approximation of the hypothetical global

covariance matrix. The global PCA is then computed by the

eigendecomposition of the proxy covariance matrix (line 12).

This version is denoted AP-COV.

Subspace aggregation The federated PCA algorithm proposed

by Balcan et al. [4] computes a local subspace such as in the

proxy covariance methods above but differs in the aggregation

step. The local subspaces (Vk,Σk) are concatenated on the

vertical axis and the singular value decomposition of this stacked

subspace is computed (line 10). It is conceptually the same

as computing the proxy covariance matrix but more efficient

depending on the dimensions of the input matrices. This version

is called AP-STACK in the remainder of the article. Please refer

to algorithm 1 for a pseudocode description of these algorithms.

(They have been merged due to their conceptual overlap).

Intermediate dimensionality AP-COV and AP-STACK have a

parameter k′ which determines the number of eigenvectors

transferred to the aggregator. This number of intermediate

dimensions k′ is usually larger than the target dimensions k,

the size of the final subspace. Naturally, k′ determines the

transmission cost of these approaches. This already hints at an

issue regarding the dimensionality of the local subspaces: The

number of retrieved eigenvectors is limited by the minimum

dimension of the data matrix (i.e., either by the number

of features, or by the number of samples) at the site. For

instance, the subspace of a 20×20, 000 matrix can only have 20

eigenvectors which means higher order global subspaces, that is

subspaces where the global k is set to be larger than any of the

local k can possibly be, can suffer accuracy loss w. r. t. to the

centralized solution.

QR based PCA

Bai et al. [2] propose a conceptually different method, which still

only requires one communication round per participant. Their

method is not designed for a star like architecture, but could

be considered for the cross-silo P2P-architectures cited earlier

[39, 6], therefore we include it in the accuracy analysis. It can

also be adapted to the star-like architecture by modifying the

merge procedure. See algorithm 2 for a pseudocode description

of this algorithm. At the local sites s a QR factorization of

the data matrix is computed and Rs is sent to the aggregator

(line 2). From the local local QR factorizations the global PCA

is computed by stacking all Rs matrices vertically to form R′ ∈
Rn×m. R′ is decomposed into Q,R′′ (lines 7 to 8). In the

final step, the singular value decomposition of R′′ = UΣV> is

Algorithm 1 Federated PCA using subspace aggregation

Require: Data matrices As ∈ Rns×m, # eigenvectors k.

1: Client

2: Us,Σs,V>s ← svd(As)

3: send-to-aggregator(Vk>
s ,Σk

s)

4: Client

5: Aggregator

6: [Vk>
s ,Σk

s]← for s ∈ [S] get-from-client(Vk>
s ,Σk

s)

7: if (P-COV, AP-COV) then . Proxy cov. methods

8: M←
∑S

s Vk
sΣk

sVk>
s

9: else . Balcan et al. (AP-STACK)

10: M← stack-vertically([Σk
sVk>

s])

11: end if

12: U,Σ,V> = svd(M)

13: send-to-client(Vk>,Σk)

14: Aggregator

15: Return Vk>,Σk . Return approximate subspace of

A>A.

computed and the top k eigenvector matrix Vk,> is returned

as the eigenvector of A>A (line 9).

Algorithm 2 Federated PCA using QR factorization [2]

Require: Data matrices As ∈ Rns×m, # eigenvectors k.

1: Client

2: Qs,Rs ← orthonormalize(As)

3: send-to-aggregator(Rs)

4: Client

5: Aggregator

6: [Rs]← for s ∈ [S] get-from-client(Rs)

7: R′ ← stack-vertically([Rs])

8: Q,R′′ ← orthonormalize(R′)

9: U,Σ,V> = svd(R′′)

10: send-to-client(Vk>,Σk)

11: Aggregator

12: Return Vk . Return eigenvector matrix of A>A.

Federated subspace iteration

Federated subspace iteration is a direct extension of the

centralized subspace iteration [14] and has been formulated in

different versions [15, 3, 28]. It is the extension of power iteration

which computes one vector at the time. Subspace iteration

is described in algorithm 3. Initially, a random eigenvector

estimate Vi=0 is generated at the aggregator as the current

eigenvector estimate and orthonormalised (lines 1 to 3). The

procedure then iteratively refines this estimate. It consists

of a local phase and a global phase. In the local phase the

current candidate eigenvector matrix Vi−1 is multiplied by the

covariance matrix of the local data to form Vs,i = A>s AsVi−1

(lines 7 to 9). This candidate matrix Vs,i is sent to the

aggregator where the global estimate is computed by adding

up the local eigenvector estimates Vs,i element-wise over the

local estimates. The candidate eigenvector matrix is normalized

using QR factorization and sent back to the clients (lines 12

to 15). This procedure is repeated until convergence.

Article under review at Bioinformatics Advances at time of submission

Federated PCA for horizontally partitioned data 5

Algorithm 3 Federated Subspace Iteration

Require: Data matrices As ∈ Rns×m, # eigenvectors k.

1: Generate V0 ∈ Rm×k randomly . Initialize candidate

eigenvector matrix of A>A.

2: V0 ← orthonormalize(V0)

3: i← 1 . Initialize iteration counter.

4: while termination criterion not met do

5: Client

6: Vi−1 ← get-from-aggregator()

7: V′s,i = A
s
Vi−1 . Update local eigenvectors Vs,i

8: Vs,i = A
s
>V′s,i

9: send-to-aggregator(Vs,i)

10: Client

11: Aggregator

12: [Vs, i]← get-from-client()

13: Vi =
∑

s Vs,i . Add up Vs,i element wise.

14: Vi = orthonormalize(Vi)

15: send-to-client(Vi)

16: i← i+ 1

17: Aggregator

18: end while

19: Vk ← Vk
i

20: Return Vk . Return converged eigenvectors of A>A.

Vertical partitioning

In this article, we discuss the algorithms and applications

of federated PCA for horizontally partitioned data. Please

note, that some applications in computational biology (for

instance population stratification) require the decomposition

of the sample-by-sample covariance matrix, which cannot be

solved directly with every one of the algorithms evaluated in

this manuscript. In the vertical case, the computation of the

entire covariance matrix is not possible because for two sites

i and j with ni and nj samples respectively only the partial

covariance matrices Mi,i ∈ Rni×ni and Mj,j ∈ Rnj×nj can

be computed while the computation of Mi,j ∈ Rni×nj and

Mj,i ∈ Rnj×ni would require the transfer of the samples of site

i to site j. To illustrate this, consider a gene panel as example.

Every hospital measures d genes for their ni patients. At every

site s, we can compute the gene-by-gene covariance matrix with

the full dimensionality d×d, but we can only compute the partial

patient-by-patient covariance matrices of ns × ns at each site

without exchanging patient level information. Nasirigerdeh et

al. [27] have shown that for federate GWAS piplines, exchanging

the entire sample eigenvectors potentially leads to a privacy

breach where binary covariates of participants can be disclosed.

Therefore, care has to be taken when exchanging the sample

eigenvectors. In [16], this problem is presented in greater detail,

and an algorithm is developed, which solves this problem

efficiently and without materializing the covariance matrix or

exchanging the sample eigenvectors at all.

Other related methods

A plethora of algorithms has been designed for distributed

sensor networks dealing with both horizontal data partitioning

and vertical partitioning, including but not limited to work

described in [5, 13, 18, 33] and [43]. These algorithms

cover cross-device federated learning. In contrast to cross-silo

federated learning where large chunks of data are available

at the sites, cross-device federated learning assumes a high

number of devices such as sensors or mobile phones with limited

compute power and relatively little data belonging to only one

user. Due to the differing assumptions on architecture and

computational resources, and the frequent use of (randomized)

P2P communication, algorithms for this use case will not be

considered here. Chen et al. [8] describe a gradient method

which uses matrix deflation for the computation of more than

one eigenvector which is impractical due to the increased

communication effort (c.f. [16]).

Test setup and metrics

In the optimal case the federated PCA produces exactly the

centralized solution. In order to estimate the performance of the

algorithms on the realistic data from TCGA, we simulate the

execution of the federated algorithm with the data distributed

according to the TSS as described above. Since some of

the sample sites are quite small, in a second experiment we

additionally group several sample sites together to form larger

’meta-sample-sites’ of approximately the same size each using

a greedy heuristic. We chose this strategy to better investigate

approaches that compute local subspaces. As explained above,

the dimension of such a subspace is strictly limited by the

number of samples.

To evaluate the algorithms’ performance, we compare the

result of the federated PCA to the solution computed on the

centralized data. As a reference implementation we use the

implementation in scipy.sparse.linalg which internally uses

the LAPACK package. The comparison of the models is done

by calculating the angles between the leading eigenvectors. We

chose the angle between the eigenvectors over the subspace

reconstruction error, because the ’loadings’, the coordinates

of the eigenvectors, are routinely used in gene expression

analysis, for example to detect correlated genes [12]. Therefore,

the individual coordinates of the eigenvectors must be taken

into account when comparing the resulting subspaces. For

applications which only rely on the projected data, and not on

the individual loadings, we compute the subspace reconstruction

error. The subspace reconstruction error is the Euclidean

distance of the original data from the reconstructed ’denoised’

data It is defined as |AVkVk> −A|2.

Complementing the simulated results which established the

accuracy of the methods, we also provide a real implementation

of the algorithms. We use the FeatureCloud [26] platform for

this purpose and implemented an app, that can compute all

previously presented algorithms. The application has multiple

modes, including a batch mode and a train/test mode allowing

for cross validation splits. We then set up a test using the

FeatureCloud ’Testbed’, which allows to simulate a federated

setting by spawning multiple clients on the same machine. The

parameters are passed via a remote relay server, meaning the

transmission is close to a realistic estimate. For more details

on this system, please refer to the website featurecloud.ai

and the publication [26]. We measure the wall clock time, the

number of iterations and the number and size of sent packages.

The tests were run on a UNIX server with 502GB RAM and

64 CPUs partially in parallel. AP-COV has been omitted because

it is as accurate as AP-STACK and has the same communication

properties as P-COV. We used a randomly generated data set

Article under review at Bioinformatics Advances at time of submission

6 Hartebrodt et al.

Table 2. The parameter choices for the truly federated implementation

of PCA.

Parameter Choices

algorithm P-COV, AP-STACK, SUB-IT, QR-PCA

clients 3, 5

data sets random, MNIST

epsilon 10e−9

with 5000 samples and 10 features, and the MNIST data set.

They were randomly chunked into 3, and 5 equal chunks and

repeated 5 times. We set the termination criterion to 1e−9 for

SUB-IT. Table 2 summarizes the investigated parameters.

Practical illustration using integrated Psoriasis data

A possible use of PCA is the vizualization of the data to detect

batch effects, systematic shifts in the data distribution due to

different processing of the data. We illustrate this use case with a

publicly available collection of Psoriasis data sets. The studies

were originally not concieved as a federated study, but have

been manually curated and preprocessed following the same

computational pipeline [11]. We investigate the differences of

federated exact PCA, federated approximate PCA and the näıve

superimposition of the local PCA spaces to show whether they

can be used to accurately determine the presence of batch effects

in the data.

Results

Analysis of the exchanged and final parameters

Firstly, we analyze the actually transmitted information and

investigate which algorithm discloses the highest amount of

information. V denotes the complete eigenvector matrix and V k

and V k′ the matrices containing the top k and k′ eigenvectors

respectively. Table 3 summarizes the parameters known to the

clients and the aggregator at the end of the run. Note that V

allows the computation of the covariance matrix M and V k

and V k′ analogously its approximations Mk and Mk′ . Given

the aggregator has all the exact local covariance matrices it can

run local subspace iteration and therefore access V k
i when using

P-COV and QR-PCA, given the same initialisation. Following this

reasoning, we claim that in terms of disclosed knowledge, P-COV

and QR-PCA are equivalent and disclose the highest amount of

information. AP-COV and AP-STACK disclose larger V k subspaces

than SUB-IT which only discloses the required V k, however

SUB-IT might be prone to iterative leakage and disclose the

covariance matrix. It is outside the scope of this manuscript to

try and attack either algorithm. It is also apparent that there is

an asymmetry of the knowledge of the parameters in the chosen

architecture which favors the aggregator who gains knowledge

of all intermediate steps. This asymmetry is due to to the

chosen architecture, and can be trivially resolved by adopting

a P2P architecture at the expense of increased network traffic.

Another solution to this problem is the use of secure multiparty

aggregation [9] which can be used to hide parameters with a

additive aggregation strategy. This applies to P-COV, AP-COV

and SUB-IT but not trivially to QR-PCA and AP-STACK which use

QR orthogonalisation and singular value decomposition as their

respective aggregation strategies.

Table 3. Summary of the transmitted parameters and the computable

parameters. s denotes the knowledge of the local parameter, S denotes

the knowledge of all local parameters and hence the aggregate. A *

indicates which parameters can be hidden via the use of secure addition.

Algorithm V k V k′ V Rs V k
i

C A C A C A C A C A

P-COV s* S s* S s* S s* S s* S

AP-COV s* S s* S

AP-STACK s S s S

SUB-IT s* S s* S

QR-PCA s S s S s S s S s S

Table 4. Summary of the transmitted parameters and the required

number of iterations. (C=client, A=aggregator)

Algorithm Param. Direction D N T

P-COV
M C → A d× d 1

O(d2)
Vk C ← A d× k 1

AP-COV Vk′ C → A d× k 1
O(dk′)

Vk C ← A d× k 1

AP-STACK Vk′ C → A d× k 1
O(dk′)

Vk C ← A d× k 1

SUB-IT Vk C ↔ A d× k i O(dki)

QR-PCA R C → A d× d 1
O(d2)

Vk C ← A d× k 1

Network traffic

Here, we analyse the communication requirements for federated

PCA. Let D be the dimensionality of the parameters in terms

of floats transmitted between client and aggregator and let

N be the number of communication rounds. Let T be the

total transmission cost. Recall that the global data matrix has

dimensions A ∈ Rn×d and is divided into S local data matrices

As with ns samples and d dimensions each. k is the number of

eigenvectors of the final decomposition and k′ the intermediate

dimensionality if applicable. i is the number of iterations

for subspace iteration to converge. Table 4 summarizes the

parameter and the associated transmission cost exchanged

between the sites. All methods assume a centered data matrix,

so the exchange of the column sums and the number of samples

is required.

Accuracy on a standard image data set

To put the performance of the algorithms into perspective,

we first provide accuracy values for the performance on the

standard image data set MNIST. This data set consists of 60,000

gray scale images containing 784 pixels each. The dimensionality

is hence d < n. Here, the performance of the algorithms is

generally very good. Table 5 summarizes selected angles for each

of the selected approaches using the MNIST data set split into 20

equal chunks. Using this data all algorithms lead to a good

approximation of the subspace with low angular deviations.

SUB-IT, P-COV and QR-PCA outperform AP-COV and AP-STACK, but

by a small margin.

Article under review at Bioinformatics Advances at time of submission

Federated PCA for horizontally partitioned data 7

Table 5. Reference values for PCA performance using the MNIST data

set with for the 1st, 5th and 10th eigenvector over 20 randomized splits

PCA version EV1 EV5 EV10

AP-STACK 0.47 1.46 10.35

AP-COV 0.47 1.46 10.35

P-COV 0 0 0

QR-PCA 0 0 0

SUB-IT 0 0 0

Accuracy of the selected approaches on realistic biomedical

data

Figure 2 summarizes the accuracy of the eigenvectors computed

using the simulated federated PCA using TCGA data. As a

measure of quality we plot the angle between the eigenvector

calculated by the federated approach against the centralized

singular value decomposition. The upper panel of the plot

shows three sub figures, one for the original data partitioning

extracted from TCGA, and one each for the ’meta-sample-

sites’. Generally speaking, SUB-IT, as well as the P-COV and

QR-PCA perform accurately regardless of the data distribution.

The angle between all selected eigenvectors is close to 0. The

approximate algorithms AP-COV and AP-STACK do not perform

as well. They improve when creating larger meta-sites which

confirms that these algorithms only perform well, when there

are sufficiently many samples at each collection site. In order

to put these values into perspective, in the lower panel, we also

provide the ratio of the subspace reconstruction error achieve by

the method divided by the gold standard reconstruction error. It

is apparent, that the subspace reconstruction error degenerates

less quickly, especially as the number of samples grows. This

indicates, that downstream analyses relying on the coordinates

of the eigenvectors are likely to suffer from the approximate

approaches, while analyses merely relying on the projection of

the data are more resilient against the errors introduced by the

approximations. This will be further illustrated in the practical

experiments.

TCGA 5 2

A
ngle

APSTACK
APCOV

SIT
PCOV

QR−PCA

20
40
60
80

Median
Angle

E
rror

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

APSTACK
APCOV

SIT
PCOV

QR−PCA

Eigenvalue rank

1.00

1.01

1.02

Median
Error

Fig. 2: Comparison of the different PCA algorithms w. r. t. to

the angle between the leading eigenvectors with the TCGA data

distributed according to the tissue sample site, and combined

into 2 and 5 meta sites respectively. Proxy naive and the

Power method achieve perfect accuracy both according to the

angle between the eigenvectors (upper panel) and the subspace

reconstruction error (SRE). With higher rank, the accuracy of

the proxy method deteriorates.

Table 6. Results of the federated test runs using randomly generated

and MNIST data.

Data set Algorithm Sites Time[s] Iter. MB

MNIST

P-COV

5 27 1 10555

3 20 1 21118

AP-STACK

5 20 1 649

3 25 1 325

QR-PCA

5 23 1 11242

3 30 1 5626

SUB-IT

5 1208 1000 296073

3 1090 1000 148180

random

P-COV

5 3.1 1 12

3 3.4 1 6

AP-STACK

5 2.8 1 16

3 3.3 1 8

QR-PCA

5 2.8 1 11

3 4 1 5

SUB-IT

5 778 465 6735

3 492 439 2966

Application of federated PCA to Psoriasis data

We used the methods with a manually curated multicentric

Psoriasis data set where individually performed studies were

assembled and reprocessed with the same computational

pipeline. In fig. 3, we show the PC plots of the data using

centralized PCA which is identical to SUB-IT, AP-STACK and by

superimposing the results of the local computations. The exact

PCA shows that there are prominent batch effects in the data,

as the data separates according to the experiment, wheras this

is not replicated by AP-STACK and AP-COV. In supl. fig. 2, we show

similar results for simulated data.

Practical implementation

Table 6 shows the results of the empirical runtimes of the PCA

algorithms for different data sets averaged over 5 runs. AP-STACK,

P-COV and QR-PCA have low execution times in the order of

seconds. The low number of executions does not allow to rank

the algorithms further. SUB-IT has longer execution times and

requires more data transmission.

Discussion

Choice of the performance criteria

The angle between the eigenvectors is a very stringent criterion

for the performance of the algorithm, as with high dimensional

vectors very few deviating coordinates can lead to a drastic

change of the angle. The subspace reconstruction error measures

the distance between the projections of the data and the actual

data and is therefore suitable for analyses that solely rely on the

projected data. For the analysis of the loadings the subspace

reconstruction error might be misleading, therefore we report

the angle between the eigenvectors. The wall clock time and

number of communication steps are both useful measures as

their combination allows to estimate the run times for future

studies.

Article under review at Bioinformatics Advances at time of submission

8 Hartebrodt et al.

PC1

P
C

2

A B C

Study ID GSE107871
GSE117405

GSE123785
GSE123786

GSE41745
GSE47944

GSE54456
GSE63979

GSE67785
GSE74697

GSE83645

Fig. 3: Comparison of centralized PCA/SUB-IT, combined local projections and AP-STACK. There pattern for the exact PCA is

markedly different from both the näıve combinations of PCA and the approximate PCA. B and C are not suited to detect the batch

effects present in the data.

Analytical Performance of the methods

Approximate methods generally perform poorly according to

the angular deviation of the eigenvectors, especially when

retrieving many eigenvectors. This strong deviation of the

federated eigenvectors from the centralized baseline implies,

that the analysis of the loadings of the eigenvectors is not

possible using the approximate methods and is additionally

very vulnerable to outliers. The eigenvector coordinates may

deviate significantly even in low ranks, therefore different

hypotheses will be generated using approximate PCA compared

to centralized PCA. This is further illustrated in fig. 3 where

the results of exact and approximate PCA are fundamentally

different, and the approximate method does not reproduce the

result to an extend where the batch effect in the data cannot be

detected.

According to the subspace reconstruction error for the

TCGA data, most methods perform reasonably well even on

unfavorably distributed data with many small subsets. Due to

the centralized processing, TCGA data is still likely to give

optimistic estimates of the error incurred due to federated

approximate PCA, meaning that the sites do not show a

fundamentally different data distribution. It has recently been

argued, that UMAP and t-SNE should only be used for the

coarse analysis of the data [7]. Furthermore, analyses should be

robust to perturbation, thus using approximate PCA should not

disturb the signal strongly enough to disrupt the major sources

of variation in the data.

Computational performance of the methods

Our practical implementations show that the overhead through

the use of the federated methods is acceptable given the

long sourcing process of biological data and the potential

privacy gain. The FeatureCloud platform introduces a certain

overhead through virtualization and encryption techniques.

Nonetheless, with the run time of a few seconds to a few minutes

for federated principal component analysis researchers can

realistically use these methods in practice. The bottleneck is the

number of communication steps required, therefore federated

power iteration is slower than the single round methods. The

advantage of SUB-IT is, that it can cope with a higher number

of features while performing exact PCA, contrary to QR-PCA and

P-COV which need to load the covariance matrix into memory.

The convergence criterion for power iteration is also set very

stringent, so a lower number of iterations and thus a decreased

run time might be sufficient in practice.

Privacy of federated SVD

Critiques may raise the issue of the privacy of the parameters.

Indeed, the amount of data transmitted between the sites is

quite large since they are the result of a matrix decomposition.

Recall that we are working on the matrix A ∈ Rn×d, where n

is the number of samples and d is the number of features and

A = UΣV >. This means each vector u in U = [u1, u2, ..., uk]

contains elements belonging to the samples, whereas V =

[v1, v2, ..., vk] summarizes the features across all samples. If

all participants are to receive the complete SVD, then the

aggregator has to broadcast the final U and V to all the clients.

In previous work, it has already been shown that federated

pipelines which include the use of the sample eigenvectors U are

prone to data leakage when broadcasting the full eigenvectors.

Therefore, we highly recommend to not broadcast the sample

specific eigenvectors U . Ideally, this would happen in an oracle

fashion, where the parties gain knowledge of the output, but

none of the intermediate parameters. Unfortunately, this is not

the case, therefore section 3.1 we established a hierarchy of

the approaches in terms of trivially reconstructable data and

parameters.

Several articles discuss privacy preserving PCA or power

iteration in a federated setting via encryption and secure

multiparty computation (SMPC) techniques [42, 1, 28, 30] or

differential privacy (DP) [17, 38, 15, 3]. A few articles [42, 24]

Article under review at Bioinformatics Advances at time of submission

Federated PCA for horizontally partitioned data 9

assume that the aggregated covariance matrix is private. The

authors of [28] assume that the aggregated eigenvector updates

are private. Generally speaking, if the aggregated parameters

are considered private, since the methods generally only require

additive aggregation, secret sharing by sharding the data or

using fixed-point arithmetic, can be added with relatively

little overhead [9]. A protocol that does not use the clear-

text covariance matrix has been proposed by [1] who use a

garbled circuit protocol that allows to compute the eigenvectors

securely based on the homomorphically aggregated covariance

matrix. The latter approach is quite time intensive on small

data sets in simulation. [30] introduces improved primitives

required for PCA using homomorphically encrypted centralised

data. The empirical evaluation unfortunately does not include

data at the scale of high-dimensional biological data (d = 20

is the largest dimensions) and a realistic number of iterations

(i = 5 is the total number of iterations). The extension to

the federated setting provides an additional challenge. The

high dimensionality of the data is an obstacle for DP as the

noise scales with the number of variables. Since the number

of variables is large, these approaches cannot be used without

severe degradation of the results. Furthermore, the choice of

a good ε is not easy in practice. A major obstacle in the

adoption of these techniques is the lack of ready-to-use libraries

implementing the methods. Lastly, while it is possible to retrieve

the eigenvectors privately, most of the downstream analyses

in bioinformatics use the projections of the data onto the

eigenvectors. Therefore, even differentially private eigenvectors

are not sufficient to ensure privacy. (Due to the use of the

data for the projection, this operation does not fall under the

closure under post-processing). This needs to be considered

when working with PCA in a federated setting and the potential

risks have to be evaluated on a case-by-case basis.

Choice of an appropriate algorithm

In the following section, we will give guidelines for the choice

of an appropriate algorithm which we summarize in fig. 4.

Due to the various considerations in a federated study, not

every algorithm is appropriate for every setting. Non-star like

architectures can achieve O(log2(n)) communication steps when

using single round approaches with n the number of clients.

In terms of data disclosure and storage requirements, which

amounts to the entire covariance matrix, the methods are equal.

Since the aggregation method in QR-PCA is a QR factorization

for which secure aggregation is not immediately possible, P-COV

should be preferred when secure aggregation is required. If an

approximate eigenvector is sufficient, AP-COV and AP-STACK are

useful. However, only AP-COV allows secure aggregation because

AP-STACK uses SVD as its aggregation method. Furthermore,

AP-COV and AP-STACK depend on a high number of samples to

achieve good results and may fail catastrophically in practice

when data is limited or confounded. SUB-IT is exact and only

discloses V k to the aggregator given a limited number of

iterations. Our practical implementations show that all methods

can achieve reasonable run times. The potential data leakage

induced by subspace iteration remains an open question and

will be subject to further research.

Other recommendations

In addition to choosing an appropriate algorithm, we suggest

to carefully consider the information that is required for

downstream analyses. Notably, restricting the number of

eigenvectors k keeps the amount of communicated data and

the number of communication steps low. It is possible to

retrieve further eigenvectors should this be required later on.

Before the use of the federated tools, it should be considered

whether all local data sets need to be cleaned from obvious

outliers and it should be assessed whether the populations at

the clients are eligible for joint analysis. The inspection for

outliers and their removal are necessary, because outliers have

a disproportional effect on the PCA. In practice the presence of

outliers in the PCA can warrant a recomputation of the PCA

and lead to unnecessary information disclosure if the outliers

could have been detected beforehand. On the other hand, local

outliers may not be outliers globally. In this case, as sampling

approach can be chosen, where instead of using the original

data, artificial data points are generated. They represent the

variability of the data and allow the clients to locally assess,

whether their data points are indeed outliers, or if the are part

of a group that is small at one client, but has more samples

at another client. A local PCA can be also be performed to

assess the information content of the components, including the

computation of the eigengap, an indicator for the convergence

behavior of subspace iteration (the larger the eigengap, the

quicker the convergence). The principle of only transmitting

strictly required information is equally true for the transmission

of the projections. If a transmission is necessary, users should

consider whether approximations of the data such as density

estimates or an ellipse might be sufficient to identify batch

effects.

Conclusion

In this article, we identified existing methods for federated

principal component analysis, evaluated them using a realistic

non-iid setting as well as random data distributions, and

provide a practical illustration of its application using

transcriptomics data. Importantly, we implemented the

methods and benchmarked their run time, providing valuable

information for the applicability of the algorithms in a real

setting. Additionally, we provided easy to follow guidelines

for the future users to select the most appropriate algorithm

and highlight important considerations before conducting a

federated analysis.

Future work on federated PCA will include the reduction

of communication cost for exact subspace iteration, which

could be achieved by updating only relevant coordinates.

Furthermore, it needs to be investigated under which conditions

the communication of the projections of the data realistically

constitutes a privacy breach, i.e. whether it is possible to

infer sufficient information on the individual data sets from the

shared statistics.

Competing interests

There is no competing interest.

Article under review at Bioinformatics Advances at time of submission

10 Hartebrodt et al.

Approx.

PCA

sufficient?

AP-COV

AP-STACK

+ Fast

+ Low com.

- Inexact

- Many samples

–required

covariance

matrix

sharable?

P-COV

QR-PCA

+ Exact

- Covariance

–disclosed

SUB-IT
+ Exact

- Slow

yes

no

yes

no*

Projections only?

Initial scan?y
es

Relatively high dimensionality compared

to few samples?

Strong batch effects expected?

n
o

Few variables (=small covariance)

many samples

Few eigenvectors?

Large eigengap?

Many variables?

y
es

n
o

Fig. 4: Decision help for researchers intending to use federated PCA. *It is likely that with sufficient iterations the covariance matrix

may be reconstructed.

Author contributions statement

A.H. and R.R. conceived the experiments, A.H. conducted the

experiments and analyzed the results. A.H. and R.R. wrote and

reviewed the manuscript.

Acknowledgments

The FeatureCloud project has received funding from the

European Union’s Horizon 2020 research and innovation

programme under grant agreement No 826078. This publication

reflects only the authors’ view and the European Commission is

not responsible for any use that may be made of the information

it contains.

References

1. M Al-Rubaie, P.-Y. Wu, J M Chang, and S.-Y.

Kung. Privacy-preserving PCA on horizontally-partitioned

data. 2017 IEEE Conference on Dependable and Secure

Computing, pages 280–287, 2017.

2. Zheng-Jian Bai, Raymond H. Chan, and Franklin T. Luk.

Principal component analysis for distributed data sets with

updating. In Jiannong Cao, Wolfgang Nejdl, and Ming

Xu, editors, Advanced Parallel Processing Technologies,

pages 471–483, Berlin, Heidelberg, 2005. Springer Berlin

Heidelberg.

3. Maria-Florina Balcan, Simon Shaolei Du, Yining Wang,

and Adams Wei Yu. An improved gap-dependency analysis

of the noisy power method. 29th Annual Conference on

Learning Theory, 49:284–309, 23–26 Jun 2016.

4. Maria-Florina Balcan, Vandana Kanchanapally, Yingyu

Liang, and David Woodruff. Improved distributed

principal component analysis. In Proceedings of the 27th

International Conference on Neural Information Processing

Systems - Volume 2, NIPS’14, page 3113–3121, Cambridge,

MA, USA, 2014. MIT Press.

5. Alexander Bertrand and Marc Moonen. Distributed

adaptive estimation of covariance matrix eigenvectors in

wireless sensor networks with application to distributed

PCA. Signal Processing, 104:120–135, 2014.

6. Oya Beyan, Ananya Choudhury, Johan van Soest,

Oliver Kohlbacher, Lukas Zimmermann, Holger Stenzhorn,

Md. Rezaul Karim, Michel Dumontier, Stefan Decker,

Luiz Olavo Bonino da Silva Santos, and Andre Dekker.

Distributed Analytics on Sensitive Medical Data: The

Personal Health Train. Data Intelligence, 2(1-2):96–107,

2020.

7. Tara Chari, Joeyta Banerjee, and Lior Pachter. The

Specious Art of Single-Cell Genomics. BioRxiv, pages 1–23,

2021.

8. Xi Chen, Jason D. Lee, He Li, and Yun Yang. Distributed

Estimation for Principal Component Analysis: An Enlarged

Eigenspace Analysis. Journal of the American Statistical

Association, 2021.

9. Ronald Cramer, Ivan Bjerre Damg̊ard, and Jesper Buus

Nielsen. Secure Multiparty Computation and Secret

Sharing. Cambridge University Press, 2015.

10. Jianqing Fan, Dong Wang, Kaizheng Wang, and Ziwei Zhu.

Distributed estimation of principal eigenspaces. Annals of

Statistics, 47(6):3009–3031, 2019.

11. Antonio Federico, Veera Hautanen, Nils Christian, Andreas

Kremer, Angela Serra, and Dario Greco. Manually curated

and harmonised transcriptomics datasets of psoriasis and

atopic dermatitis patients. Scientific Data, 7(1):5–10, 2020.

12. Rudolf S.N. Fehrmann, Juha M. Karjalainen, Malgorzata

Krajewska, Harm Jan Westra, David Maloney, Anton

Simeonov, Tune H. Pers, Joel N. Hirschhorn, Ritsert C.

Jansen, Erik A. Schultes, Herman H.H.B.M. Van Haagen,

Article under review at Bioinformatics Advances at time of submission

Federated PCA for horizontally partitioned data 11

Elisabeth G.E. De Vries, Gerard J. Te Meerman, Cisca

Wijmenga, Marcel A.T.M. Van Vugt, and Lude Franke.

Gene expression analysis identifies global gene dosage

sensitivity in cancer. Nature Genetics, 47(2):115–125, 2015.

13. Jerome Fellus, David Picard, and Philippe-Henri Gosselin.

Asynchronous gossip principal components analysis.

Neurocomputing, 169:262–271, dec 2015.

14. N Halko, P G Martinsson, and J A Tropp. Finding structure

with randomness: probabilistic algorithms for constructing

approximate matrix decompositions. pages 1–74.

15. Moritz Hardt and Eric Price. The noisy power method: A

meta algorithm with applications. Proceedings of the 27th

International Conference on Neural Information Processing

Systems - Volume 2, page 2861–2869, 2014.

16. Anne Hartebrodt, Reza Nasiridergeh, David B. Blumenthal,

and Richard Röttger. Federated principal component

analysis for genome-wide association studies. ICDM 2021.

ICDM 2021, 2021.

17. Hafiz Imtiaz and Anand D. Sarwate. Differentially private

distributed principal component analysis. ICASSP, IEEE

International Conference on Acoustics, Speech and Signal

Processing - Proceedings, 2018-April:2206–2210, 2018.

18. Márk Jelasity, Geoffrey Canright, and Kenth Engø-Monsen.

Asynchronous Distributed Power Iteration with Gossip-

Based Normalization. In Euro-Par 2007, pages 514–525.

2007.

19. Ian T. Joliffe. Principal Component Analysis. Springer-

Verlag, 2002.

20. Katie Kerr, Helen McAneney, Laura J. Smyth, Caitlin

Bailie, Shane McKee, and Amy Jayne McKnight. A scoping

review and proposed workflow for multi-omic rare disease

research. Orphanet Journal of Rare Diseases, 15(1):1–18,

2020.

21. Konstantina Kourou, Themis P. Exarchos, Konstantinos P.

Exarchos, Michalis V. Karamouzis, and Dimitrios I.

Fotiadis. Machine learning applications in cancer

prognosis and prediction. Computational and Structural

Biotechnology Journal, 13:8–17, 2015.

22. Yann LeCun, Corinna Cortes, and Christopher J.C. Burges.

MNNIST database of handwritten digits. http://yann.

lecun.com/exdb/mnist/, 2005. [Online; accessed 27-02-

2020].

23. Bo Liu, Mohamed Mohandes, Hilal Nuha, Mohamed

Deriche, and Faramarz Fekri. A Distributed Principal

Component Analysis Compression for Smart Seismic

Acquisition Networks. IEEE Transactions on Geoscience

and Remote Sensing, 56(6):3020–3029, 2018.

24. Yingting Liu, Chaochao Chen, Longfei Zheng, Li Wang, Jun

Zhou, Guiquan Liu, and Shuang Yang. Privacy Preserving

PCA for Multiparty Modeling. 2020.

25. F. Martin-Sanchez and K. Verspoor. Big data in medicine

is driving big changes. Yearbook of medical informatics,

9:14–20, 2014.

26. Julian Matschinske, Julian Späth, Reza Nasirigerdeh,

Reihaneh Torkzadehmahani, Balázs Orbán, Sándor

Fejér, Olga Zolotareva, and Mohammad Bakhtiari.

The FeatureCloud AI Store for Federated Learning in

Biomedicine and Beyond. pages 1–32.

27. Reza Nasirigerdeh, Reihaneh Torkzadehmahani, Julian

Matschinske, Tobias Frisch, Markus List, Julian Späth,

Stefan Weiß, Uwe Völker, Dominik Heider, Nina Kerstin

Wenke, Tim Kacprowski, and Jan Baumbach. sPLINK: A

Federated, Privacy-Preserving Tool as a Robust Alternative

to Meta-Analysis in Genome-Wide Association Studies.

6(Figure 1):1–16, 2020.

28. Manas A. Pathak and Bhiksha Raj. Efficient protocols

for principal eigenvector computation over private data.

Transactions on Data Privacy, 4(3):129–146, 2011.

29. Yongming Qu, George Ostrouchov, Nagiza Samatova, and

Al Geist. Principal Component Analysis for Dimension

Reduction in Massive Distributed Data Sets. Workshop

on High Performance Data Mining at the Second SIAM

International Conference on Data Mining, pages 4–9, 2002.

30. Deevashwer Rathee, Pradeep Kumar Mishra, and Masaya

Yasuda. Faster PCA and linear regression through

hypercubes in HElib. Proceedings of the ACM Conference

on Computer and Communications Security, (1):42–53,

2018.

31. Chris A. Rees, Natalie Pica, Michael C. Monuteaux, and

Florence T. Bourgeois. Noncompletion and nonpublication

of trials studying rare diseases: A cross-sectional analysis.

PLoS Medicine, 16(11):1–16, 2019.

32. Miguel Ángel Rodŕıguez, Alberto Fernández, Antonio

Peregŕın, and Francisco Herrera. A Review of Distributed

Data Models for Learning. Springer International

Publishing, Cham, 2017.

33. Ioannis D. Schizas and Abiodun Aduroja. A Distributed

Framework for Dimensionality Reduction and Denoising.

IEEE Transactions on Signal Processing, 63(23):6379–6394,

2015.

34. Giorgio Sirugo, Scott M. Williams, and Sarah A. Tishkoff.

The Missing Diversity in Human Genetic Studies. Cell,

177(1):26–31, 2019.

35. Anthony Steed and Manuel Fradinho Oliveira. More than

two. Networked Graphics, pages 125–168, 2010.

36. Fabian J Theis. Current best practices in single-cell RNA-

seq analysis : a tutorial. Mol Syst Biol, 2019.

37. Evert Ben van Veen. Observational health research

in Europe: understanding the General Data Protection

Regulation and underlying debate. European Journal of

Cancer, 104:70–80, 2018.

38. Sen Wang and J. Morris Chang. Differentially Private

Principal Component Analysis over Horizontally Partitioned

Data. DSC 2018 - 2018 IEEE Conference on Dependable

and Secure Computing, pages 1–8, 2019.

39. Stefanie Warnat-Herresthal et al. Swarm Learning for

decentralized and confidential clinical machine learning.

Nature, 594(7862):265–270, 2021.

40. John N. Weinstein et al. The cancer genome atlas pan-

cancer analysis project. Nature Genetics, 45(10):1113–1120,

2013.

41. Jenna Wiens, Suchi Saria, Mark Sendak, Marzyeh

Ghassemi, Vincent X. Liu, Finale Doshi-Velez, Kenneth

Jung, Katherine Heller, David Kale, Mohammed Saeed,

Pilar N. Ossorio, Sonoo Thadaney-Israni, and Anna

Goldenberg. Do no harm: a roadmap for responsible

machine learning for health care. Nature Medicine,

25(September), 2019.

42. Hee-Sun Won, Sang-Pil Kim, Sanghun Lee, Mi-Jung Choi,

and Yang-Sae Moon. Secure principal component analysis

in multiple distributed nodes. Security and Communication

Networks, 9(14):2348–2358, sep 2016.

Article under review at Bioinformatics Advances at time of submission

12 Hartebrodt et al.

43. Sissi Xiaoxiao Wu, Hoi To Wai, Lin Li, and Anna

Scaglione. A Review of Distributed Algorithms for

Principal Component Analysis. Proceedings of the IEEE,

106(8):1321–1340, 2018.

Anne Hartebrodt is a PhD candidate at the University
of Southern Denmark. She received her M.Sc. degree
from Technical University of Munich (TUM) and Ludwig-
Maximilians University (LMU). Her main research focus is
federated unsupervised machine learning for biomedical data.

Richard Röttger obtained his PhD (Dr. rer. nat.) degree from
the University of the Saarland and the Max Planck Institute
for Informatics in 2014. Currently, he is Associate Professor for
Bioinformatics at the University of Southern Denmark (SDU).
In the framework of the EU H2020 project FeatureCloud,
his team develops federated machine learning approaches for
sensitive biomedical data.

Article under review at Bioinformatics Advances at time of submission

Chapter 3
Manuscript 2

Federated Principal Component
Analysis for Genome-Wide

Association Studies

47

Federated Principal Component Analysis for
Genome-Wide Association Studies

First Author∗, Second Author†, Third Author‡,§ and Fourth Author∗,§
∗First Organization, First City, First Country

Email: {first.author,fourth.author}@first.organisation
†Second Organization, Second City, Second Country

Email: second.author@second.organisation
‡Third Organization, Third City, Third Country

Email: third.author@third.organisation
§Joint senior authors.

Abstract—Federated learning (FL) has emerged as a privacy-
preserving alternative to centralized data analysis. Especially
for biomedical analyses such as genome-wide association studies
(GWAS), the fact that the data remain with the owners has the
potential to enable studies which were previously impossible due
to privacy protection regulations. Principal component analysis
(PCA) is a frequent preprocessing step in GWAS, where the
eigenvectors of the sample by sample covariance matrix are used
as covariates in the statistical tests. Therefore, a federated version
of PCA suitable for vertical data partitioning is required for
federated GWAS. Existing federated PCA algorithms exchange
the complete sample eigenvectors, a potential privacy breach. In
this paper, we present a federated PCA algorithm for vertically
partitioned data which does not exchange the sample eigenvectors
and is hence suitable for federated GWAS. We prove that our
federated algorithm is equivalent to a state-of-the-art centralized
method, and empirically show that it outperforms existing feder-
ated solutions in terms of convergence behavior and scalability. In
addition, we provide a user-friendly privacy-preserving web tool
to promote acceptance of federated PCA among non-computer-
scientist GWAS researchers.

I. INTRODUCTION

Federated learning (FL) has recently gained attraction as
a privacy-preserving alternative to centralized computation.
Instead of consolidating the data on a central server, the data
holders keep ownership of their data and send only parameters
to an aggregation server [1]. An attractive application case
for FL are genome-wide association studies (GWAS), which
investigate the relationship of genetic variation with phenotypic
traits on large cohorts [2], [3]. Genetic data is extremely
sensitive in its nature and data holders hence cannot make
it publicly available. The practical feasibility of using hybrid-
federated learning, a combination of FL with additional privacy-
preserving techniques, for GWAS has been demonstrated
recently [4], [5] and an implementation is available online.

Since GWAS are often done on populations of mixed
ancestry, cryptic population confounders should be controlled
for before associating the genetic variants to the phenotypic
trait of interest. The standard way for doing this is to compute
the leading eigenvectors of the sample covariance matrix
via principal component analysis (PCA), and including these

eigenvectors as confounding variables to models used for the
association tests [6], [7].

For federated GWAS, a PCA algorithm for vertically
partitioned data is required for computing the eigenvectors
(please refer to section II for a detailed explanation). Although
a few such algorithms are available [8]–[11], none of them is
suitable for federated GWAS. More precisely, the algorithms
reviewed in [11] use client-to-client communication and are
therefore unsuitable for the star-like FL architectures used in
GWAS, where relatively few data holders collaborate in a
static setting. The algorithms presented in [8] and [9] rely on
estimating a proxy covariance matrix and hence do not scale
to large GWAS datasets, which often contain genetic variation
data for hundreds of thousands of individuals. To the best
of our knowledge, the only covariance free PCA algorithm
suitable for a star-like architecture has been presented in [10].
However, this algorithm broadcasts the complete first k − 1
sample eigenvectors to the aggregator, which constitutes a
privacy leakage that should be avoided in federated GWAS.

Extrapolating from the shortcomings of existing approaches,
we can state that, for federated GWAS, a PCA algorithm
for vertically partitioned data is required that combines the
following properties:

• The algorithm should be suitable for a star-like FL
architecture, i. e., require only client-to-aggregator but
no client-to-client communication.

• The algorithm should not rely on computing or approxi-
mating the covariance matrix.

• The algorithm should not broadcast complete sample
eigenvectors to the aggregator or to the clients.

In this paper, we present the first algorithm that combines all
of these desirable properties and can hence be used for federated
GWAS (and all other applications where these properties
are required). We prove that our algorithm is equivalent to
centralized vertical subspace iteration [12], a state-of-the-art
centralized, covariance-free PCA algorithm. Moreover, we show
in an empirical evaluation that the eigenvectors computed by
our approach converge to the centrally computed eigenvectors
after sufficiently many iterations.

© 2021 IEEE. Reprinted, with permission, from Anne Hartebrodt, Reza Nasirigerdeh, David B. Blu-
menthal, Richard Röttger, Federated Principal Component Analysis for Genome-Wide Association Stud-
ies, 2021 IEEE International Conference on Data Mining (ICDM), 2021, https://doi.org/10.1109/
ICDM51629.2021.00127

https://doi.org/10.1109/ICDM51629.2021.00127
https://doi.org/10.1109/ICDM51629.2021.00127

Additionally, we developed a user-friendly web service,
which implements our algorithm and hence makes it available
to non-computer-scientist researchers working in the GWAS
field. To further protect against potential reconstruction at-
tacks at the aggregator, the shared model parameters are
protected via secure multi-party computation (SMPC) like
parameter obfuscation. The online tool is available at https:
//xxxxxxxxxxxxxxxxxxxxxxx/. To the best of our knowledge,
it is the first ready-to-use implementation of a federated PCA
algorithm. Note that providing such an implementation is
crucial for federated GWAS solutions to be adopted in practice,
because GWAS scientists tend to rely on ready-made software
such as PLINK [13]. In sum, this paper contains the following
contributions:

• We present the first federated PCA algorithm for vertically
partitioned data which meets the requirements that apply
in federated GWAS settings.

• We prove that our algorithm is equivalent to centralized
power iteration and show that it exhibits an excellent
convergence behavior in practice.

• We present a user-friendly privacy-preserving web service
that implements the proposed algorithm and thereby makes
it available to the GWAS community.

The remainder of this paper is organized as follows: In
Section II, we introduce concepts and notations that are used
throughout the paper. In Section III, we discuss related work. In
Section IV, we describe the proposed algorithm. In Section V,
we present the application. In Section VI, we report the results
of the experiments. Section VII concludes the paper.

II. PRELIMINARIES

A. Federated Learning and Employed Data Model

Unlike in centralized machine learning where the data is
consolidated at a central server and a model is calculated on
the combined data, in FL the data remains at the data owners
machine. Instead of the data, only model parameters are sent
to the (untrusted) aggregator which combines the local models
into a global model. No raw data is exchanged in FL. See
Figure 1 for a schematic comparison of centralized (cloud)
learning and FL. In the cloud-based approach, data contributors
send their data to a central server where the model is computed
and thereby lose agency over it.

Data owners

Untrusted aggregator

Local
data

Global
model

Data owners

Untrusted aggregator

Local
models

Global
model

Fig. 1. Schematic comparison of traditional cloud base approaches (left) and
federated learning (right).

Typically, a star-like client-aggregator architecture is used in
biomedical federated solutions [4], [14], with the data holders
acting as clients. The data sets at the client sites will be called
local data sets and the parameters or models learned using this
data will be called local parameters or local models, while
the final aggregated model will be called pooled model. The
optimal result of the pooled model is achieved when it equals
the result of the conventional model calculated on all data,
which we call the global model.

In federated settings, the data can be distributed in several
ways. Either the clients observe a full set of variables for a
subset of the samples (horizontal partitioning) or they have a
partial set of variables for all samples (vertical partitioning)
[11], [15]. In this paper, we assume that we are given a global
data matrix A ∈ Rm×n, where m is the number of features
(SNPs, in the context of GWAS) and n is the overall number
of samples. The data is split across S local sites as A =
[A1 . . .As . . .AS], where As ∈ Rm×ns

and ns denotes the
number of samples available at site s. From a semantic point
of view, the partitioning is hence horizontal, since the samples
are distributed over the local sites. However, from a technical
point of view, the partitioning is vertical, since the samples
correspond to the columns of A. The reason for this rather
unintuitive setup is that, when using PCA for GWAS, samples
are treated as features, as detailed in the following paragraphs.

B. Principal Component Analysis

Given a data matrix A ∈ Rm×n, the PCA is the decom-
position of the covariance matrix Σ = A>A ∈ Rn×n into
Σ = ΓΛΓ>. Λ ∈ Rn×n is a diagonal matrix containing
the eigenvalues (λi)

n
i=1 of Σ in non-increasing order, and

Γ ∈ Rn×n is the corresponding matrix of eigenvectors [16].
Usually, one is only interested in the top k eigenvalues and
corresponding eigenvectors. Since k is arbitrary but fixed
throughout this paper, we let G ∈ Rn×k denote these first k
eigenvectors (i. e., G corresponds to the first k columns of Γ).
G is typically used to obtain a lower-dimensional representation
A 7→ AG ∈ Rm×k of the data matrix A, which can then be
used for downstream data analysis tasks. This, however, is not
the way PCA is used in GWAS, as we will explain next.

C. Genome-Wide Association Studies

The genome stores the hereditary information that control the
phenotype of an individual in interplay with the environment.
The genetic information is stored in the DNA encoded as
a sequence of bases (A, T, C, G), the positions are called
loci. If we observe two or more possible bases at a specific
locus in a population, we call this locus a single nucleotide
polymorphism (SNP). The predominant base in a population
is called the major allele; bases at lower frequency are called
minor alleles [3].

Genome wide association studies seek to identify SNPs
that are linked to a specific phenotype [2], [3]. Phenotypes
of interest can for example be the presence or absence of
diseases, or quantitative traits such as height or body mass
index. The SNPs for a large cohort of individuals are tested for

© 2021 IEEE. Reprinted, with permission, from Anne Hartebrodt, Reza Nasirigerdeh, David B. Blu-
menthal, Richard Röttger, Federated Principal Component Analysis for Genome-Wide Association Stud-
ies, 2021 IEEE International Conference on Data Mining (ICDM), 2021, https://doi.org/10.1109/
ICDM51629.2021.00127

https://doi.org/10.1109/ICDM51629.2021.00127
https://doi.org/10.1109/ICDM51629.2021.00127

association with the trait of interest. Typically, simple models
such as linear or logistic regression are used for this [2], [4].
The input to a GWAS is an n-dimensional phenotype column-
vector y, a matrix of SNPs A ∈ Rm×n, and confounding
factors as column vectors. Each SNP l ∈ [m] is tested in an
individual association test

y ∼ β0 + β1 ·A>l,• +
R∑

r=1

βr+1 · xr + ε, (1)

where Al,• denotes the lth row of A and the column vectors
xr ∈ Rn contain confounding factors such as age or sex.

D. Principal Component Analysis for Genome-Wide Associa-
tion Studies

Confounding factors such as ancestry and population sub-
structure can alter the outcome of an association test and
create false hits if not properly controlled for [3]. PCA has
emerged as a popular strategy to infer population substructure,
but is reported as lacking for decentralized learning [5].
More precisely, the first k (usually k = 10) eigenvectors
G = [g1 . . .gk] ∈ Rn×k of the sample covariance matrix
A>A are included into the association test as covariates [6],
[7]:

y ∼ β0 + β1 ·A>l,•+
R∑

r=1

βr+1 ·xr +

k∑
i=1

βi+R+1 · gi + ε (2)

In federated GWAS, each local site s needs to have access
only to the partial eigenvector matrix Gs corresponding to
the locally available samples. Consequently, computing the
complete eigenvector matrix G at the aggregator and/or sharing
Gs with other local sites s′ should be avoided to reduce the
possibility of information leakage. This is especially important
because it has been shown that, if G is available at the
aggregator in a federated GWAS pipeline, the aggregator can
in principle reconstruct the raw GWAS data Al,• for SNP l
[17]. Federated PCA algorithms that are suitable for GWAS
should hence have to respect the following constraint:
Constraint 1 In a GWAS-suitable federated PCA algorithm,

the aggregator does not have access to the complete
eigenvector matrix G and each site s has access only
to its share Gs of G.

The PCA in GWAS is usually performed on only a subsample
of the SNPs, but there seems to be no consensus as to how
many SNPs should be used. Some PCA-based stratification
methods rely on a small set of ancestry informative markers
[18], while others employ over 100 000 SNPs [19].

Note that PCA for GWAS is conceptually different from
“regular” PCA for feature reduction (cf. Figure 2). For feature
reduction PCA, we would decompose the m×m SNP by SNP
covariance matrix and compute a set of “meta-SNPs” for each
sample. This is not what needs to be done for GWAS. Instead,
the matrix which needs to be decomposed is the n×n sample
by sample covariance matrix A>A. In our federated setting
where A is vertically distributed across local sites s ∈ [S],

A

sa
m

pl
es

features

A>A

fe
at

ur
es

features

G

fe
at

ur
es

k

AG

sa
m

pl
es

k

A

fe
at

ur
es

samples

A>A

sa
m

pl
es

samples

G

sa
m

pl
es

k

association
test

Fig. 2. Regular PCA for dimensionality reduction (upper panel); GWAS PCA
for sample stratification (lower panel).

A>A looks as follows (recall that, unlike in regular PCA,
columns correspond to samples and rows to features):

A>A =

A1>A1 A1>A2 · · · A1>AS

A2>A1 A2>A2 · · · A2>AS

...
...

. . .
...

AS>A1 AS>A2 · · · AS>AS

 (3)

It is clear that A>A cannot be computed directly without
sharing patient level data. Moreover, with a growing number
of samples, this matrix can become very large and computing
it becomes infeasible. For instance, the UK Biobank — a large
cohort frequently used for GWAS — contains GWAS data for
more than 300 000 individuals. Furthermore, approximating the
A>A matrix would introduce an error. These considerations
lead to the second constraint for federated PCA algorithms
suitable for GWAS:

Constraint 2 A GWAS-suitable federated PCA algorithm
works on vertically partitioned data and does not rely
on computing or approximating the covariance matrix.

E. Gram-Schmidt Orthonormalization

The Gram-Schmidt algorithm allows to transform a set of
linearly independent vectors into a set of mutually orthogonal
vectors, see [20] for a proof. Given a matrix V = [v1 . . .vk] ∈
Rr×k of k linearly independent column vectors, a matrix U =
[u1 . . .uk] ∈ Rr×k of orthogonal column vectors with the
same span can be computed as

ui =

{
vi if i = 1

vi −
∑i−1

j=1 ri,j · uj if i ∈ [k] \ {1}
, (4)

where ri,j = u>j vi/nj with nj = u>j uj .
The vectors can then be scaled to unit Euclidean norm as

ui 7→ (1/
√
ni) · ui to achieve a set of orthonormal vectors. In

the context of PCA, this can be used to ensure orthonormality
of the candidate eigenvectors in iterative procedures, which
otherwise suffer from numerical instability in practice [10].

© 2021 IEEE. Reprinted, with permission, from Anne Hartebrodt, Reza Nasirigerdeh, David B. Blu-
menthal, Richard Röttger, Federated Principal Component Analysis for Genome-Wide Association Stud-
ies, 2021 IEEE International Conference on Data Mining (ICDM), 2021, https://doi.org/10.1109/
ICDM51629.2021.00127

https://doi.org/10.1109/ICDM51629.2021.00127
https://doi.org/10.1109/ICDM51629.2021.00127

TABLE I
NOTATION TABLE.

Syntax Semantics

[N] ⊂ N index set [N] = {i ∈ N | 1 ≤ i ≤ N}
S ∈ N number of sites
m ∈ N number of features (i. e. SNPs)
n ∈ N total number of samples
ns ∈ N number of samples at site s ∈ [S]
k ∈ N number of eigenvectors
A ∈ Rm×n complete data matrix
As ∈ Rm×ns

subset of data available at site s ∈ [S]
Gi ∈ Rn×k eigenvector matrix of A>A at iteration i
G ∈ Rn×k converged eigenvector matrix of A>A
Gs

i ∈ Rns×k partial eigenvector matrix of A>A at iteration i

Gs ∈ Rns×k converged partial eigenvector matrices of A>A.
Hi ∈ Rm×k eigenvector matrix of AA> at iteration i
H ∈ Rm×k converged eigenvector matrix of AA>

Hs
i ∈ Rm×k partial eigenvector matrix of AA> at iteration i

V ∈ Rr×k a generic column vector matrix
U ∈ Rr×k an orthonormal matrix with span(U) = span(V)

F. Notations

Table I provides an overview of notations which are used
throughout the paper.

III. RELATED WORK

A. Centralized, Iterative, Covariance-Free Principal Compo-
nent Analysis

While classical PCA algorithms rely on computing the
covariance matrix A>A [16], there are several covariance-free
approaches to iteratively approximate the top k eigenvalues
and eigenvectors [21]. Algorithm 1 summarizes the centralized,
iterative, covariance-free PCA algorithm suggested in [12],
which will serve as point of departure for our federated
approach. First, an initial eigenvector matrix is sampled
randomly and orthonormalized (lines 1 to 2). In every iteration
i, improved candidate eigenvectors Gi of A>A are computed
(lines 5 to 8). Once a suitably defined termination criterion is
met (convergence, maximal number of iterations, time limit,
etc.), the last candidate eigenvectors are returned (line 10).

Algorithm 1: Vertical Subspace Iteration [12].
Input: Data matrix A ∈ Rm×n, number of

eigenvectors k.
Output: Eigenvector matrix G ∈ Rn×k of A>A.

1 generate G0 ∈ Rn×k randomly;
2 G0 ← orthonormalize(G0);
3 i← 1;
4 while termination criterion not met do
5 Hi = AGi−1;
6 Hi = orthonormalize(Hi);
7 Gi = A>Hi;
8 Gi ← orthonormalize(Gi);
9 i← i+ 1;

10 G← Gi; return G;

To update the candidate eigenvector matrices Gi = A>Hi =
A>AGi−1 ∈ Rn×k of A>A, the algorithm also computes
candidate eigenvector matrices Hi = AGi−1 = AA>Hi−1 ∈
Rm×k of AA>. Since, in the context of GWAS, AA>

corresponds to the “classical” feature by feature covariance
matrix, the algorithm can hence be used for both sample
stratification and feature reduction. Our federated version will
inherit this property.

B. Federated Principal Component Analysis for Vertically
Partitioned Data

Only few algorithms to perform federated computation
of PCA on vertically partitioned static data sets have been
proposed [8]–[11]. However, none of them is suitable for
the GWAS use-case considered in this paper: The algorithms
reviewed in [11] are specialised for distributed sensor networks
and use gossip protocols and peer-to-peer communication.
Therefore, they are not suited for the intended FL architecture
in the medical setting. The algorithms presented in [8] and [9]
rely on estimating a proxy covariance matrix and consequently
do not meet Constraint 2 introduced above. Unlike these
approaches, the algorithm described in [10] is covariance-free
and suitable for the intended star-like architecture. However, it
broadcasts the eigenvectors to all sites in violation of Constraint
1.

C. Federated Matrix Orthonormalization

Matrix orthonormalization is a frequently used technique in
many applications, including the solution of linear systems of
equations and singular value decomposition. There are three
main approaches: Householder reflection, Givens rotation, and
the Gram-Schmidt algorithm. In distributed memory systems
and grid architectures, tiled Householder reflection is a popular
approach [22], [23]. However, those algorithms are often
highly specialized to the compute system and rely on shared
disk storage. For distributed sensor networks, Gram-Schmidt
procedures relying on push-sum have been proposed [24]–[26].
However, these methods require peer-to-peer communication
and are hence unsuitable for the intended star-like architecture.
In other words, no federated orthonormalization algorithms
suitable for our setup are available. Below, we present such
an algorithm, which is used as a subroutine in our federated
PCA algorithm.

D. Federated Principal Component Analysis for Horizontally
Partitioned Data

For completeness, we also provide a short overview of
existing federated PCA algorithms for horizontally parti-
tioned data. Here, we selected representatives for conceptual
groups of algorithms. There are “single-round” approaches,
where the eigenvectors are computed locally and sent to
the aggregator [27]. At the aggregator, a global subspace
is approximated from the local eigenspaces. The higher the
number of transmitted intermediate dimensions, the better
the global subspace approximation. In these algorithms, the
solution quality hence depends on the number of transmitted

© 2021 IEEE. Reprinted, with permission, from Anne Hartebrodt, Reza Nasirigerdeh, David B. Blu-
menthal, Richard Röttger, Federated Principal Component Analysis for Genome-Wide Association Stud-
ies, 2021 IEEE International Conference on Data Mining (ICDM), 2021, https://doi.org/10.1109/
ICDM51629.2021.00127

https://doi.org/10.1109/ICDM51629.2021.00127
https://doi.org/10.1109/ICDM51629.2021.00127

dimensions. Furthermore, iterative schemes have been proposed,
where locally computed eigenvectors are sent to the aggregator,
which performs an aggregation step and sends the obtained
candidate subspace back to the clients [28]–[30]. The candidate
subspace is then refined iteratively. Furthermore, there are
several schemes for specific applications such as streaming
[31], [32]. These approaches assume that an approximation of
the entire eigenvectors is possible at the clients, or that the
global covariance matrix can be approximated. As we have
discussed above, these assumptions do not hold in the intended
GWAS use case.

IV. ALGORITHMS

In this section, we present a federated PCA algorithm, which
is designed for a star-like architecture, meets the requirements
of Constraint 1 and Constraint 2, and is hence suitable for
federated GWAS. Our algorithm comes in two variants — with
and without orthonormalization of the candidate eigenvectors
of A>A. In Section IV-A, we describe our algorithm and
prove that the version with orthonormalization is equivalent to
centralized vertical subspace iteration algorithm [12], which
we have summarized in Algorithm 1 above. In Section IV-B,
we present a federated Gram-Schmidt algorithm, which can
be used as a subroutine in our federated PCA algorithm to
ensure that the eigenvectors of A>A remain at the local sites.
Again, we prove that our federated Gram-Schmidt algorithm
is equivalent to the centralized counterpart. In Section IV-C,
we analyze the network transmission costs of the proposed
algorithms.

A. Federated Vertical Subspace Iteration

Algorithm 2 describes our federated vertical subspace
iteration algorithm: Initially, the first partial candidate eigen-
vector matrices Gs

0 of A>A are generated randomly and
orthonormalized (lines 2 to 4).

Inside the main loop, the candidate eigenvectors Hi of
AA> are updated at the clients, summed up element-wise
and orthonormalized at the aggregator, and then sent back
to the clients (lines 9 to 11). Next, the clients update the
partial candidate eigenvectors Gs

i of A>A (line 13). In the
version with orthonormalization, the candidate eigenvectors
Gi of A>A are now normalized by calling the federated
Gram-Schmidt orthonormalization algorithm presented in Sec-
tion IV-B (line 15). Note that this algorithm ensures that the
partial candidate eigenvectors Gs

i remain at the local sites.
Finally, the partial eigenvectors are returned at the clients. In
practice, the federated orthonormalization of Gi (line 15) may
be omitted to speed up computation. Note, however, that Hi

is still orthonormalized in every iteration.
Like the original centralized version described in Algorithm 1

above, our algorithm can be run with various termination
criteria. In our implementation, we use the convergence
criterion

diag(H>i Hi−1) ≥ 1k − ε (5)

using the angle as a global measure as suggested in [33], where
1k is the k-dimensional vector of ones and ε is a small positive

Algorithm 2: Federated Vertical Subspace Iteration.
(Partial) client-side computations are marked in gray.

Input: Partial data matrices As ∈ Rm×ns

at sites
s ∈ [S], number of eigenvectors k.

Output: Partial eigenvector matrices Gs ∈ Rns×k of
A>A at sites s ∈ [S].

1 // Initialize partial candidate eigenvector matrices of A>A.

2 for s ∈ [S] do generate Gs
0 ∈ Rns×k randomly;

3 if use orthonormalization then
// Use approach described in Algorithm 3.

4 federated-gram-schmidt();

5 // Initialize iteration counter.
6 i← 1;
7 while termination criterion not met do
8 // Update partial candidate eigenvector matrices of AA>.
9 for s ∈ [S] do Hs

i ← AsGs
i−1;

10 Hi ←
∑S

s=1 Hs
i ;

11 Hi ← orthonormalize(Hi);
12 // Update partial candidate eigenvector matrices of A>A.

13 for s ∈ [S] do Gs
i ← As>Hi;

14 if use orthonormalization then
// Use approach described in Algorithm 3.

15 federated-gram-schmidt();

16 // Increment iteration counter.
17 i← i+ 1;

18 for s ∈ [S] do
19 Gs ← Gs

i ;
20 return Gs;

21

number. With this criterion, the algorithm terminates once all
candidate eigenvectors of AA> are asymptotically collinear
with respect to the eigenvectors of the previous iteration. Other
convergence criteria could be used as drop-in replacements.

We now prove that the version of Algorithm 2 with orthonor-
malization is equivalent to the centralized version described in
Algorithm 1. Thus, it inherits its convergence behavior from
the centralized version. Details on the convergence behavior
of centralized vertical subspace iteration can be found in the
original publication [12].

Proposition 1: If orthonormalization is used, centralized
and federated vertical subspace iteration are equivalent.

Proof: Let Gi and Hi denote the eigenvector matrices
maintained by the centralized algorithm described in Algo-
rithm 1 at the end of the main while-loop, and Gs

i be the
sub-matrix of Gi for the samples available at site s. Moreover,
let H̃i, G̃i, G̃s

i , and H̃s
i be the (partial) eigenvector matrices

maintained by our federated Algorithm 2 at the end of the main
while-loop. We will show by induction on the iterations i that
Hi = H̃i and Gs

i = G̃s
i for all s ∈ [S] holds throughout the

algorithm, if the same random seeds are used for initialization.
For i = 0, we only have to show Gs

0 = G̃s
0. This directly

follows from Proposition 2 and our assumption that the same

© 2021 IEEE. Reprinted, with permission, from Anne Hartebrodt, Reza Nasirigerdeh, David B. Blu-
menthal, Richard Röttger, Federated Principal Component Analysis for Genome-Wide Association Stud-
ies, 2021 IEEE International Conference on Data Mining (ICDM), 2021, https://doi.org/10.1109/
ICDM51629.2021.00127

https://doi.org/10.1109/ICDM51629.2021.00127
https://doi.org/10.1109/ICDM51629.2021.00127

random seeds are used for initialization. For the inductive
step, note that, before orthonormalization in line 11, we have
H̃i =

∑S
s=1 H̃s

i =
∑S

s=1 AsG̃s
i−1 =

∑S
s=1 AsGs

i−1 =
AGi−1 = Hi, where the third equality follows from the
inductive assumption. Because of Proposition 2, this identity
continues to hold at the end of the main while-loop.

Similarly, after updating in line 13 but before orthonormal-
ization, we have G̃s

i = As>H̃i = As>Hi = (A>Hi)
s = Gs

i ,
where the second equality follows the identity Hi = H̃i shown
above and (A>Hi)

s denotes the sub-matrix of A>Hi for the
samples available at site s. Again, Proposition 2 ensures that
the identity continues to hold after orthonormalization.

The omission of the orthonormalization of Gi (line 4 in
Algorithm 2) removes provable convergence to algorithm
algorithm 1. However, other formulations of centralized power
iteration exist which directly operate on the covariance matrix
[27]. In these schemes, instead of splitting the iteration into Hi

update (line 5, algorithm 1) and Gi update (line 7, algorithm 1),
the covariance matrix is computed and Hi is updated as
Hi = AA>Hi−1 at every iteration. Proposition 1 can be
formulated and proven analogously for this version.

B. Federated Gram-Schmidt Algorithm

Here, we describe federated Gram-Schmidt orthonormal-
ization for vertically partitioned column vectors. Previous
federated PCA algorithms require the complete eigenvectors
to be known at all sites for the orthonormalization procedure.
The naı̈ve way of orthonormalizing the eigenvector matrices
would be to send them to the aggregator which performs the
aggregation and then sends the orthonormal matrices back to
the clients. However, in this naı̈ve scheme, the transmission
cost scales with the number of variables (individuals in GWAS)
and all eigenvectors are known to the aggregator.

To address these two problems, we suggest a federated
Gram-Schmidt orthonormalization algorithm, summarized in
Algorithm 3. The algorithm exploits the fact that the compu-
tations of the squared norms ni and of the residuals rij can
be decomposed into independent computations of summands
nsi and rsij computable at the local sites s ∈ [S]. The clients
compute the local summands and send them to the aggregator,
where the squared norm of the first orthogonal vector is
computed and sent to the clients (lines 2 to 2). Subsequently,
the remaining k − 1 vectors are orthogonalized. For the ith

vector vi, the algorithm computes the residuals rij w. r. t. all
already computed orthogonal vectors uj , using the fact that the
corresponding squared norms nj are already available (lines 8
to 10). The residuals are aggregated by the central server
(lines 12 to 13). Next, vi is orthogonalized at the clients, the
local norms are computed (lines 15 to 17), and the squared
norm of the resulting orthogonal vector ui is computed at
the aggregator and sent back to the clients (line 19). After
orthogonalization, all orthogonal vectors are scaled to unit
norm at the clients (lines 21 to 23).

Proposition 2: Centralized and federated Gram-Schmidt
orthonormalization are equivalent.

Algorithm 3: Federated Gram-Schmidt. Client-side
computations are marked in gray.

Input: Data matrices Vs at sites s ∈ [S].
Output: Orthonormalized data matrices Us at sites

s ∈ [S].
1 // Compute squared norm of first orthogonal vector.
2 for s ∈ [S] do
3 us

1 ← vs
1;

4 ns1 ← us
1
>us

1;

5 n1 ←
∑S

s=1 n
s
1 ;

// Orthogonalize all subsequent vectors.
6 for i ∈ [k] \ {1} do
7 // Compute client residuals for vector being orthogonalized.
8 for s ∈ [S] do
9 for j ∈ [i− 1] do

10 rsij ← us
j
>vs

i /nj ;

11 // Compute global residuals for vector being orthogonalized.
12 for j ∈ [i− 1] do
13 rij ←

∑S
s=1 r

s
ij ;

14 // Orthogonalize the vector and compute squared norm.
15 for s ∈ [S] do
16 us

i ← vs
i −

∑i−1
j=1 rij · us

j ;
17 nsi ← us

i
>us

i

18 // Compute squared norm of orthogonalized vector.

19 ni ←
∑S

s=1 n
s
i ;

20 // After orthogonalization, scale all k vectors to unit norm.
21 for s ∈ [S] do
22 for i ∈ [k] do us

i ← 1√
ni
· us

i ;
23 Us ← [us

1 . . .u
k
s]; return Us;

24

Proof: Let V = [v1 . . .vk] be the matrix that should be
orthonormalized, vs

i be the restriction of the ith columns vector
to the samples available at side s, and us

i be the restriction
of the ith orthogonal vector computed by the centralized
Gram-Schmidt algorithm before normalization to the samples
available at site s. Moreover, let ni and ri,j be the centrally
computed norms and residuals, and ñi, r̃i,j , and ũs

i be the
locally computed norms, residuals, and partial orthogonal
vectors before normalization. We show by induction on i that
ni = ñi, rij = r̃ij , and us

i = ũs
i holds for all i ∈ [k] and all

j ∈ [i− 1]. This implies the proposition.
For i = 1, we have us

1 = vs
1 = ũs

1 and n1 = u>1 u1 =∑S
s=1 us

1
>us

1 =
∑S

s=1 ũs>
1 ũs

1 = ñ1. For the inductive
step, note that rij = uj

>vi/nj =
∑S

s=1 us
j
>vs

i /nj =∑S
s=1 ũs>

j vs
i /ñj = r̃ij , where the third identity follows

from the inductive assumption. Moreover, we have us
i =

vs
i −

∑i−1
j=1 rij · us

j = vs
i −

∑i−1
j=1 r̃ij · ũs

j = ũs
i , where the

second identity follows from the inductive assumption and
the identities rij = r̃ij established before. We hence obtain

© 2021 IEEE. Reprinted, with permission, from Anne Hartebrodt, Reza Nasirigerdeh, David B. Blu-
menthal, Richard Röttger, Federated Principal Component Analysis for Genome-Wide Association Stud-
ies, 2021 IEEE International Conference on Data Mining (ICDM), 2021, https://doi.org/10.1109/
ICDM51629.2021.00127

https://doi.org/10.1109/ICDM51629.2021.00127
https://doi.org/10.1109/ICDM51629.2021.00127

ni = u>i ui =
∑S

s=1 us
i
>us

i =
∑S

s=1 ũs>
i ũs

i = ñi, which
completes the proof.

C. Network Transmission Costs

The main bottleneck in FL is the amount of data transmit-
ted between the different sites and the number of network
communications. The following Proposition 3 specifies these
quantities for our federated PCA algorithm. Recall that S, k, m,
and n denote, respectively, the numbers of sites, eigenvectors,
features, and samples.

Proposition 3: Let D be the total amount of data transmitted
by our federated PCA algorithm, N be the total number
of network communications, and I be the total number of
iterations of the main while-loop. Then the following statements
hold:
• If the Gi matrices are not orthonormalized, it holds that
D = O(I · S · k ·m) and N = O(I · S).

• If federated Gram-Schmidt orthonormalization is used, it
holds that D = O(I ·(S ·k ·m+k2)) and N = O(I ·S ·k).
Proof: In each iteration i of our federated vertical subspace

iteration algorithm, the matrices Hs
i ∈ Rm×k have to be sent

from the clients to the aggregator and the matrix Hi ∈ Rm×k

has to be sent back to the clients. In iteration i, the amount
of transmitted data and the number of communications due
to Hi is hence O(S · k · m) and O(S), respectively. For
orthonormalizing the eigenvector matrices Gi ∈ Rn×k, we
need to transmit a data volume of O(S · k2) and the number
of communications increases to O(S · k). By summing over
the iterations i, this yields the statement of the proposition.

If our federated Gram-Schmidt algorithm is used, the overall
volume of transmitted data is hence independent of the number
of samples n. This is especially important in the intended
GWAS setting, since here we can achieve n � m by pre-
filtering the SNPs (i. e., features) before carrying out the PCA
[18], [34]. Moreover, k is small (typically, k = 10 is used
for GWAS PCA), which implies that the additional factor k
in the complexities of D and N can be neglected. Therefore,
using the suggested scheme is preferable over sending the
eigenvectors to the aggregator for orthonormalization both in
terms of privacy and expected transmission cost.

V. WEB SERVICE

Researchers from the biomedical sciences performing GWAS
typically rely on ready-made software such as PLINK [13].
Consequently, a user-friendly tool is required in order to
make federated PCA available to these researchers in order to
facilitate adoption in practice.

To render the federated PCA algorithm presented in Sec-
tion IV accessible to the biomedical community, we have devel-
oped a web-based user interface available at https://anonymous.
4open.science/r/hyfed-pca-22F6. The implementation is based
on HyFed [35], a Python package for privacy-preserving
federated web services. To the best of our knowledge, our web
tool is the first ready-to-use privacy-preserving implementation
of a federated PCA algorithm. It consists of four components:

• A client software which runs at the local sites and
computes all parameters using local data.

• An aggregation software which runs on a central server
and aggregated the local (noisy) parameters.

• A compensator module which aggregates the noise such
that the true local parameters are hidden from the
aggregation software.

• A web interface which can be used to set up the study.
This includes the generation of tokens for all participants
to ensure that only authenticated users participate in the
study.

To protect the local data from reconstruction attacks at the
aggregation server, the HyFed backend provides an SMPC-
like parameter obfuscation scheme, where noise is added to
the intermediate parameters and subtracted from the global
parameters. HyFed assumes an honest-but-curious risk model,
i. e., assumes that all participants (aggregator, compensator, as
well as all clients) strictly adhere to the protocol but try to
extract as much information as possible from legally acquired
data. For more details, we refer to the original publication [35].

VI. EMPIRICAL EVALUATION

A. Test Datasets

To evaluate our federated PCA algorithm, we used three
publicly available datasets: chromosome 1 and chromosome
2 from a genetic dataset from the 1000 Genomes Project
[36], as well as the MNIST database of handwritten digits
[37] (Table II). The two genetic data sets contain data for
2502 patients (samples) and 100 000 SNPs (features), after
applying standard pre-processing steps (MAF filtering, LD
pruning, SNP sub-sampling). MNIST contains 60 000 grayscale
images of handwritten numerals (samples), each of which has
784 pixels (features). To the best of our knowledge, publicly
available genetic data sets with large numbers of patients are
not readily available. Therefore, we decided to use MNIST in
addition to the genetic datasets, because the higher number
of samples allowed us to evaluate our algorithm in terms of
scalability. Moreover, although motivated by federated GWAS,
our federated PCA algorithm is actually generically applicable.
The experiments on MNIST demonstrate its usefulness for
a more general audience. The MNIST data set is available
at http://yann.lecun.com/exdb/mnist/, the genetic data can be
obtained from ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/
20130502/.

TABLE II
DATASETS USED IN THE STUDY.

Dataset Samples Features

MNIST 60 000 784
1000 Genomes – Chrom. 1 2502 100 000
1000 Genomes – Chrom. 2 2502 100 000

B. Compared Methods

We tested two variants of our federated PCA algorithm
detailed in Algorithm 2: NO-GS, which omits Gram-Schmidt

© 2021 IEEE. Reprinted, with permission, from Anne Hartebrodt, Reza Nasirigerdeh, David B. Blu-
menthal, Richard Röttger, Federated Principal Component Analysis for Genome-Wide Association Stud-
ies, 2021 IEEE International Conference on Data Mining (ICDM), 2021, https://doi.org/10.1109/
ICDM51629.2021.00127

https://doi.org/10.1109/ICDM51629.2021.00127
https://doi.org/10.1109/ICDM51629.2021.00127

orthonormalization, and FED-GS, which uses federated Gram-
Schmidt orthonormalization as described in Algorithm 3.
We compared NO-GS and FED-GS to the federated PCA
algorithm suggested by Guo and colleagues [10] (called GUO
in the sequel), the only available federated PCA algorithm for
vertically partitioned data suitable for a star-like architecture.
However, GUO shares the sample eigenvectors with the
aggregator, which should be avoided in federated GWAS as
emphasized earlier. For all compared methods, we set the
convergence criterion in eq. (5) to ε = 10−9, which corresponds
to a change of the angle between two consecutive eigenvectors
updates of about 0.0026 degrees. Note that this angle does
not equal the angle w. r. t. centrally computed eigenvectors,
which we used as a test metric for measuring the quality of
the compared methods (cf. next paragraph).

C. Test Metrics

For measuring the quality of the compared methods, we
computed the angles between the eigenvectors obtained from
a reference implementation of a centralized PCA and their
counterparts computed in a federated fashion. An angle of
0 between two eigenvectors of the same rank is the desired
result. As a reference, we chose the version implemented
in scipy.sparse.linalg, which internally interfaces
LAPACK. The amount of transmitted data is estimated by
calculating the number of transmitted floats and multiplying it
by a factor of 4 bytes (single precision IEEE 754). We choose
this metric to remain agnostic with respect to the transmission
protocol. Times measures are wall clock times using Python’s
time module.

D. Implementation, Availability, and Hardware Specifications

All methods except the web interface are written in
Python, using mainly, but not exclusively numpy and scipy.
They are available online at https://anonymous.4open.science/
r/federated-pca-simulation-5C79/. The tool is implemented
in Python (Django) and Angular, and is available at https:
//anonymous.4open.science/r/hyfed-pca-22F6. The simulation
tests were run on a compute server with 48 CPUs and 502 GB
available RAM in a total of 319 minutes, however the tests can
also be run on a standard laptop (8 CPUs, 16GB RAM) . The
tool was tested using a commodity laptop with a high-speed
Ethernet connection (100Mbit/s) running the clients and the
remote server running the aggregation software, meaning the
parameters had to be transmitted over the network.

E. Results of the Experiments

a) Convergence Behavior: To test the convergence be-
havior of the compared federated algorithms, we split the three
data sets into 5 equally sized chunks of samples. For each
of the first ten eigenvectors (i. e., the number of eigenvectors
typically used for sample stratification in GWAS) and each
compared algorithm, we then recorded the mean angles at each
iteration w. r. t. the fully converged reference averaged across
20 runs of the algorithm with random initialization of the

eigenvector guess and the data split into different randomized
chunks.

Figure 3 shows the results of the experiments. Note that,
unlike the versions FED-GS and NO-GS of our algorithm, the
competitor GUO computes the eigenvectors sequentially (i. e.,
eigenvector k has to converge before starting the computation
of the eigenvector k+1), which means that, for all but the first
eigenvector, the plots for GUO start with a horizontal line. The
most important result is that, for all algorithms, the eigenvectors
perfectly converge to the reference after a sufficient number
of iterations. The two versions of FED-GS and NO-GS of
our algorithm show essentially the same convergence behavior.
They both clearly outperform the competitor GUO in terms of
convergence speed.

b) Scalability: For the scalability tests, we randomly
sampled collections containing p% of the MNIST images, for
p ∈ {10, 20, . . . , 90}, and ran the methods on the collections
until convergence or until a maximum of 500 iterations was
reached. For NO-GS and FED-GS the total number of
iterations was limited and for GUO the number of iterations
per eigenvector. We repeated this 10 times for each fraction of
the data, and recorded the net volumes of transmitted data, as
well as the numbers of iterations at convergence.

Figure 4 shows the volume of transmitted data in MB
depending on the size of the data subset. For GUO the
volume of transmitted data increases linearly with increasing
number of samples. This is not the case for FED-GS and
NO-GS, where the amount of transmitted data is constant
with increasing sample size. This is due to the federated
Gram-Schmidt orthonormalization since the eigenvectors of
the sample by sample covariance matrix do not need to be
transmitted.

Naturally, federated QR orthogonalization introduces more
communication steps. However, this would also be the case
would one implement GUO with the additional constraint to
not broadcast the eigenvectors. When imposing this constraint,
the number of communication rounds per iteration increases
by a factor of 2k where k is the number of eigenvectors.

c) Performance of the Web Tool: Finally, we tested the
performance of our web interface. For this, we recorded the
run times and transmission costs for computing the first eight
eigenvectors for the three test data sets, when using either
of the two variants FED-GS and NO-GS of our federated
PCA algorithm. The convergence threshold was again set to
ε = 10−9, and the data was split into 2 equal chunks with
the clients running on the same laptop. We chose a slightly
smaller number in these experiments, because the explanatory
power decreases with higher rank, but the convergence time
increases due to the smaller eigengap. Table IV shows the
results. Using NO-GS, the tool needed fewer than 22 minutes
to compute the eigenvectors in all three instances. Using FED-
GS increased the run time to about 2 hours due to the increased
network communication (cf. Proposition 3) and the fact that
the tool uses a https-based transmission protocol which relies
on polling. These run times are absolutely reasonable, given
that collecting GWAS data often takes years. The transmission

© 2021 IEEE. Reprinted, with permission, from Anne Hartebrodt, Reza Nasirigerdeh, David B. Blu-
menthal, Richard Röttger, Federated Principal Component Analysis for Genome-Wide Association Stud-
ies, 2021 IEEE International Conference on Data Mining (ICDM), 2021, https://doi.org/10.1109/
ICDM51629.2021.00127

https://doi.org/10.1109/ICDM51629.2021.00127
https://doi.org/10.1109/ICDM51629.2021.00127

FED−GS NO−GS GUO

Eigenvector 1 Eigenvector 2 Eigenvector 5 Eigenvector 7 Eigenvector 10

C
hrom

osom
e 1

0 5 10 15 0 10 20 30 0 50 100 150 0 100 200 300 0 500 1000

0

25

50

75

Eigenvector 1 Eigenvector 5 Eigenvector 10

C
hrom

osom
e 2

0 10 20 30 0 100 200 300 400 0 250 500 750

0

25

50

75

Eigenvector 1 Eigenvector 5 Eigenvector 10

M
N

IS
T

0 10 20 30 0 100 200 300 400 0 250 500 750

0

25

50

75

iterations

an
gl

e
w

.r.
t r

ef
er

en
ce

Fig. 3. Angles between selected reference eigenvectors and the federated eigenvectors on chromosome 1 and 2, as well as for MNIST. The omitted eigenvectors
show similar behaviors.

TABLE IV
RUNTIMES OF THE WEB TOOL (IN min) ON THE THREE TEST DATASETS.

Algorithm MNIST Chrom. 1 Chrom. 2
clear noisy clear noisy clear noisy

NO-GS 9 10 18 23 11 13
FED-GS 125 125 134 157 148 104

0

50

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

percentage of samples

tr
an

sm
itt

ed
 d

at
a

vo
lu

m
e

in
 M

B

FED−GS

NO−GS

GUO

Estimated size of transmitted data

Fig. 4. Number of samples versus estimated amount of transmitted data.

TABLE III
TRANSMISSION COST OF THE WEB TOOL (IN GB) ON THE TEST DATASETS.

Algorithm MNIST Chrom. 1 Chrom. 2
clear noisy clear noisy clear noisy

NO-GS 0.048 0.082 6.33 10.59 3.8 5.28
FED-GS 0.055 0.089 5.56 10.93 6.16 7.22

costs are summarized in table III. Since GWAS PCA is used
in cross-silo federated learning, the relatively high volume of

transmitted data is acceptable, given the feasible compute time.
Independently, we conclude that the number of communication
steps is a crucial factor to optimize in iterative federated
learning.

VII. CONCLUSIONS AND OUTLOOK

In this paper, we presented an improved federated PCA
algorithm for vertically partitioned data. Although our algorithm
is primarily designed to meet the requirements of population
stratification in federated GWAS, it can be used for any
vertically or horizontally partitioned data. We proved that our
algorithm is equivalent to a state-of-the-art centralized PCA
algorithm and showed empirically that it indeed converges to
the centrally computed solutions. The key advantage of our
algorithm is that, unlike in existing federated PCA algorithms,
the sample eigenvectors remain at the local sites, due to the
use of fully federated Gram-Schmidt orthonormalization which
improves the privacy of the algorithm. We also provide a user-
friendly web interface to promote FL in the less technically
inclined GWAS community. In future work, we intend to further
decrease the amount of transmitted data and the number of
communication rounds by only updating those eigenvectors
that have not converged yet or offering premature termination
to avoid computing eigenvectors explaining little of the overall
variance.

ACKNOWLEDGMENTS

Acknowledgment placeholder
Acknowledgment placeholder
Acknowledgment placeholder
Acknowledgment placeholder
Acknowledgment placeholder
Acknowledgment placeholder

© 2021 IEEE. Reprinted, with permission, from Anne Hartebrodt, Reza Nasirigerdeh, David B. Blu-
menthal, Richard Röttger, Federated Principal Component Analysis for Genome-Wide Association Stud-
ies, 2021 IEEE International Conference on Data Mining (ICDM), 2021, https://doi.org/10.1109/
ICDM51629.2021.00127

https://doi.org/10.1109/ICDM51629.2021.00127
https://doi.org/10.1109/ICDM51629.2021.00127

REFERENCES

[1] V. Mothukuri, R. M. Parizi, S. Pouriyeh, Y. Huang, A. Dehghantanha, and
G. Srivastava, “A survey on security and privacy of federated learning,”
Future Generation Computer Systems, vol. 115, p. 619–640, Feb 2021.

[2] P. M. Visscher, N. R. Wray, Q. Zhang, P. Sklar, M. I. McCarthy,
M. A. Brown, and J. Yang, “10 Years of GWAS Discovery:
Biology, Function, and Translation,” American Journal of Human
Genetics, vol. 101, no. 1, pp. 5–22, 2017. [Online]. Available:
http://dx.doi.org/10.1016/j.ajhg.2017.06.005

[3] V. Tam, N. Patel, M. Turcotte, Y. Bossé, G. Paré, and D. Meyre,
“Benefits and limitations of genome-wide association studies,” Nature
Reviews Genetics, vol. 20, no. 8, pp. 467–484, 2019. [Online]. Available:
http://dx.doi.org/10.1038/s41576-019-0127-1

[4] R. Nasirigerdeh, R. Torkzadehmahani, J. Matschinske, T. Frisch, M. List,
J. Späth, S. Weiss, U. Völker, N. K. Wenke, T. Kacprowski, and
J. Baumbach, “splink: A federated, privacy-preserving tool as a robust
alternative to meta-analysis in genome-wide association studies,” bioRxiv,
2020.

[5] H. Cho, D. J. Wu, and B. Berger, “Secure genome-
wide association analysis using multiparty computation,” Nature
Biotechnology, vol. 36, no. 6, pp. 547–551, 2018. [Online].
Available: http://www.ncbi.nlm.nih.gov/pubmed/29734293http://www.
pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5990440

[6] A. L. Price, N. J. Patterson, R. M. Plenge, M. E. Weinblatt, N. A. Shadick,
and D. Reich, “Principal components analysis corrects for stratification
in genome-wide association studies,” Nature Genetics, vol. 38, no. 8, pp.
904–909, 2006.

[7] K. J. Galinsky, G. Bhatia, P.-R. Loh, S. Georgiev, S. Mukherjee, N. J.
Patterson, and A. L. Price, “Fast Principal-Component Analysis Reveals
Convergent Evolution of ADH1B in Europe and East Asia,” The American
Journal of Human Genetics, vol. 98, no. 3, pp. 456–472, mar 2016.
[Online]. Available: http://dx.doi.org/10.1016/j.ajhg.2015.12.022https:
//linkinghub.elsevier.com/retrieve/pii/S0002929716000033

[8] H. Kargupta, W. Huang, K. Sivakumar, and E. Johnson, “Distributed
Clustering Using Collective Principal Component Analysis,” Knowledge
and Information Systems, 2001.

[9] H. Qi, T. W. Wang, and J. D. Birdwell, “Global principal
component analysis for dimensionality reduction in distributed data
mining,” in Statistical Data Mining and Knowledge Discovery.
Chapman and Hall/CRC, jul 2003, pp. 323–338. [Online]. Available:
http://www.crcnetbase.com/doi/10.1201/9780203497159.ch19

[10] Y. F. Guo, X. Lin, Z. Teng, X. Xue, and J. Fan, “A covariance-free
iterative algorithm for distributed principal component analysis on
vertically partitioned data,” Pattern Recognition, vol. 45, no. 3, pp.
1211–1219, 2012. [Online]. Available: http://dx.doi.org/10.1016/j.patcog.
2011.09.002

[11] S. X. Wu, H. T. Wai, L. Li, and A. Scaglione, “A Review of Distributed
Algorithms for Principal Component Analysis,” Proceedings of the IEEE,
vol. 106, no. 8, pp. 1321–1340, 2018.

[12] N. Halko, P. G. Martinsson, and J. A. Tropp, “Finding structure with
randomness: Probabilistic algorithms for constructing approximate matrix
decompositions,” SIAM Review, vol. 53, no. 2, p. 217–288, Jan 2011.

[13] C. C. Chang, C. C. Chow, L. C. Tellier, S. Vattikuti, S. M. Purcell, and
J. J. Lee, “Second-generation PLINK: Rising to the challenge of larger
and richer datasets,” GigaScience, vol. 4, no. 1, pp. 1–16, 2015.

[14] A. Steed and M. Fradinho Duarte de Oliveira, “More than two,” Network
Graphics, pp. 125–168, 12 2010.

[15] M. Á. Rodrı́guez, A. Fernández, A. Peregrı́n, and F. Herrera, A Review
of Distributed Data Models for Learning. Cham: Springer International
Publishing, 2017.

[16] I. Jolliffe, Principal Component Analysis. Springer-Verlag, 2002.
[Online]. Available: https://doi.org/10.1007/b98835

[17] R. Nasirigerdeh, R. Torkzadehmahani, J. Baumbach, and D. B. Blumen-
thal, “On the privacy of federated pipelines,” in SIGIR 2021. New York:
ACM, 2021, p. 5.

[18] Y. Li, J. Byun, G. Cai, X. Xiao, Y. Han, O. Cornelis, J. E. Dinulos,
J. Dennis, D. Easton, I. Gorlov, M. F. Seldin, and C. I. Amos, “FastPop:
A rapid principal component derived method to infer intercontinental
ancestry using genetic data,” BMC Bioinformatics, vol. 17, no. 1, pp. 1–8,
2016. [Online]. Available: http://dx.doi.org/10.1186/s12859-016-0965-1

[19] H. G. Gauch, S. Qian, H. P. Piepho, L. Zhou, and R. Chen, “Consequences
of PCA graphs, SNP codings, and PCA variants for elucidating population
structure,” PLoS ONE, vol. 14, no. 6, pp. 1–26, 2019.

[20] R. A. Beezer, “A first course in linear algebra,” http://linear.ups.edu/fcla/
section-O.html, 2016, [Online book; accessed 2020-11-18].

[21] Y. Saad, Numerical Methods for Large Eigenvalue Problems,
ser. Classics in Applied Mathematics. Society for Industrial
and Applied Mathematics, Jan 2011. [Online]. Available: https:
//epubs.siam.org/doi/book/10.1137/1.9781611970739

[22] B. Hadri, H. Ltaief, E. Agullo, and J. Dongarra, “Tile qr factorization
with parallel panel processing for multicore architectures,” in 2010 IEEE
International Symposium on Parallel Distributed Processing (IPDPS),
2010, pp. 1–10.

[23] M. Hoemmen, “A communication-avoiding, hybrid-parallel, rank-
revealing orthogonalization method,” in 2011 IEEE International Parallel
Distributed Processing Symposium, 2011, pp. 966–977.

[24] O. Sluvciak, H. Straková, M. Rupp, and W. Gansterer, “Distributed
Gram-Schmidt orthogonalization with simultaneous elements refinement,”
Eurasip Journal on Advances in Signal Processing, vol. 2016,
no. 1, pp. 1–13, 2016. [Online]. Available: http://dx.doi.org/10.1186/
s13634-016-0322-6

[25] O. Sluciak, H. Strakova, M. Rupp, and W. N. Gansterer, “Distributed
Gram-Schmidt orthogonalization based on dynamic consensus,” Confer-
ence Record - Asilomar Conference on Signals, Systems and Computers,
pp. 1207–1211, 2012.

[26] H. Straková, W. N. Gansterer, and T. Zemen, “Distributed qr factor-
ization based on randomized algorithms,” in Parallel Processing and
Applied Mathematics, R. Wyrzykowski, J. Dongarra, K. Karczewski, and
J. Waśniewski, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2012, pp. 235–244.

[27] M. F. Balcan, V. Kanchanapally, Y. Liang, and D. Woodruff,
“Improved distributed principal component analysis,” Advances in Neural
Information Processing Systems, vol. 4, no. January, pp. 3113–3121,
2014. [Online]. Available: http://arxiv.org/abs/1408.5823

[28] M. F. Balcan, S. S. Du, Y. Wang, and A. W. Yu, “An improved
gap-dependency analysis of the noisy power method,” Journal of
Machine Learning Research, vol. 49, no. June, pp. 284–309, 2016.
[Online]. Available: http://arxiv.org/abs/1602.07046

[29] X. Chen, J. D. Lee, H. Li, and Y. Yang, “Distributed estimation
for principal component analysis: a gap-free approach,” CoRR, vol.
abs/2004.02336, 2020. [Online]. Available: https://arxiv.org/abs/2004.
02336

[30] H. Imtiaz and A. D. Sarwate, “Differentially private distributed principal
component analysis,” in 2018 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, Apr 2018,
p. 2206–2210. [Online]. Available: https://ieeexplore.ieee.org/document/
8462519/

[31] A. Sanchez-Fernandez, M. Fuente, and G. Sainz-Palmero, “Fault
detection in wastewater treatment plants using distributed pca methods,”
in 2015 IEEE 20th Conference on Emerging Technologies & Factory
Automation (ETFA). IEEE, Sep 2015, p. 1–7. [Online]. Available:
http://ieeexplore.ieee.org/document/7301504/

[32] A. Grammenos, R. Mendoza Smith, J. Crowcroft, and C. Mascolo,
“Federated principal component analysis,” in Advances in Neural
Information Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell,
M. F. Balcan, and H. Lin, Eds., vol. 33. Curran Associates, Inc., 2020,
pp. 6453–6464. [Online]. Available: https://proceedings.neurips.cc/paper/
2020/file/47a658229eb2368a99f1d032c8848542-Paper.pdf

[33] Q. Lei, K. Zhong, and I. S. Dhillon, “Coordinate-wise
power method,” in Advances in Neural Information Processing
Systems, D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and
R. Garnett, Eds., vol. 29. Curran Associates, Inc., 2016, p.
2064–2072. [Online]. Available: https://proceedings.neurips.cc/paper/
2016/file/8b4066554730ddfaa0266346bdc1b202-Paper.pdf

[34] E. R. Londin, M. A. Keller, C. Maista, G. Smith, L. A. Mamounas,
R. Zhang, S. J. Madore, K. Gwinn, and R. A. Corriveau, “Coaims: A
cost-effective panel of ancestry informative markers for determining
continental origins,” PLoS One, vol. 5, p. e13443, Oct 2010.

[35] R. Nasirigerdeh, R. Torkzadehmahani, J. O. Matschinske, J. Baumbach,
D. Rueckert, and G. Kaissis, “HyFed: A hybrid federated framework for
privacy-preserving machine learning,” CoRR, vol. abs/2105.10545, 2021.
[Online]. Available: https://arxiv.org/abs/2105.10545

[36] The 1000 Genomes Project Consortium., Corresponding authors., Auton,
A. et al., “A global reference for human genetic variation,” Nature, vol.
526, no. 7571, pp. 68–74, 2015.

[37] Y. LeCun, C. Cortes, and C. J. Burges, “MNNIST database of handwritten
digits,” http://yann.lecun.com/exdb/mnist/, 2005, [Online; accessed 27-
02-2020].

© 2021 IEEE. Reprinted, with permission, from Anne Hartebrodt, Reza Nasirigerdeh, David B. Blu-
menthal, Richard Röttger, Federated Principal Component Analysis for Genome-Wide Association Stud-
ies, 2021 IEEE International Conference on Data Mining (ICDM), 2021, https://doi.org/10.1109/
ICDM51629.2021.00127

https://doi.org/10.1109/ICDM51629.2021.00127
https://doi.org/10.1109/ICDM51629.2021.00127

Chapter 4
Manuscript 3

Federated Singular Value
Decomposition for High

Dimensional Data

59

Springer Nature 2021 LATEX template

Federated singular value decomposition for

high dimensional data

Anne Hartebrodt1*, Richard Röttger1† and David B.
Blumenthal2†

1*Department of Mathematics and Computer Science, University
of Southern Denmark, Campusvej 55, Odense, 5230, , Denmark.

2Department Artificial Intelligence in Biomedical Engineering
(AIBE), Friedrich-Alexander University Erlangen-Nürnberg

(FAU), Konrad-Zuse-Str. 3/5, 91052 Erlangen, Germany.
aORCID:0000-0002-9172-3137.
bORCID:0000-0003-4490-5947.
cORCID:0000-0001-8651-750X.

*Corresponding author(s). E-mail(s): hartebrodt@imada.sdu.dk;
Contributing authors: roettger@imada.sdu.dk;

david.b.blumenthal@fau.de;
†Joint last authors

Abstract

Federated learning (FL) is emerging as a privacy-aware alternative to clas-
sical cloud-based machine learning. In FL, the sensitive data remains in
data silos and only aggregated parameters are exchanged. Hospitals and
research institutions which are not willing to share their data can join a fed-
erated study without breaching confidentiality. In addition to the extreme
sensitivity of biomedical data, the high dimensionality poses a challenge in
the context of federated genome-wide association studies (GWAS). In this
article, we present a federated singular value decomposition (SVD) algo-
rithm, suitable for the privacy-related and computational requirements of
GWAS. Notably, the algorithm has a transmission cost independent of the
number of samples and is only weakly dependent on the number of fea-
tures, because the singular vectors associated with the samples are never
exchanged and the vectors associated with the features only for a fixed
number of iterations. Although motivated by GWAS, the algorithm is
generically applicable for both horizontally and vertically partitioned data.

1

Article under review at Data Mining and Knowledge Discovery time of submission

Springer Nature 2021 LATEX template

2 Federated singular value decomposition

Keywords: Singular value decomposition, Federated learning, Principal
component analysis, Genome-wide association studies

Springer Nature 2021 LATEX template

Federated singular value decomposition 3

1 Introduction

Federated learning (FL) has recently gained attention as a privacy-aware
alternative to centralized computation. Unlike in centralized machine learning
where the data is consolidated at a central server and a model is calculated
on the combined data, in FL, the data remains at the data owners machine
(Mothukuri et al, 2021). Instead of the data, only model parameters are sent to
the (untrusted) aggregator which combines the local models into a global model.
No raw data is exchanged in FL. See Figure 1 for a schematic comparison
of centralized (cloud) learning and FL. In the cloud-based approach, data
contributors send their private data to a central server where the model is
computed and thereby lose agency over it.

Data silos

(Untrusted)
Aggregation

Server

Private
dataGlobal

model

Data silos

(Untrusted)
Aggregation

Server

Local
parametersGlobal

model

Fig. 1 Schematic comparison of traditional cloud base approaches (left) and federated
learning (right).

FL is subdivided in cross-device and cross-silo FL. Cross-device FL assumes
a high number of devices, such as mobile phones or sensors with limited compute
power connected in a dynamic fashion, meaning clients are expected join and
drop out during the learning process. Cross-silo FL has a lower number of
participants which hold a larger amount of data, have higher compute power
and are connected in a more static fashion. Clients are not expected to join
and drop out during the learning process randomly (Kairouz et al, 2021).

An attractive application case for cross-silo FL are genome-wide association
studies (GWAS), which investigate the relationship of genetic variation with
phenotypic traits on large cohorts (Visscher et al, 2017; Tam et al, 2019). Since
genetic data are extremely sensitive, data holders cannot make it publicly
available. The practical feasibility of using FL for GWAS has been demonstrated
recently (Nasirigerdeh et al, 2020; Cho et al, 2018).

Since GWAS are often done on populations of mixed ancestry, cryptic
population confounders should be controlled for before associating the genetic
variants to the phenotypic trait of interest. The standard way for doing this
is to compute the leading eigenvectors of the sample covariance matrix via
principal component analysis (PCA), and to include these eigenvectors as

Springer Nature 2021 LATEX template

4 Federated singular value decomposition

confounding variables to the models used for the association tests (Price et al,
2006; Galinsky et al, 2016).

For federated GWAS, a PCA algorithm for vertically partitioned data is
required for computing the eigenvectors (see Section 2 for a detailed expla-
nation). Although a few such algorithms are available (Kargupta et al, 2001;
Qi et al, 2003; Guo et al, 2012; Wu et al, 2018), none of them is suitable for
federated GWAS. More precisely, the algorithms reviewed by Wu et al (2018)
use client-to-client communication and are therefore unsuitable for the star-like
FL architectures used in GWAS, where relatively few data holders collaborate
in a static setting. The algorithms presented by Kargupta et al (2001) and
Qi et al (2003) rely on estimating a proxy covariance matrix and hence do
not scale to large GWAS datasets, which often contain genetic variation data
for hundreds of thousands of individuals. One of the few covariance free PCA
algorithm suitable for a star-like architecture has been presented by Guo et al
(2012). However, this algorithm broadcasts the complete first k − 1 sample
eigenvectors to the aggregator, which constitutes a privacy leakage that should
be avoided in federated GWAS (Nasirigerdeh et al, 2021). Cho et al (2018)
present a secure multiparty protocol for GWAS which includes PCA relying
on householder reflections. The protocol includes three external parties and
potential physical shipping of data. The setup is fundamentally different: the
data holders are individuals who only have access to one record. They create
secret shares which are processed by two computing parties.

In previous algorithms, including algorithms designed for horizontally parti-
tioned data, such as described by Balcan et al (2014), the exchanged parameters
scale with the number of genetic variants (features) in the data set as the fea-
ture eigenvectors are exchanged. At the scale of GWAS with several million
genetic variants this is another challenge for the existing algorithms. Further-
more, due to the iterative nature of the algorithm, the process is prone to
information leakage, a problem previously not investigated. More precisely, the
feature eigenvector updates exchanged during the learning process can be used
to compute the feature-covariance matrix given a sufficient number of iterations.
This makes the algorithm equivalent with algorithms exchanging the entire
covariance matrix in terms of disclosed information. The feature covariance
matrix is a summary statistic over all samples, but due to its size contains a
high amount of information and can be used to generate realistically looking
samples. Therefore, the communication of the entire feature eigenvectors should
also be avoided as far as possible.

Extrapolating from the shortcomings of existing approaches, we can state
that, for federated GWAS, a PCA algorithm for vertically partitioned data is
required that combines the following properties:

• The algorithm should be suitable for a star-like FL architecture, i. e.,
require only client-to-aggregator but no client-to-client communication.

• The algorithm should not rely on computing or approximating the
covariance matrix.

• The algorithm should be communication efficient.

Springer Nature 2021 LATEX template

Federated singular value decomposition 5

• The algorithm should avoid the communication of the sample eigenvectors
and reduce the communication of the feature eigenvectors.

In this paper, we present the first algorithm that combines all of these
desirable properties and can hence be used for federated GWAS (and all other
applications where these properties are required). We prove that our algorithm
is equivalent to centralized vertical subspace iteration (Halko et al, 2011) —
a state-of-the-art centralized, covariance-free SVD algorithm — and therefore
generically applicable to any kind of data. Thereby, we show that the notion of
“horizontally” and “vertically” partitioned data are irrelevant for SVD. Fur-
thermore, we apply two strategies to make the algorithm more communication
efficient, both in terms of communication rounds and transmitted data volume.
More specifically, we employ approximate PCA (Balcan et al, 2014) and ran-
domized PCA (Halko et al, 2011). We show in an empirical evaluation that the
eigenvectors computed by our approaches converge to the centrally computed
eigenvectors after sufficiently many iterations. In sum, the article contains the
following main contributions:

• We present the first federated PCA algorithm for vertically partitioned
data which meets the requirements that apply in federated GWAS settings.

• We prove that our algorithm is equivalent to centralized power iteration
and show that it exhibits an excellent convergence behavior in practice.

• This algorithm is generically applicable for federated singular value
decomposition on both “horizontally” and “vertically” partitioned data.

This article is an extended and consolidated version of a previous conference
publication (Hartebrodt et al, 2021) with the following additional contributions:
a demonstration how iterative leakage can pose a problem for federated power
iteration; a further reduction in transmission cost, and increase in privacy, due
to the use of randomized PCA; a data dependent speedup due to the use of
approximate PCA. The remainder of this paper is organized as follows: In
Section 2, we introduce concepts and notations that are used throughout the
paper. In Section 3, we discuss related work. In Section 4, we describe the
proposed algorithms. We then describe how to extract the covariance matrix
from the updates in Section 5. In Section 6, we report the results of the
experiments. Section 7 concludes the paper.

Springer Nature 2021 LATEX template

6 Federated singular value decomposition

2 Preliminaries

2.1 Federated learning and employed data model

Typically, a star-like client-aggregator architecture is used in biomedical feder-
ated solutions (Steed and Fradinho Duarte de Oliveira, 2010; Nasirigerdeh et al,
2020), with the data holders acting as clients. The data sets at the client sites
will be called local data sets and the parameters or models learned using this
data will be called local parameters or local models, while the final aggregated
model will be called pooled model. The optimal result of the pooled model is
achieved when it equals the result of the conventional model calculated on all
data, which we call the global model.

In federated settings, the data can be distributed in several ways. Either
the clients observe a full set of variables for a subset of the samples (horizontal
partitioning) or they have a partial set of variables for all samples (vertical
partitioning) (Rodŕıguez et al, 2017; Wu et al, 2018). In this paper, we assume
that we are given a global data matrix A ∈ Rm×n, where m is the number of
features (genetic variants, in the context of GWAS) and n is the overall number
of samples. The data is split across S local sites as A = [A1 . . .As . . .AS],
where As ∈ Rm×ns

and ns denotes the number of samples available at site s.
From a semantic point of view, the partitioning is hence horizontal, since the
samples are distributed over the local sites. However, from a technical point of
view, the partitioning is vertical, since the samples correspond to the columns
of A. The reason for this rather unintuitive setup is that, when using PCA for
GWAS, samples are treated as features, as detailed in the following paragraphs.

2.2 Principal component analysis and singular value
decomposition

Given a data matrix A ∈ Rm×n, the PCA is the decomposition of the covariance
matrix M = A>A ∈ Rn×n into M = VΣV>. Σ ∈ Rn×n is a diagonal matrix
containing the eigenvalues (σi)

n
i=1 of M in non-increasing order, and V ∈ Rn×n

is the corresponding matrix of eigenvectors (Jolliffe, 2002). Singular value
decomposition (SVD) is closely related to PCA and an extension of PCA to
non-square matrices. Many of the PCA algorithms actually call SVD to do the
actual computation, because it is more efficient. Given a data matrix A ∈ Rm×n,
the SVD is its decomposition into A = UΣV>. The matrices U and V are the
left and right singular vector matrices. Usually, one is only interested in the
top k eigenvalues and corresponding eigenvectors. Since k is arbitrary but fixed
throughout this paper, we let G ∈ Rn×k and H ∈ Rm×k denote these first k
eigenvectors (i. e., G corresponds to the first k columns of V). G is typically
used to obtain a low-dimensional representation A 7→ AG ∈ Rm×k of the data
matrix A, which can then be used for downstream data analysis tasks. This,
however, is not the way PCA is used in GWAS, as we will explain next.

Springer Nature 2021 LATEX template

Federated singular value decomposition 7

2.3 Genome-wide association studies

The genome stores hereditary information that controls the phenotype of an
individual in interplay with the environment. The genetic information is stored
in the DNA encoded as a sequence of bases (A, T, C, G), the positions are
called loci. If we observe two or more possible bases at a specific locus in a
population, we call this locus a single nucleotide polymorphism (SNP). The
predominant base in a population is called the major allele; bases at lower
frequency are called minor alleles (Tam et al, 2019).

Genome wide association studies seek to identify SNPs that are linked to
a specific phenotype (Visscher et al, 2017; Tam et al, 2019). Phenotypes of
interest can for example be the presence or absence of diseases, or quantitative
traits such as height or body mass index. The SNPs for a large cohort of
individuals are tested for association with the trait of interest. Typically, simple
models such as linear or logistic regression are used for this (Visscher et al,
2017; Nasirigerdeh et al, 2020). The input to a GWAS is an n-dimensional
phenotype vector y, a matrix of SNPs A ∈ Rm×n, and confounding factors
such as age or sex, given as column vectors xr ∈ Rn. The SNPs are encoded as
categorical values between 0 and 2, representing the number of minor alleles
observed in the individual at the respective position. Each SNP l ∈ [m] is
tested in an individual association test

y ∼ β0 + β1 ·A>l,• +

R∑
r=1

βr+1 · xr + ε, (1)

where Al,• denotes the lth row of A.

2.4 Principal component analysis for genome-wide
association studies

Confounding factors such as ancestry and population substructure can alter the
outcome of an association test and create false hits if not properly controlled for
(Tam et al, 2019). PCA has emerged as a popular strategy to infer population
substructure and a SMPC based protocol has been presented by (Cho et al,
2018). More precisely, the first k (usually k = 10) eigenvectors G = [g1 . . .gk] ∈
Rn×k of the sample covariance matrix A>A are included into the association
test as covariates (Galinsky et al, 2016; Price et al, 2006):

y ∼ β0 + β1 ·A>l,• +

R∑
r=1

βr+1 · xr +

k∑
i=1

βi+R+1 · gi + ε (2)

In federated GWAS, each local site s needs to have access only to the
partial eigenvector matrix Gs corresponding to the locally available samples.
Consequently, computing the complete eigenvector matrix G at the aggrega-
tor and/or sharing Gs with other local sites s′ should be avoided to reduce
the possibility of information leakage. This is especially important because

Springer Nature 2021 LATEX template

8 Federated singular value decomposition

Nasirigerdeh et al (2021) have shown that, if G is available at the aggregator
in a federated GWAS pipeline, the aggregator can in principle reconstruct the
raw GWAS data Al,• for SNP l. Federated PCA algorithms that are suitable
for GWAS should hence have to respect the following constraint:

Constraint 1 In a GWAS-suitable federated PCA algorithm, the aggregator does
not have access to the complete eigenvector matrix G and each site s has access only
to its share Gs of G.

The PCA in GWAS is usually performed on only a subsample of the SNPs,
but there seems to be no consensus as to how many SNPs should be used. Some
PCA-based stratification methods rely on a small set of ancestry informative
markers (Li et al, 2016), while others employ over 100 000 SNPs (Gauch et al,
2019).

A

fe
a
tu

re
s

samples
A>A

fe
a
tu

re
s

features

H

fe
a
tu

re
s

k AH
sa

m
p

le
s

k

AA>

sa
m

p
le

s

samples

G

sa
m

p
le

s

k

association
test

H

fe
a
tu

re
s

Σ
k

G>
samples

Fig. 2 Regular PCA for dimensionality reduction (top); GWAS PCA for sample stratifica-
tion (bottom); and SVD (middle).

Note that PCA for GWAS is conceptually different from “regular” PCA for
feature reduction (cf. Figure 2). For feature reduction, we would decompose
the m×m SNP by SNP covariance matrix and compute a set of “meta-SNPs”
for each sample. This is not what is required for GWAS. Instead, the n × n
sample by sample covariance matrix A>A is decomposed. In our federated
setting where A is vertically distributed across local sites s ∈ [S], A>A looks
as follows (recall that, unlike in regular PCA, columns correspond to samples

Springer Nature 2021 LATEX template

Federated singular value decomposition 9

and rows to features):

A>A =

A1>A1 A1>A2 · · · A1>AS

A2>A1 A2>A2 · · · A2>AS

...
...

. . .
...

AS>A1 AS>A2 · · · AS>AS

 (3)

It is clear that A>A cannot be computed directly without sharing patient
level data. Moreover, with a growing number of samples, this matrix can become
very large and computing it becomes infeasible. For instance, the UK Biobank —
a large cohort frequently used for GWAS — contains more than 4 million SNPs
for more than 500 000 individuals. Following directly from the definition of
PCA, an exact computation of the covariance matrix would furthermore violate
Constraint 1. These considerations lead to the second constraint for federated
PCA algorithms suitable for GWAS:

Constraint 2 A GWAS-suitable federated PCA algorithm must work on vertically
partitioned data and does not rely on computing or approximating the covariance
matrix.

2.5 Gram-Schmidt orthonormalization

The Gram-Schmidt algorithm transforms a set of linearly independent vectors
into a set of mutually orthogonal vectors. Given a matrix V = [v1 . . .vk] ∈ Rr×k

of k linearly independent column vectors, a matrix U = [u1 . . .uk] ∈ Rr×k of
orthogonal column vectors with the same span can be computed as

ui =

{
vi if i = 1

vi −
∑i−1

j=1 ri,j · uj if i ∈ [k] \ {1}
, (4)

where ri,j = u>j vi/nj with nj = u>j uj .
The vectors can then be scaled to unit Euclidean norm as ui 7→ (1/

√
ni) ·ui

to achieve a set of orthonormal vectors. In the context of PCA, this can be used
to ensure orthonormality of the candidate eigenvectors in iterative procedures,
which otherwise suffer from numerical instability in practice (Guo et al, 2012).

2.6 Notations

Table 1 provides an overview of notations which are used throughout the paper.

Springer Nature 2021 LATEX template

10 Federated singular value decomposition

Table 1 Notation table.

Syntax Semantics

[N] ⊂ N index set [N] = {i ∈ N | 1 ≤ i ≤ N}
S ∈ N number of sites
m ∈ N number of features (i. e. SNPs)
n ∈ N total number of samples
ns ∈ N number of samples at site s ∈ [S]
k ∈ N number of eigenvectors
A ∈ Rm×n complete data matrix

As ∈ Rm×ns
subset of data available at site s ∈ [S]

Gi ∈ Rn×k right singular matrix of A at iteration i
G ∈ Rn×k right singular matrix of A

Gs
i ∈ Rns×k partial right singular matrix of A at iteration i

Gs ∈ Rns×k converged partial right singular matrix A.
Hi ∈ Rm×k left singular matrix of A at iteration i
H ∈ Rm×k converged left singular matrix of A
V ∈ Rr×k a generic column vector matrix
U ∈ Rr×k an orthonormal matrix with span(U) = span(V)
M ∈ Rm×m exact covariance matrix

Â, M̂, Ĥ, Ĝ approximations of A, M, H and G

Springer Nature 2021 LATEX template

Federated singular value decomposition 11

3 Related work

3.1 Centralized, iterative, covariance-free principal
component analysis

While classical PCA algorithms rely on computing the covariance matrix
A>A (Jolliffe, 2002), there are several covariance-free approaches to iteratively
approximate the top k eigenvalues and eigenvectors (Saad, 2011). Algorithm 1
summarizes the centralized, iterative, covariance-free PCA algorithm suggested
by Halko et al (2011), which will serve as point of departure for our feder-
ated approach. First, an initial eigenvector matrix is sampled randomly and
orthonormalized (lines 1 to 2). In every iteration i, improved candidate eigen-
vectors Gi of A>A are computed (lines 5 to 8). Once a suitable termination
criterion is met (e.g., convergence, maximal number of iterations, time limit,
etc.), the last candidate eigenvectors are returned (line 10).

Algorithm 1: Vertical Subspace Iteration Halko et al (2011).

Input: Data matrix A ∈ Rm×n, number of eigenvectors k.
Output: Singular matrices G ∈ Rn×k and H ∈ Rm×k of A.

1 Generate G0 ∈ Rn×k randomly;
2 G0 ← orthonormalize(G0);
3 i← 1;
4 while termination criterion not met do
5 Hi = AGi−1;
6 Hi = orthonormalize(Hi);

7 Gi = A>Hi;
8 Gi ← orthonormalize(Gi);
9 i← i+ 1;

10 return Gi, Hi;

To update the candidate eigenvector matrices Gi = A>Hi = A>AGi−1 ∈
Rn×k of A>A, the algorithm also computes candidate eigenvector matrices
Hi = AGi−1 = AA>Hi−1 ∈ Rm×k of AA>. Since, in the context of GWAS,
AA> corresponds to the “classical” feature by feature covariance matrix, and
A>A to the sample covariance matrix, the algorithm computes left and right
singular vectors at the same time. This means, the present algorithm is actually
an SVD algorithm. In this article, we will sometimes refer to the left singular
vector as the feature eigenvector and the right singular vector as the sample
eigenvector.

Springer Nature 2021 LATEX template

12 Federated singular value decomposition

3.2 Federated principal component analysis for vertically
partitioned data

Only few algorithms are designed to perform federated computation of PCA on
vertically partitioned siloed data sets (Guo et al, 2012; Kargupta et al, 2001; Qi
et al, 2003; Wu et al, 2018). However, none of them is suitable for the GWAS
use-case considered in this paper: The algorithms reviewed by Wu et al (2018)
are specialised for distributed sensor networks and use gossip protocols and
peer-to-peer communication. Therefore, they are not suited for the intended
FL architecture in the medical setting. The algorithms presented by Kargupta
et al (2001) and Qi et al (2003) rely on estimating a proxy covariance matrix
and consequently do not meet Constraint 2 introduced above. Unlike these
approaches, the algorithm proposed by Guo et al (2012) is covariance-free
and suitable for the intended star-like architecture. However, it broadcasts the
eigenvectors to all sites in violation of Constraint 1.

3.3 Federated matrix orthonormalization

Matrix orthonormalization is a frequently used technique in many applications,
including the solution of linear systems of equations and singular value decom-
position. There are three main approaches: Householder reflection, Givens
rotation, and the Gram-Schmidt algorithm. In distributed memory systems and
grid architectures, tiled Householder reflection is a popular approach (Hadri
et al, 2010; Hoemmen, 2011). However, those algorithms are often highly spe-
cialized to the compute system and rely on shared disk storage. For distributed
sensor networks, Gram-Schmidt procedures relying on push-sum have been
proposed (Sluciak et al, 2016; Straková et al, 2012). However, these methods
require peer-to-peer communication and are hence unsuitable for the intended
star-like architecture. Consequently, no federated orthonormalization algorithm
suitable for our setup is available. In Section 4.2, we present our own ver-
sion of a federated orthonormalization algorithm fulfilling all constraints and
subsequently utilize it as a subroutine in our federated PCA algorithm.

3.4 Federated principal component analysis for
horizontally partitioned data

Previously, federated PCA algorithms have been described for horizontal and
vertical data partitioning. In the remainder of this article, we establish an
algorithm which is capable of both, which allows us to borrow ideas from
previously described algorithms for horizontally federated PCA. There are
“single-round” approaches, where the eigenvectors are computed locally and sent
to the aggregator (Balcan et al, 2014). At the aggregator, a global subspace is
approximated from the local eigenspaces. The higher the number of transmitted
intermediate dimensions, the better the global subspace approximation. In these
algorithms, the solution quality hence depends on the number of transmitted
dimensions. This algorithm is a more memory efficient version of the naive
algorithm [e. g. (Liu et al, 2020)], where the entire covariance matrix is processed

Springer Nature 2021 LATEX template

Federated singular value decomposition 13

by the aggregator. Since only the top k left singular values are transmitted,
this algorithm fulfills constraint 2. Furthermore, iterative schemes have been
proposed, where locally computed eigenvectors are sent to the aggregator, which
performs an aggregation step and sends the obtained candidate subspace back to
the clients (Balcan et al, 2016; Chen et al, 2020; Imtiaz and Sarwate, 2018). The
candidate subspace is then refined iteratively. Furthermore, there are several
schemes for specific applications such as streaming (Sanchez-Fernandez et al,
2015; Grammenos et al, 2020). These approaches assume that an approximation
of the entire eigenvectors is possible at the clients, or that the global covariance
matrix can be approximated. As we have discussed above, these assumptions
do not hold in the intended GWAS use case.

3.5 Randomized principal component analysis

In the context of GWAS, a randomized PCA algorithm (Halko et al, 2011;
Galinsky et al, 2016) is popular as it speeds-up the computation compared
to traditional algorithms. Here, we briefly present the version implemented
by Galinsky et al (2016). The algorithm starts with I ′ iterations of subspace
iteration on the full-dimensional data matrix, resulting in feature eigenvetor
matrices Hi for all iterations i ∈ {1, . . . , I ′}. Next, the data is projected on
the concatenation of all Hi, forming approximate principal components which
approximate the data matrices. Then, subspace iteration is performed on these
proxy data matrices. In practice, I ′ = 10 iterations are sufficient. This reduces
the dimensionality of the data from m to k · I ′. In Section 4.3 we will present a
fully federated version of this algorithm in detail. Note that this is a randomized
approach, because subspace iteration on the full-dimensional data is initialized
randomly. Since it is interrupted before convergence after I ′ iterations, the
feature eigenvetor matrices Hi inherit this randomness.

Springer Nature 2021 LATEX template

14 Federated singular value decomposition

4 Algorithms

In this section, we present a federated SVD algorithm, which is designed for a
star-like architecture, meets the requirements of Constraint 1 and Constraint 2,
and is hence suitable for federated GWAS. Our base algorithm comes in
two variants — with and without orthonormalization of the candidate right
singular vectors of A. In Section 4.1, we describe our algorithm and prove
that the version with orthonormalization is equivalent to centralized vertical
subspace iteration algorithm (Halko et al, 2011), which we have summarized
in Algorithm 1 above. In Section 4.2, we present a federated Gram-Schmidt
algorithm, which can be used as a subroutine in our federated SVD algorithm
to ensure that right singular vectors of A remain at the local sites. Again,
we prove that our federated Gram-Schmidt algorithm is equivalent to the
centralized counterpart. We then show how approximate horizontal PCA can
be used to compute approximate principal components for immediate use or as
initialization for subspace iteration in Section 4.3. In Section 4.4, we present
randomized federated subspace iteration as a means to reduce the transmission
cost in federated SVD. In addition to decreasing the communication cost, the
use of the two latter strategies also prevents potential iterative leakage (detailed
in Section 5). In Section 4.5, we analyze the network transmission costs of
the proposed algorithms, and Section 4.6 provides an overview of possible
configurations of our federated SVD algorithm.

4.1 Federated vertical subspace iteration

Algorithm 2 describes our federated vertical subspace iteration algorithm:
Initially, the first partial candidate right singular matrices Gs

0 of A are generated
randomly and orthonormalized (lines 4 to 5). Inside the main loop, the left
singular vectors are updated at the clients, summed up element-wise and
orthonormalized at the aggregator, and then sent back to the clients (lines 9
to 11). Next, the clients update the partial right singular vectors (line 13). In the
version with orthonormalization, the candidate right singular vectors are now
normalized by calling the federated Gram-Schmidt orthonormalization (line 14)
algorithm presented in Section 4.2 (Algorithm 3). Note that this algorithm
ensures that the partial singular vectors Gs

i remain at the local sites. Finally,
the full left singular matrices H and the orthonormalized partial right singular
matrices Gs are returned to the clients (line 19). In practice, the federated
orthonormalization of Gi (line 14) may be omitted to speed up computation.
Note, however, that Hi is still orthonormalized in every iteration and that the
final orthonormalization (line 18) is required.

Like the original centralized version described in Algorithm 1 above, our
algorithm can be run with various termination criteria. In our implementation,
we use the convergence criterion

diag(H>i Hi−1) ≥ 1k − ε (5)

Springer Nature 2021 LATEX template

Federated singular value decomposition 15

Algorithm 2: Federated vertical subspace iteration. (Partial) client-
side computations are marked in gray.

Input: Partial data matrices As ∈ Rm×ns

at sites s ∈ [S], number of
eigenvectors k, number of iterations I and/or convergence threshold ε.

Output: Partial right singular matrices Gs ∈ Rns×k and full left singular
matrices H ∈ Rm×k of A at sites s ∈ [S].

1 if use approximate initialisation then
// Call subroutine Algorithm 4 (AI-FULL).

2 Gs
0 ← init-approximative()

3 else
// Use random initialisation if no initial eigenvector is available (RI-FULL).

4 for s ∈ [S] do generate Gs
0 ∈ Rns×k randomly;

// Use approach described in Algorithm 3 (FED-GS).

5 if use orthonormalization then federated-gram-schmidt([Gs
0]);

6 i← 1;
// Suggested criterion: i ≥ I or convergence as specified in eq. (5).

7 while termination criterion not met do
8 // Update left singular matrix of A.

9 for s ∈ [S] do Hs
i ← AsGs

i−1;

10 Hi ←
∑S

s=1 H
s
i ;

11 Hi ← orthonormalize(Hi);
12 // Update partial right singular matrices of A.

13 for s ∈ [S] do Gs
i ← As>Hi;

// Use approach described in Algorithm 3 (FED-GS).

14 if use orthonormalization then federated-gram-schmidt([Gs
i]);

15 i← i+ 1;

16 for s ∈ [S] do
17 Gs ← Gs

i ;

18 Gs ← federated-gram-schmidt([Gs]);
19 return Gs,H;

using the angle as a global measure as suggested by Lei et al (2016), where
1k is the k-dimensional vector of ones and ε is a small positive number. With
this criterion, the algorithm terminates once all right singular vectors of A
are asymptotically collinear with respect to the eigenvectors of the previous
iteration. Other convergence criteria could be used as drop-in replacements.

We now prove that the version of Algorithm 2 with orthonormalization
is equivalent to the centralized version described in Algorithm 1. Thus, it
inherits its convergence behavior from the centralized version. Details on the
convergence behavior of centralized vertical subspace iteration can be found in
the original publication by Halko et al (2011).

Proposition 1 If orthonormalization is used, centralized and federated vertical
subspace iteration are equivalent.

Springer Nature 2021 LATEX template

16 Federated singular value decomposition

Proof Let Gi and Hi denote the eigenvector matrices maintained by the centralized
algorithm described in Algorithm 1 at the end of the main while-loop, and Gs

i be the
sub-matrix of Gi for the samples available at site s. Moreover, let H̃i, G̃i, G̃

s
i , and

H̃s
i be the (partial) eigenvector matrices maintained by our federated algorithm 2 at

the end of the main while-loop. We will show by induction on the iterations i that
Hi = H̃i and Gs

i = G̃s
i for all s ∈ [S] holds throughout the algorithm, if the same

random seeds are used for initialization.
For i = 0, we only have to show Gs

0 = G̃s
0. This directly follows from proposition 2

and our assumption that the same random seeds are used for initialization. For
the inductive step, note that, before orthonormalization in line 11, we have H̃i =∑S

s=1 H̃
s
i =

∑S
s=1 A

sG̃s
i−1 =

∑S
s=1 A

sGs
i−1 = AGi−1 = Hi, where the third

equality follows from the inductive assumption. Because of Proposition 2, this identity
continues to hold at the end of the main while-loop.

Similarly, after updating in line 13 but before orthonormalization, we have G̃s
i =

As>H̃i = As>Hi = (A>Hi)
s = Gs

i , where the second equality follows the identity

Hi = H̃i shown above and (A>Hi)
s denotes the sub-matrix of A>Hi for the samples

available at site s. Again, proposition 2 ensures that the identity continues to hold
after orthonormalization. �

The omission of the orthonormalization of Gi (line 5 and line 14 in Algo-
rithm 2) removes provable identity to algorithm 1. However, other formulations
of centralized power iteration exist which directly operate on the covariance
matrix (Balcan et al, 2016). In these schemes, instead of splitting the iteration
into Hi update (line 5, algorithm 1) and Gi update (line 7, algorithm 1), the
covariance matrix is computed and Hi is updated as Hi = AA>Hi−1 at every
iteration. Proposition 1 can be formulated and proven analogously for this
version.

4.2 Federated Gram-Schmidt algorithm

Here, we describe federated Gram-Schmidt orthonormalization for vertically
partitioned column vectors. Previous federated PCA algorithms require the
complete eigenvectors to be known at all sites for the orthonormalization
procedure. The näıve way of orthonormalizing the eigenvector matrices in a
federated fashion would be to send them to the aggregator which performs
the aggregation and then sends the orthonormal matrices back to the clients.
However, in this näıve scheme, the transmission cost scales with the number
of variables (individuals in GWAS) and all eigenvectors are known to the
aggregator.

To address these two problems, we suggest a federated Gram-Schmidt
orthonormalization procedure, summarized in Algorithm 3. The algorithm
exploits the fact that the computations of the squared norms ni and of the
residuals rij can be decomposed into independent computations of summands
nsi and rsij computable at the local sites s ∈ [S]. The clients compute the
local summands and send them to the aggregator, where the squared norm
of the first orthogonal vector is computed and sent to the clients (lines 2
to 5). Subsequently, the remaining k− 1 vectors are orthogonalized. For the ith

Springer Nature 2021 LATEX template

Federated singular value decomposition 17

vector vi, the algorithm computes the residuals rij w. r. t. all already computed
orthogonal vectors uj , using the fact that the corresponding squared norms nj
are already available (lines 8 to 10). The residuals are aggregated by the central
server (lines 12 to 13). Next, vi is orthogonalized at the clients, the local norms
are computed (lines 15 to 17), and the squared norm of the resulting orthogonal
vector ui is computed at the aggregator and sent back to the clients (line 19).
After orthogonalization, all orthogonal vectors are scaled to unit norm at the
clients (lines 21 to 23).

Algorithm 3: Federated Gram-Schmidt. Client-side computations
are marked in gray.

Input: Data matrices Vs at sites s ∈ [S].
Output: Orthonormalized data matrices Us at sites s ∈ [S].

1 // Compute squared norm of first orthogonal vector.

2 for s ∈ [S] do
3 us

1 ← vs
1;

4 ns1 ← us
1
>us

1;

5 n1 ←
∑S

s=1 n
s
1 ;

// Orthogonalize all subsequent vectors.

6 for i ∈ [k] \ {1} do
7 // Compute client residuals for vector being orthogonalized.

8 for s ∈ [S] do
9 for j ∈ [i− 1] do

10 rsij ← us
j
>vs

i /nj ;

11 // Compute global residuals for vector being orthogonalized.

12 for j ∈ [i− 1] do

13 rij ←
∑S

s=1 r
s
ij ;

14 // Orthogonalize the vector and compute squared norm.

15 for s ∈ [S] do

16 us
i ← vs

i −
∑i−1

j=1 rij · u
s
j ;

17 nsi ← us
i
>us

i

18 // Compute squared norm of orthogonalized vector.

19 ni ←
∑S

s=1 n
s
i ;

20 // After orthogonalization, scale all k vectors to unit norm.

21 for s ∈ [S] do

22 for i ∈ [k] do us
i ← 1√

ni
· us

i ;

23 Us ← [us
1 . . .u

k
s];

24 return Us;

Proposition 2 Centralized and federated Gram-Schmidt orthonormalization are
equivalent.

Springer Nature 2021 LATEX template

18 Federated singular value decomposition

Proof Let V = [v1 . . .vk] be the matrix that should be orthonormalized, vs
i be the

restriction of the ith columns vector to the samples available at side s, and us
i be the

restriction of the ith orthogonal vector computed by the centralized Gram-Schmidt
algorithm before normalization to the samples available at site s. Moreover, let ni and
ri,j be the centrally computed norms and residuals, and ñi, r̃i,j , and ũs

i be the locally
computed norms, residuals, and partial orthogonal vectors before normalization. We
show by induction on i that ni = ñi, rij = r̃ij , and us

i = ũs
i holds for all i ∈ [k] and

all j ∈ [i− 1]. This implies the proposition.

For i = 1, we have us
1 = vs

1 = ũs
1 and n1 = u>1 u1 =

∑S
s=1 u

s
1
>us

1 =∑S
s=1 ũ

s>
1 ũs

1 = ñ1. For the inductive step, note that rij = uj
>vi/nj =∑S

s=1 u
s
j
>vs

i /nj =
∑S

s=1 ũ
s>
j vs

i /ñj = r̃ij , where the third identity follows from the

inductive assumption. Moreover, we have us
i = vs

i −
∑i−1

j=1 rij · u
s
j = vs

i −
∑i−1

j=1 r̃ij ·
ũs
j = ũs

i , where the second identity follows from the inductive assumption and the

identities rij = r̃ij established before. We hence obtain ni = u>i ui =
∑S

s=1 u
s
i
>us

i =∑S
s=1 ũ

s>
i ũs

i = ñi, which completes the proof. �

4.3 Approximate initialization

One major concern of iterative PCA is information leakage through the repeated
transmission of updated eigenvectors. This is presented in more detail in
Section 5, because knowledge of the subspace iteration algorithm is required to
understand the attack. Briefly, the conclusion is that the number of iterations
needs to be strictly limited. Therefore, we suggest to use federated approximate
horizontal PCA as an initialization strategy to limit the number of iterations,
and thereby prevent the possible leakage of the covariance matrix.

Balcan et al (2014) presented a memory efficient version of federated approx-
imate PCA for horizontally partitioned data. We provide a minor modification
which allows us to compute the sample eigenvectors. The algorithm can be
used “as is” to compute the federated approximate vertical PCA by projecting
the approximate left eigenvector to the data; or as an initialization strategy
for federated subspace iteration. For the latter, instead of initializing Gs

0 ran-
domly (line 4, Algorithm 2), Gs

0 is computed using the approximate algorithm
described here (line 2, Algorithm 2).

Algorithm 4 describes this approach. The algorithm proceeds as follows: At
the clients, a local PCA is computed and the top 2k eigenvectors are shared with
the aggregator with c a constant multiplicative factor (line 2). At the aggregator,
the local eigenvectors are stacked such that a new approximate covariance
matrix M̂ with dim(M̂) = c · k · S ×m is formed. M̂ is then decomposed using
singular value decomposition leading to a new eigenvector estimate Ĥ (lines 4
to 5). At the clients, the feature eigenvector estimate Ĥ can be projected onto
the data to form an approximation of the sample eigenvector Ĝs. The vectors
Ĝ and Ĥ represent an “educated guess” of the final singular vectors.

Springer Nature 2021 LATEX template

Federated singular value decomposition 19

Algorithm 4: Slightly modified federated horizontal SVD (Balcan
et al, 2014). Referred to as AI-ONLY in this article.

Input: Data matrices As ∈ Rm×n at sites s ∈ [S], number of
eigenvectors k, constant approximation factor c.

Output: Approximate singular vector matrices Ĝs ∈ Rns×k and
Ĥ ∈ Rm×k of A.

1 for s ∈ [S] do
// Retrieve top k · c eigenvectors.

2 Hs,Σs,Gs ← singular-value-decomposition(As, c · k);

3 // Aggregate local subspaces to obtain approximate covariance matrix M̂ with

dim(M̂) = c · k · S ×m.

4 M̂← stack-vertically([H>s]) ;
// Use final dimensionality k

5 Ĥ← singular-value-decomposition(M̂, k);
6 for s ∈ [S] do

7 Ĝs ← As>Ĥ;

8 // Return approximate singular vector matrices of A

9 return Ĝs, Ĥ

4.4 Federated randomized principal component analysis

Another mitigation strategy for the aforementioned information leakage is
the use of randomized SVD. In randomized SVD, a reduced representation
of the data is computed and subspace iteration is applied on this reduced
data matrix instead of the full data. By using the proxy data, only “reduced”
eigenvectors become available at the aggregator which makes the attack in
Section 5 impossible given not too many initial iteration I ′ have been executed.
Notably, I ′ needs to be restricted depending on the number of features in the
original data. Here, we describe how to modify randomized SVD, such that it
can be run in a federated environment, without sharing the random projections
of the data or the sample eigenvectors.

We proceed according to Halko et al (2011) and Galinsky et al (2016).
First, I ′ iterations of federated vertical subspace iteration are run using the
full data matrices As. In order to do so, Algorithm 2 is called as a subroutine.
The intermediate matrices H1, . . . ,H

′
I are stored (line 1) and concatenated to

form P ∈ Rk·I′×m (line 2). The data matrices As are then projected onto P to
form proxy data matrices Âs ∈ Rk·I′×n (line 4). Finally, federated subspace
iteration (Algorithm 2) is called as a subroutine again and run until convergence
using the proxy data matrices Âs (line 6). The subroutine returns the correct
right singular vectors G but only proxy vectors for H. Therefore, in the last
step H can be reconstructed by projecting the data onto G, aggregating and
normalizing Hs at the aggregator and returning the final left singular vectors
H to the clients (lines 8 to 10).

Springer Nature 2021 LATEX template

20 Federated singular value decomposition

We would like to highlight two properties of this algorithm. Firstly, given
that m > I/k, it is not possible to construct the covariance matrix using the
initial eigenvector updates (see Section 5). Secondly, since the computation of
the final right singular vectors utilizes the projected data matrices, it is not
possible to construct the original covariance matrix näıvely using the additional
I iterations until convergence.

Algorithm 5: Federated randomized SVD (RI-RAND, AI-RAND)

Input: Data matrices As ∈ Rm×n at sites s ∈ [S], number of
eigenvectors k, number of intermediate iterations I ′, number of
total iterations I.

Output: Singular vector matrices H ∈ Rm×k and partial Gs ∈ Rns×k

of A.
// Run I′ iterations of Algorithm 2 and store Hi.

1 [H1, ...,HI′]← federated-subspace-iteration([As], k, I
′) ;

2 P← stack-vertically([H>1 , ...,H
>
I′]) ;

3 for s ∈ [S] do

4 Âs ← PAs

5 // Run Algorithm 2 until convergence using proxy matrix Â. Use Algorithm 2 with

approximate initialisation (AI-RAND) or random initialisation (RI-RAND).

6 Gs ← federated-subspace-iteration([Âs], k, I);
7 // Compute the full left singular vectors of A

8 for s ∈ [S] do Hs ← AsGs;

9 H←
∑S

s=1 Hs;
10 H← orthonormalize(H);

// Return singular vector matrix of A.

11 return Gs,H

4.5 Network transmission costs

The main bottleneck in FL is the amount of data transmitted between the
different sites and the number of network communications and the volume of
transmitted date (Kairouz et al, 2021). The following Proposition 3 specifies
these quantities for our federated PCA algorithm. Recall that S, k, m, n, and c
denote, respectively, the numbers of sites, eigenvectors, features, samples, and
a constant multiplicative factor.

Proposition 3 Let D be the total amount of data transmitted by our federated SVD
algorithm, N be the total number of network communications, and I be the total
number of iterations of the main while-loop. Let further I ′ be the number of inital
iteration for randomized SVD and k′ the intermediate dimensionality of the subspace
for the approximate algorithm. Then the following statements hold:

Springer Nature 2021 LATEX template

Federated singular value decomposition 21

• If the Gi matrices are not orthonormalized, then D = O(I · S · k · m) and
N = O(I · S).

• If federated Gram-Schmidt orthonormalization is used, then D = O(I · (S · k ·
m+ k2)) and N = O(I · S · k).

• If federated randomized subspace iteration is used, then D = O(I ′ ·S ·k ·(m+I ·k))
and N = O((I + I ′) · S).

• Approximate initialization itself has a complexity of D = O(S · k · c ·m) and
N = O(S), hence the other algorithms remain in the same complexity class if
used in combination with approximate initialization.

Proof In each iteration i of our federated vertical subspace iteration algorithm, the
matrices Hs

i ∈ Rm×k have to be sent from the clients to the aggregator and the

matrix Hi ∈ Rm×k has to be sent back to the clients. In iteration i, the amount of
transmitted data and the number of communications due to Hi is hence O(S · k ·m)
and O(S), respectively. For orthonormalizing the eigenvector matrices Gi ∈ Rn×k,
we need to transmit a data volume of O(S · k2) and the number of communications
increases to O(S · k). By summing over the iterations i, this yields the statement
of the proposition. In the randomized iteration the first I ′ iterations have the same
communication complexity that regular subspace iteration. Then the dimensionality
of the matrix is reduced to k · I ′ × n and the decomposition of Â with k eigenvectors
has complexity k · I ′ · k for a single iteration. Thereby, the total complexity is
D = O(I ′ ·S ·k ·m+ I ·S · I ′ ·k2) = O(I ′ ·S ·k · (m+ I ·k)). Approximate initialization
has a complexity of one round of subspace iteration, as Hi needs to be communicated
once to the aggregator and back. The complexity classes hence remain the same. �

If our algorithms are used, the overall volume of transmitted data is hence
independent of the number of samples n. This is especially important in the
intended GWAS setting, since here we can achieve n� m by pre-filtering the
SNPs (i. e., features) before carrying out the PCA (Li et al, 2016; Londin et al,
2010). Moreover, k is small (typically, k = 10 is used for GWAS PCA), which
implies that the additional factor k in the complexities of D and N can be
neglected. Therefore, using the suggested scheme is preferable over sending
the eigenvectors to the aggregator for orthonormalization both in terms of
privacy and expected transmission cost. (In practice, it is advisable to perform
the orthonormalization only at the end). Guo et al (2012)’s algorithm has
a complexity of D = O(I · S · k) and N = O(I · S) per eigenvector. The
use of randomized SVD additionally partially removes the dependency of the
algorithm from the number of SNPs/features which can be quite large in
practice. (The worst case complexity class does not change due to the first
iterations). Additionally, only a few iterations of the true feature eigenvectors
are transmitted. Therefore, randomized SVD is preferable in terms of privacy
and transmission cost.

4.6 Summary

To conclude this section, we provide a brief summary of the main points and
introduce a naming scheme for the configurations evaluated in Section 6. We

Springer Nature 2021 LATEX template

22 Federated singular value decomposition

presented federated vertical subspace iteration with random (RI-FULL) initial-
ization. To avoid the sharing of the sample eigenvector matrix, we introduced
federated Gram-Schmidt orthonormalization (FED-GS) which can be run at
every iteration, but should be run only at the end. In order to speed up the
computation in terms of communication rounds, we suggest to use a modified
version of the approximate algorithm (AI-ONLY) by Balcan et al (2014) as an
initialization strategy for federated subspace iteration (AI-FULL). To reduce
the transmitted data volume and the sharing of the feature eigenvectors, we
suggest to use federated randomized subspace iteration (RI-RAND), which calls
the regular federated subspace iteration as a subroutine for initialization and as
a subroutine for the computation of the final eigenvectors based on a reduced
representation of the data matrix. The second call of Algorithm 2 can be ini-
tialized with approximate initialization to speed up convergence (AI-RAND).
GUO is the reference algorithm. We summarize the asymptotic communication
costs in Table 2.

Table 2 Algorithm overview and complexity.

Algorithm(s) Name D N

Algorithm 2 RI-FULL O(I · S · k ·m) O(I · S).
Algorithm 2+4 AI-FULL O(I · S · k ·m) O(I · S).
Algorithm 2+3 FED-GS O(I · (S · k ·m + k2)) O(I · S · k).
Algorithm 5+2 RI-RAND O(I′ · S · k · (m + I · k)) O((I + I′) · S).
Algorithm 5+2+4 AI-RAND O(I′ · S · k · (m + I · k)) O((I + I′) · S).
Algorithm 4 AI-ONLY O(S · k ·m) O(S).
Guo et al (2012) GUO O(I · S · k ·m) O(I · S).

Springer Nature 2021 LATEX template

Federated singular value decomposition 23

5 Iterative leakage at the aggregator

In this section, we describe how the iterative process discloses the covariance
matrix when using sufficiently many iterations. We first introduce the problem
(Section 5.1) and then discuss how it can be addressed with the algorithms
introduced Sections 4.3 and 4.4 above (Section 5.2). Practical results are
illustrated in Section 6.7 below, using a simulation study.

5.1 Iterative leakage of the covariance matrix

Iterative leakage at the aggregator might disclose the entire covariance matrix
during the execution of the algorithm, as many updates of the variables become
available. Figure 3 visualizes the update process in power iteration, and the
information used to reconstruct a single row of the covariance matrix at one
iteration. Notably, the aggregated vector Hi becomes known in clear text at
the aggregator in every iteration. The aggregator can store the sequence of
vectors Hi. In the following we will show, how it is possible to construct a
system of linear equations which will leak the covariance matrix. For the sake of
this description, we will assume the eigenvector Hi is updated as Hi = KHi−1,
where K = D>D is the feature-by-feature covariance matrix of the federated
data matrix D, which are both unknown to the aggregator. This is equivalent
to the two-step update from the aggregator’s perspective, but improves the
readability.

K

Kl,•

H

Hi−1
•,l Hi

l,l

H

Fig. 3 Eigenvector update using the feature-by-feature covariance matrix.

Proposition 4 Let D ∈ Rn×m be the data matrix and denote K = D>D the feature-
by-feature covariance matrix, which is unknown to the aggregator. Let k be the number
of eigenvectors retrieved. When applying federated subspace iteration, the aggregator
can reconstruct K after m/k distinct eigenvector updates by solving a system of linear
equations of the form Kl,•A = b for each row Kl,• of K, where A ∈ Rm×m and
b ∈ Rm are known parameters.

Proof Let Kl,• denote a row of the covariance matrix K ∈ Rm×m. First, we show

how series (Hi
•,1)mi=1 of m updates of the first eigenvector can be used to retrieve

the row Kl,• of K. Susequently, we show that m/k updates are sufficient if all k
eigenvectors are used.

Springer Nature 2021 LATEX template

24 Federated singular value decomposition

Since Kl,• is a row vector of length m, one needs m equations, which can be

derived from m consecutive updates of the column vector Hi
•,1. The aggregator can

store the consecutive updates of Hi
•,1 and, for each i, store an equation of the form

Kl,•H
i−1
•,1 = Hi

l,1. After m iterations, the aggregator is able to formulate the following
fully determined system of linear equations, given that the eigenvectors have not
converged:

Kl,•
[
H0
•,1 · · · Hm−1

•,1

]
=

[
H1

l,1 · · · H
m
l,1

]
In order to reduce the number of required iterations, the aggregator can use all

vectors in H to formulate the linear system and thereby divide the number of required
iterations by k:

Kl,•

A︷ ︸︸ ︷[
H0
•,1 · · · H0

•,k · · · H
m
k −1
•,1 · · · H

m
k −1

•,k

]
=

b︷ ︸︸ ︷[
H1

l,1 · · · H
1
l,k · · · H

m
k

l,1 · · · H
m
k

l,k

]
The rows of K can be computed simultaneously, by forming a system for all Kl,•

at the same time. Therefore, in theory, this means that after m/k iterations, one has
the full system and can solve it as

Kl,• = bA−1, (6)

which completes the proof of the proposition. �

These theoretical results require to invert A, which may pose a problem in
numerical applications, especially once the Hi grow large. By using a linear
least squares solver, the inversion of the matrix A can be prevented at the
cost of possibly sub-optimal solutions. Furthermore, in practice, more care
needs to be taken when constructing the system, because, once converged, the
eigenvectors do not provide a new equation to be added to the system anymore
and hence lead to a singular system. In Section 6.7, we show that our approach
works on small data.

5.2 Mitigation strategies

Recall that we claimed that Algorithms 4 and 5 improve the privacy of subspace
iteration. After having established that the full global covariance matrix can be
reconstructed after sufficiently many iterations, it becomes clear that reducing
the number of iterations makes this attack more difficult. Algorithm 4 achieves
this by using a better initial eigenvector guess and thus reduces the number
of iteration until convergence. The randomized Algorithm 5 shares the initial
eigenvector updates, but then shares only proxy eigenvectors, whose entries do
not correspond to real features in the data, effectively reducing the number of
useful iterations for the aggregator to a constant number I ′. Therefore, these
algorithms provide a algorithmic privacy improvement over previous solutions.

The attack approach described above is possible even when secure multiparty
computation (SMPC) (Cramer et al, 2015) is used, as the aggregated updates
still become available in clear text at the aggregator. SMPC does however
prevent the disclosure of the local covariance matrices, so using it is beneficial in

Springer Nature 2021 LATEX template

Federated singular value decomposition 25

truly federated implementations of this algorithm. Apart from the approximate
algorithm, which uses SVD as an aggregation strategy, all algorithms are
trivially compatible with secure aggregation as employed according to Cramer
et al (2015). Naturally, perturbation techniques like differential privacy (Balcan
et al, 2016) can be used to prevent the presented attack at the cost of decreased
result accuracy. However, the high dimensionality m of the data might prove
prohibitive, as the noise scales with m.

Springer Nature 2021 LATEX template

26 Federated singular value decomposition

6 Empirical evaluation

6.1 Test datasets

To evaluate our federated PCA algorithm, we used three publicly available
datasets: chromosome 1 and 2 from a genetic dataset from the 1000 Genomes
Project (The 1000 Genomes Consortium, Auton, A., 2015), as well as the
MNIST database of handwritten digits (LeCun et al, 2005) (Table 3). The two
genetic data sets contain data for 2502 individuals (samples). After applying
standard pre-processing steps (MAF filtering, LD pruning) we created 3 data
set versions for each chromosome, with 100 000, 500 000 and >1 000 000 SNPs,
respectively. MNIST contains 60 000 grayscale images of handwritten numerals
(samples), each of which has 784 pixels (features). This data set was split into
5 and 10 equal chunks. To the best of our knowledge, publicly available genetic
data sets with large numbers of patients are not readily available. However,
although motivated by federated GWAS, our federated SVD algorithm is
actually generically applicable. The experiments on MNIST demonstrate its
usefulness for a more general audience. The MNIST data set is available at
http://yann.lecun.com/exdb/mnist/, the genetic data can be obtained from
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/.

Table 3 Datasets used in the study.

Dataset Samples Features

MNIST 60 000 784
1000 Genomes – Chrom. 1 2502 100 000
1000 Genomes – Chrom. 1 2502 500 000
1000 Genomes – Chrom. 1 2502 1 069 419
1000 Genomes – Chrom. 2 2502 100 000
1000 Genomes – Chrom. 2 2502 500 000
1000 Genomes – Chrom. 2 2502 1 140 556

6.2 Compared methods

We compare several configurations against each other: Federated subspace
iteration with random initialization (RI-FULL), federated subspace iteration
with approximate initialization (AI-FULL), federated randomized subspace
iteration with random initialization (RI-RAND), and federated randomized
iteration using approximate SVD for the reduced data matrix (AI-RAND).
Federated subspace iteration which employs federated orthonormalization in
every round (FED-GS) is extremely communication inefficient by adding 2k
additional rounds per iteration which has been proven a major bottleneck
in preliminary studies. Therefore, we omit this algorithm from the empirical
evaluation, because the practical use for SVD is limited. We compare ourselves
to the algorithm presented by Guo et al (2012), denoted GUO, as they present a
solution which omits the covariance matrix and a way to deal with vertical data

Springer Nature 2021 LATEX template

Federated singular value decomposition 27

partitioning. However, GUO shares the right singular vectors G and all updates
of the left singular vectors H with the aggregator, which should be avoided
in federated GWAS as emphasized in Section 4 and Section 5. Furthermore,
as the number of features grows large, the transmission cost increases. We
tested other configurations, including the use of approximate initialization for
randomized PCA, but excluded them in this article as they did not bring a gain
in performance in practice. For all compared methods, we set the convergence
criterion in eq. (5) to ε = 10−9, which corresponds to a change of the angle
between two consecutive eigenvectors updates of about 0.0026 degrees. Note
that this angle does not equal the angle w. r. t. centrally computed eigenvectors,
which we used as a test metric for measuring the quality of the compared
methods (cf. next subsection).

Eigenvector 1 Eigenvector 5 Eigenvector 10

10 C
lients

5 C
lients

0 10 20 30 0

10
0

20
0

30
0 0

30
0

60
0

90
0

0

25

50

75

0

25

50

75

Iterations

A
ng

le
s

w
.r.

t r
ef

er
en

ce

Algorithm AI−FULL RI−FULL AI−RAND RI−RAND GUO

M
N

IS
T

Fig. 4 Angles between selected reference eigenvectors and the federated eigenvectors on
chromosome 1 and 2, as well as for MNIST. The omitted eigenvectors show similar behaviors.

6.3 Test metrics

For measuring the quality of the compared methods, we computed the angles
between the eigenvectors obtained from a reference implementation of a cen-
tralized PCA and their counterparts computed in a federated fashion. An angle
of 0 between two eigenvectors of the same rank is the desired result. As a
reference, we chose the version implemented in scipy.sparse.linalg, which
internally interfaces LAPACK. The amount of transmitted data is estimated
by calculating the number of transmitted floats and multiplying it by a fac-
tor of 4 bytes (single precision IEEE 754). We choose this metric to remain
agnostic with respect to the transmission protocol. Times measures are wall
clock times using Python’s time module. We chose to measure the runtime
for matrix operations only, as they are the most important contributor to the
overall runtime apart from communication related runtime.

Springer Nature 2021 LATEX template

28 Federated singular value decomposition

Eigenvector 1 Eigenvector 5 Eigenvector 10

100000
500000

1069419
0

25

50

75

0

25

50

75

0

25

50

75A
ng

le
s

w
.r.

t r
ef

er
en

ce C
hrom

osom
e 1

100000
500000

1140556
0.

0

2.
5

5.
0

7.
5

10
.0 0

10
0

20
0

30
0 0

50
0

10
00

15
00

20
00

0

25

50

75

0

25

50

75

0

25

50

75

Iterations

A
ng

le
s

w
.r.

t r
ef

er
en

ce

AI−FULL RI−FULL AI−RAND RI−RAND GUO

C
hrom

osom
e 2

Fig. 5 Angles between selected reference eigenvectors and the federated eigenvectors on
chromosome 1 and 2, as well as for MNIST. The omitted eigenvectors show similar behaviors.

6.4 Implementation, availability, and hardware
specifications

All methods except the web interface are written in Python, using mainly,
but not exclusively numpy and scipy. They are available online at https:
//gitlab.com/roettgerlab/federatedPCA. The simulation tests were run on
a compute server with 48 CPUs and 502 GB available RAM due to the
size of the genetic data sets. A federated tool compatible with the Feature-
Cloud (Matschinske et al, 2021b) ecosystem (featurecloud.ai) is available
on the platform. The corresponding source code can be found at https:
//github.com/AnneHartebrodt/fc-federated-pca. We also created an AIME
report (Matschinske et al, 2021a) to promote accessibility of machine learning
research (Hartbrodt, 2022).

Springer Nature 2021 LATEX template

Federated singular value decomposition 29

500

1000

1500
Ite

ra
tio

ns
 to

 c
on

ve
rg

en
ce

0

250

500

750

1000

R
un

tim
e[

s]
 (

M
at

rix
 o

pe
r.)

0

20

40

60

To
ta

l t
ra

ns
m

itt
ed

 d
at

a
[G

B
]

C
hrom

osom
e 1

500

1000

1500

2000

A
I−

F
U

LL

A
I−

R
A

N
D

G
U

O

R
I−

F
U

LL

R
I−

R
A

N
D

Ite
ra

tio
ns

 to
 c

on
ve

rg
en

ce

0

250

500

750

A
I−

F
U

LL

A
I−

R
A

N
D

G
U

O

R
I−

F
U

LL

R
I−

R
A

N
D

R
un

tim
e[

s]
 (

M
at

rix
 o

pe
r.)

0

10

20

30

40

50

A
I−

F
U

LL

A
I−

R
A

N
D

G
U

O

R
I−

F
U

LL

R
I−

R
A

N
D

To
ta

l t
ra

ns
m

itt
ed

 d
at

a
[G

B
]

C
hrom

osom
e 2

#Features 100000 500000 >1Mio

Fig. 6 Iterations, Runtime for matrix computations, and total transmitted data for each
algorithm and each of the three data sets. The boxplots are grouped, the shading indicates
the number of features (0.1 ∗ 106, 0.5 ∗ 106, and roughly 1 ∗ 106).

6.5 Convergence behavior

To test the convergence behavior of the compared federated algorithms, we
split the genetic data sets into 5 equally sized chunks; and the MNIST data
set into 5 and 10 chunks. For every algorithm, we then recorded the angles
between the first 10 eigenvectors w. r. t. the fully converged references at each
iteration averaged across 10 runs.

Figures 4 to 7 show the results of the experiments. Note that, unlike the ver-
sions RI-FULL, AI-FULL, RI-RAND, AI-RAND of our algorithm, the competitor
GUO computes the eigenvectors sequentially (i. e., eigenvector k has to converge
before starting the computation of the eigenvector k + 1), which means that,
for all but the first eigenvector, the plots for GUO start with a horizontal line.
The most important result is that, for all algorithms, the eigenvectors perfectly
converge to the reference eventually.

For low ranking eigenvectors, the approximate initialization speeds up the
computation, because these eigenvectors can be well approximated and start
with angles to the reference close to 0 (see Figures 4 and 5). The gain decreases
in higher dimensions. Therefore, AI-RAND shows the overall best convergence
behavior across all data sets and dimensions.

The number of sites does not influence the convergence behavior, as can be
seen in the test with the MNIST data (Figures 4 and 7) where the convergence

Springer Nature 2021 LATEX template

30 Federated singular value decomposition

0

500

1000

1500

A
I−

F
U

LL

A
I−

R
A

N
D

G
U

O

R
I−

F
U

LL

R
I−

R
A

N
D

Ite
ra

tio
ns

 to
 n

co
nv

er
ge

nc
e

0

100

200

300

A
I−

F
U

LL

A
I−

R
A

N
D

G
U

O

R
I−

F
U

LL

R
I−

R
A

N
D

R
un

tim
e[

s]
 (

M
at

rix
 o

pe
r.)

0

1

2

3

4

A
I−

F
U

LL

A
I−

R
A

N
D

G
U

O

R
I−

F
U

LL

R
I−

R
A

N
D

To
ta

l t
ra

ns
m

itt
ed

 d
at

a
[G

B
]

M
N

IS
T

#Sites 5 10

Fig. 7 Iterations, Runtime for matrix computations, and total transmitted data for each
algorithm and each of the three data sets. The boxplots are grouped, the shading indicates
the number of simulated clients (5, and 10).

curves and the required number of iterations are similar for the simulations
with 5 clients and 10 clients. The transmitted data is shown only from the
aggregator’s perspective, to make the runs comparable. In federated SVD, the
transmission cost scales with the number of clients.

The number of features/SNPs in the data does not show a clear trend.
Although in the convergence plots in Figure 5 the larger data sets seem to
converge more quickly, the overall number of iterations in fig. 6 does not confirm
this trend. The reason for this is the dependence of the convergence speed on
the eigengaps (the difference between two consecutive eigenvalues), an inherent
property of each data set. The smaller the eigengap, the worse the convergence
behavior. Table 4 shows the eigengaps for the eigengaps for Chromosome 2.
The higher ranking eigengaps are generally quite small, indicating generally
bad convergence for all datasets. Eigengap 8 for the data set containing 100000
SNPs specifically, is comparably even smaller which could explain the especially
poor convergence.

Table 4 Eigengaps for Chromosome 2

SNPs EG1 EG2 EG3 EG4 EG5 EG6 EG7 EG8 EG9

100000 15.14 16.02 1.19 3.95 0.9 1.87 0.32 0.05 0.12
500000 26.68 18.41 3.36 12.65 2.71 0.62 0.91 0.2 0.28
1140556 31.5 24.79 4.02 15.59 3.3 3.41 0.39 1.2 0.25

6.6 Scalability

To gauge the scalability of the methods with respect to runtime and transmission
cost, we recorded the number of iterations until convergence, the runtime for
matrix operations, and the estimated total amount of transmitted data for the
selected algorithms. In Figure 6 we see that the amount of transmitted data is

Springer Nature 2021 LATEX template

Federated singular value decomposition 31

the smallest for the randomized algorithms RI-RAND and AI-RAND, followed
by GUO and with a significant distance AI-FULL and RI-FULL. AI-RAND and
RI-RAND also spend the least time on the matrix operations which are the
major contributor in to the runtime. The number of required iterations is
the smallest for RI-RAND and AI-RAND, albeit being closely followed by AI-
FULL and RI-FULL and GUO on the last place. Since the required iterations
correspond to the number of communication steps, this factor significantly
contributes to the overall runtime. Overall, RI-RAND and AI-RAND perform
the best in all three measured categories. Generally, the bottleneck in federated
learning is the number of transmission steps during the learning process, as
this involves network communication. However, with increasing data set size
like in the presented GWAS case, also the reduction in local runtime shows
considerable impact on the overall runtime.

6.7 Covariance reconstruction experiment

We implemented the covariance reconstruction scheme presented in Section 5
and applied in on small example data, demonstrating its practicality. Using
the breast cancer data and the diabetes data set from the UCI repository
(Dua and Graff, 2017) which have 442 and 569 samples and 10 and 30 features
respectively, we computed the centralized covariance matrix. Then we ran
federated subspace iteration and recorded the eigenvector updates. After m/k
iterations, we used the recorded matrices to form the linear system described
in Section 5.1. Instead of inverting the matrix as described in eq. (6), we used
a linear least squares solver (scipy.lstsq) to compute the solution. We then
computed the Pearson correlation between the true and the reconstructed
covariance matrix, with a perfect outcome of 1 (see Table 5) in negligible time.

Table 5 Reconstruction of covariance matrix.

Dataset Samples Features Correlation Time[s]

Breast Cancer 442 10 1 0.001
Diabetes 569 30 0.997 0.004

Springer Nature 2021 LATEX template

32 Federated singular value decomposition

7 Conclusions and outlook

In this paper, we presented an improved federated SVD algorithm which is
applicable to both vertically and horizontally partitioned data and, at the same
time, increases the privacy compared to previous solutions.

Although our algorithm is motivated by the requirements of population
stratification in federated GWAS, it is generically applicable. We proved that
a first version of our algorithm is equivalent to a state-of-the-art centralized
SVD algorithm and demonstrated empirically that it indeed converges to the
centrally computed solutions. Subsequently, we improved the algorithm by
including techniques from other federated and centralized algorithms to increase
scalability and reduce the number of required communications.

There are two key advantages of our algorithm: Firstly, unlike in existing
federated PCA algorithms, the sample eigenvectors remain at the local sites, due
to the use of fully federated Gram-Schmidt orthonormalization, which improves
the privacy of the algorithm. Secondly, the algorithm limits the amount of
transmitted data (via smart initialization and data approximation) and is
thereby more scalable and further prevents information leakage. In particular,
the transmission cost of the randomized algorithm is not dependent on the
number of samples and only partially dependent on the number of features.

In future work, we intend to further decrease the amount of transmitted
data and the number of communication rounds further by only updating those
eigenvectors or coordinates that have not converged yet or offering premature
termination to avoid computing eigenvectors explaining little of the overall
variance.

Chapter 5
Manuscript 4

Federated QR decomposition –
algorithms, privacy, and

applications

93

Federated QR decomposition – algorithms, privacy, and
applications

Anne Hartebrodt

hartebrodt@imada.sdu.dk

University of Southern Denmark

Odense, Denmark

Richard Röttger

reottger@imada.sdu.dk

University of Southern Denmark

Odense, Denmark

ABSTRACT
Federated learning (FL) is a privacy-aware data mining strategy

keeping the private data on the owners’ machine and thereby con-

fidential. The clients compute local models and send them to an

aggregator which computes a global model. In hybrid FL, the lo-

cal parameters are additionally masked using secure aggregation,

such that only the global aggregated statistics become available in

clear text, not the client specific updates. Federated QR decomposi-

tion has not been studied extensively in the context of cross-silo

federated learning. In this article, we investigate the suitability of

three QR decomposition algorithms for cross-silo FL and suggest a

privacy-aware QR decomposition scheme which does not blatantly

leak raw data. We investigate, if privacy can be gained via the ap-

plication of this algorithm as a subroutine in federated PCA. In

this context, we show that there is a critical data leak when using

federated QR decomposition on upper triangular matrices, making

secure aggregation an imperative for this algorithm. We show how

the federated QR decomposition can be used to solve federated

systems of linear equations.

CCS CONCEPTS
• Theory of computation → Design and analysis of algo-
rithms; • Security and privacy→ Information accountability
and usage control.

KEYWORDS
QR decomposition, Federated Learning, Privacy

ACM Reference Format:
Anne Hartebrodt and Richard Röttger. 2022. Federated QR decomposition –

algorithms, privacy, and applications. In Proceedings of SIGKDD CONFER-
ENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD). ACM,

New York, NY, USA, 11 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Federated learning has risen in popularity following the seminal

article by McMahan et al., and possibly accelerated by a search

for new privacy preserving data analysis techniques following the

introduction of the GDPR in Europe. Federated learning is a data

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

KDD, August 14–18, 2022, Washington DC
© 2022 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/XXXXXXX.XXXXXXX

analysis paradigm, where the data stays on the data owners’ ma-

chine and only aggregated parameters are exchanged with the other

participants or a central aggregator. There are two main versions of

federated learning, cross-silo federated learning and cross-device

federated learning. Cross-device FL connects many devices with

relatively low computational power, such as mobile phones or sen-

sors in a learning process. The devices have access to limited data,

for example for one user. Cross-silo federated learning, the learning

paradigm adopted in this article, joins multiple data silos contain-

ing records for a larger group of participants together [11]. The

federated setting adopted in this article is a type of hybrid federated

learning which relies on secure-parameter aggregation (SMPC).

This means the computations at the client sides are done on clear

text, but the aggregation is performed using secure multiparty com-

putation. Therefore, only the aggregated parameters become known

to the aggregator, not the individual client’s updates. The partici-

pants are honest-but-curious, following the protocol, but trying to

infer as much information as possible from the updates they receive

[6]. Since we “only” use secure aggregation and allow the disclo-

sure of intermediate and final results, the advantage is, that we can

directly chain together different algorithms into pipelines. Modern

data analysis workflows rarely only use a single tool, therefore the

use of secure aggregation allows reasonable privacy guarantees,

without the need to develop new protocols for every workflow.

Recently, federated QR orthonormalization has been identified

as a contributor to a more privacy preserving principal component

analysis (PCA) algorithm [10]. The authors show that using fed-

erated QR orthonormalization for singular value decomposition

allows the right, patient-associated singular vectors to remain pri-

vate when using federated power iteration. QR decomposition is

a versatile tool used for many more applications in linear algebra,

including the solution of systems of linear equations [9]. Therefore,

in this article we study this technique in more detail regarding its

potential application in federated learning.

In centralized learning, the traditional machine learning setup,

where all data is on a global server, three algorithms for QR fac-

torization are available. They are based on Householder reflection,

Givens rotation and the Gram-Schmidt procedure. The Householder

algorithm is themost efficient for general applications, while Givens

rotation is advantageous for sparse matrices and parallel comput-

ing architectures [16]. Gram-Schmidt orthonormalization is not

used as much in practice due to numerical instabilities on special

matrices [9]. However, a stabilized version of the algorithm exists

and privacy considerations may take precedence over numerical is-

sues. Consequently, it is interesting to evaluate the algorithms with

regards to their suitability for federated learning. In an earlier arti-

cle, an orthonormalization procedure based on the Gram-Schmidt

Article under review at SIGKDD at time of submission

KDD, August 14–18, 2022, Washington DC Anne Hartebrodt and Richard Röttger

algorithm has been introduced [10], but it does not return the full

decomposition. Therefore, it needs to be extended to return a full

QR factorization. The other algorithms have not been explicitly in-

troduced for cross-silo FL, therefore we have developed prototypes

of their federated versions. We show that Householder reflection

and Givens rotation have properties that render them unsuitable

for federated computation, even when secure aggregation is used.

After presenting the privacy-aware QR decomposition algorithm,

we demonstrate its application to PCA and for the solution of sys-

tems of linear equations: In order to further illustrate potential

privacy leakages induced through federated QR decomposition, we

study a federated PCA algorithm which has been introduced by Bai

et al. and which we extend using the orthonormalization scheme

developed in this article. Notably, the question we want to answer

is whether the introduction of the federated QR scheme increases

the privacy of the algorithm. Furthermore, to highlight the versa-

tility and use for this federated procedure in other applications,

we apply federated QR decomposition to compute linear regres-

sion. This could be used as an alternative solver for the federated

linear regression computation suggested for instance in [14]. Our

experiments demonstrate the same accuracy of the federated linear

regression than standard standalone tools.

To summarize, our contributions are the following:

• We analyze the Householder, Givens and Gram-Schmidt algo-

rithms for QR decomposition with respect to their suitability

for hybrid federated learning, and argue, why Gram-Schmidt

is the most private algorithm.

• We present the first descriptions of federated Householder

reflection and Givens rotation.

• We provide a detailed description of the newly developed

federated Gram-Schmidt based QR factorization.

• We present a modified version of a QR-based federated PCA

algorithm to illustrate data leaks with special matrices.

• We show how to used federated QR decomposition to com-

pute linear regression including the residuals and p-values.

The remainder of this manuscript is organized as follows: in

section 2, the preliminaries, including the three centralized QR al-

gorithms are introduced. Based on these descriptions, in section 3,

we develop federated QR schemes for all algorithms, and a more de-

tailed description for the most suitable QR algorithm, the federated

Gram-Schmidt procedure (section 3.3). In section 4, we extend an

existing PCA algorithm.We carefully analyze the exchanged param-

eters in section 4.2, and show that they can be used to reconstruct

the client upper triangular input matrices. Thereby, we reconfirm

that federated learning alone may not be privacy-aware and further

privacy-enhancing techniques are required. In section 5 federated

linear regression is presented. Section 7 introduces related work,

followed by empirical results in section 6. Lastly, the results are

briefly discussed in section 8. Section 9 concludes the work.

2 PRELIMINARIES
2.1 Data model and architecture
In this manuscript we assume matrix A ∈ R𝑛×𝑚 to be partitioned

into a set of 𝑠 ∈ [𝑆] partial data sets such that A𝑠 ∈ R𝑛𝑠×𝑚 . [𝑆]
denotes the set of clients joining the learning system. This par-

titioning is referred to as horizontal. We assume all participants

have a share of the data, and the ordering of the rows is known

and fixed. We describe our algorithm using a star-like architecture.

We expect the parameters to be masked using additive secure ag-

gregation (cf. section 2.3), therefore we assume that peer-to-peer

communication is possible via secure channels, regardless of the

underlying architecture. This implies that our algorithms could

be run on a fully decentralized architecture. The main reason for

the choice of an aggregator-based architecture is the reduction in

overall communication, because when using SMPC the clients do

not have to transmit the intermediate parameters to all their peers,

only to the aggregator.

2.2 Notation
Vectors and matrices are denoted in boldface, scalars in normal

font. Matrices are noted in upper case letters and consist of column

vectors which are noted in lower case letters. For instance, the

matrix A𝑛×𝑚
consists of𝑚 column vectors a𝑖 where 𝑖 is the index

of the column. Sometimes we refer to columns and rows of a matrix

as A•,𝑖 and A𝑖,• respectively. Table 1 contains an overview over the

most frequently used variables in this work.

Table 1: Notation table.

Syntax Semantics

[𝑁] ⊂ N index set [𝑁] = {𝑖 ∈ N | 1 ≤ 𝑖 ≤ 𝑁 }
𝑆 ∈ N number of sites

𝑚 ∈ N number of features

𝑛 ∈ N total number of samples

𝑛𝑠 ∈ N number of samples at site 𝑠 ∈ [𝑆]
A ∈ R𝑚×𝑛 complete data matrix

A𝑠 ∈ R𝑚×𝑛𝑠 subset of data available at site 𝑠 ∈ [𝑆]
U ∈ R𝑛×𝑘 an orthogonal matrix with span(U) = span(V)
U𝑠 ∈ R𝑛×𝑘 the sub matrix of U available at sites 𝑠 ∈ [𝑠]
Q ∈ R𝑛×𝑘 an orthonormal matrix with span(Q) = span(V)
Q𝑠 ∈ R𝑛×𝑘 the sub matrix of Q available at sites 𝑠 ∈ [𝑠]
R ∈ R𝑘×𝑘 an upper triangular matrix

2.3 Secure aggregation
The secure aggregation scheme used in this work relies on the addi-

tive aggregation protocol used by [6]. It assumes honest-but-curious

participants, i. e. all clients perform the computations following the

protocol but try to infer as much information as possible from

the exchanged parameters [19]. All 𝑠 clients create 𝑖 = 𝑆 random

shares 𝑥𝑠,𝑖 of their secret value 𝑥𝑠 such that

∑𝑆
𝑖 𝑥𝑠,𝑖 mod 𝑝 = 𝑥𝑠 ,

where 𝑝 is a large prime known to all participants. One can think

of the “s” in 𝑥𝑠,𝑖 as the source of the share and “i” the destination.

All clients send the respective shares 𝑥𝑠,𝑖 to the respective recip-

ients 𝑖 where the sum of the shares is computed as

∑𝑆
𝑠 𝑥𝑠,𝑖 = 𝑥𝑖 .

None of the shares disclose any information on the original values.

Lastly, the clients announce their aggregated secret share 𝑥𝑖 , such

that the global sum 𝑥 =
∑𝑆
𝑖 𝑥𝑖 mod 𝑝 of all private shares can be

formed. This scheme is suitable for a cross-silo federated learning

systems with reliable clients (i. e. they do not randomly drop out)

and relatively few participants. Other secure aggregation schemes,

Article under review at SIGKDD at time of submission

Federated QR decomposition – algorithms, privacy, and applications KDD, August 14–18, 2022, Washington DC

such as Shamir’s protocol, which are more fault tolerant to client

dropout [6] could be used instead without conceptual change of

the algorithm.

2.4 Centralized QR decomposition
The QR decomposition is the factorization of a square matrix into

a square orthonormal matrix Q and an upper triangular matrix R.

A = QR (1)

It exists also for non-square matrices (reduced QR decomposi-

tion) which is significantly more memory efficient if 𝑛 > 𝑚. Three

popular schemes exist for the computation of the decomposition,

the Householder, Givens and Gram-Schmidt algorithm. In central-

ized systems, the Householder algorithm and Givens rotation are

more popular, because they do not suffer numerical instability as

the canonical version of Gram-Schmidt orthonormalization. Gener-

ally, Householder reflection is more efficient, and preferred unless

the matrices are sparse or parallel compute architecture can be used

[16]. See [9] for more details on the algorithms.

2.4.1 The Householder algorithm. The Householder reflection pro-

ceeds column-wise, setting all the elements below the diagonal to

0 using a Householder reflector. Therefore, it requires𝑚 − 1 House-

holder reflections to form an upper triangular matrix R starting

from a matrix A ∈ R𝑛×𝑚 . A Householder reflector is defined as

Q𝑢 = 𝐼 − 2uu⊤

u⊤u , u ≠ 0 (2)

For each column vector a𝑖 in matrixA the Householder reflection

is computed using the following steps. First, a is normalized as a𝑖
=

a𝑖
| |a𝑖 | |∞ to avoid numerical overflow. Then the vector u, i. e. the

vector required for the construction of the Householder reflector, is

computed by u𝑖 = a𝑖±||a𝑖 | |2 ·e, where e =
[
1 0 · 0

]⊤ ∈ R𝑚×1

denotes a vector of length 𝑚 containing a 1 in the first position

and 0 otherwise. For ease of notation, the scaling factor
2

u⊤u is

denoted 𝛽 . The Householder reflection is computed implicitly to in-

crease the computational performance. The resulting matrixQ𝑢A =

A − 𝛽uu𝑇A contains 0 in the column corresponding to vector a𝑖 .
Algorithm 1 summarizes the a single Householder reflection. In the

Householder QR algorithm this operation is performed for all vec-

tors a𝑖 of A, transforming in each step only the sub matrix, which

is not yet upper triangular by choosing the remaining reflection

matrix as the identity matrix 𝐼 . As the Householder reflection is the

relevant component for the privacy considerations in section 3.1,

we defer the full description of the Householder algorithm to the

appendix (algorithm 7).

Algorithm 1: Householder reflection

Input: Data matrix A𝑠 ∈ R𝑚×𝑚

1 ā =
A•,𝑖
| |A•,𝑖 | |∞ ;

2 u = ā ± ||ā| |2 · e;
3 Q𝑖A = A − 𝛽uu𝑇A;
4 return A, u;

2.4.2 Givens rotation. Givens QR algorithm sequentially sets sub-

diagonal elements of the matrix A ∈ R𝑚×𝑛 to 0 by multiplying the

matrix with the corresponding “Givens matrix” [9]. After
𝑛· (𝑚−1)

2

operations all elements below the diagonal are 0 resulting an an

upper triangular matrix R. Through careful choice of the parame-

ters in the Givens matrices, their product results in an orthogonal

matrix Q which is the desired result.

A Givens matrix has the following form, where 𝑖 and 𝑗 are the

indices of 𝑐 and 𝑠 .

𝐽 (𝑖, 𝑗, 𝑐, 𝑠) =

1 · · · 0 · · · 0 · · · 0

0

. . .
.
.
.

0 𝑐 · · · 𝑠 0

.

.

.
.
.
.
. . .

.

.

.
.
.
.

0 −𝑠 · · · 𝑐 0

.

.

.
. . . 0

0 · · · 0 · · · 0 0 1

(3)

𝐽 (𝑖, 𝑗, 𝑐, 𝑠) is orthogonal if 𝑐2 + 𝑠𝑠 = 1.

Let A be the matrix of interest and 𝑖 and 𝑗 with 𝑖 < 𝑗 indices of

the element to be set to 0. Then one can set

𝑐 =
𝑥𝑖,𝑖√︃

𝑥2

𝑖,𝑖
+ 𝑥𝑠

𝑗,𝑖

(4)

and

𝑠 =
𝑥𝑖, 𝑗√︃

𝑥2

𝑖,𝑖
+ 𝑥𝑠

𝑖, 𝑗

(5)

and compute the respective Givens matrix according to eq. (3).

Then A′ = 𝐽 (𝑖, 𝑗, 𝑐, 𝑠)A contains a 0 at position (𝑖, 𝑗).The product
of a Givensmatrix with a general matrix can be computed efficiently,

by updating only rows 𝑖 and 𝑗 of the matrix as

A𝑖,• = [𝑐𝑎𝑖,1 + 𝑠𝑎 𝑗,1, 𝑐𝑎𝑖,2 + 𝑠𝑎 𝑗,2, · · · , 𝑐𝑎𝑖,𝑚 + 𝑠𝑎 𝑗,𝑚] (6)

and

A𝑗,• = [𝑐𝑎 𝑗,1 + 𝑠𝑎𝑖,1, 𝑐𝑎 𝑗,2 + 𝑠𝑎𝑖,2, · · · , 𝑐𝑎 𝑗,𝑚 + 𝑠𝑎𝑖,𝑚] (7)

The full QR decomposition in a centralized setting is summarized

in algorithm 2.

Algorithm 2: QR factorization using Givens rotation

Input: Data matrix A𝑠 ∈ R𝑛×𝑚
1 foreach 𝑖 ∈ [1, ...,𝑚 − 1] do
2 foreach 𝑗 ∈ [𝑖 + 1, ...,𝑚] do
3 [𝑠, 𝑐] ← compute-givens-parameter();
4 A = 𝐽 (𝑖, 𝑗, 𝑐, 𝑠)A;
5 Q = 𝐽 (𝑖, 𝑗, 𝑐, 𝑠)Q;

6 R = 𝐴;

7 Q = Q⊤ return Q,R

2.4.3 Gram-Schmidt orthonormalization. The Gram-Schmidt al-

gorithm produces a orthonormal matrix Q = [q1 . . . q𝑘] and an

upper triangular matrix R = [r1 . . . r𝑘] [3]. With a matrix A =

[a1 . . . a𝑘] ∈ R𝑛×𝑚 of𝑚 linearly independent column vectors, the

matrix U = [u1 . . . u𝑘] ∈ R𝑛×𝑚 of orthogonal column vectors is

Article under review at SIGKDD at time of submission

KDD, August 14–18, 2022, Washington DC Anne Hartebrodt and Richard Röttger

computed, such that it has the same span as A. Let 𝑟𝑖, 𝑗 = u⊤
𝑗
a𝑖/𝑛 𝑗

and 𝑛 𝑗 = u⊤
𝑗
u𝑗 then

u𝑖 =

{
a𝑖 if 𝑖 = 1

a𝑖 −
∑𝑖−1

𝑗=1
𝑟𝑖, 𝑗 · u𝑗 if 𝑖 ∈ [𝑘] \ {1}

, (8)

q𝑖 =
u𝑗
| |u𝑗 | |

(9)

r𝑗,𝑖 =

{
q𝑗 · v𝑖 if 𝑗 ≤ 𝑖

0 if 𝑗 > 𝑖
(10)

2.5 Centralized Singular Value Decomposition
Singular value decomposition (SVD) is a matrix decomposition fre-

quently used in data mining applications. AmatrixA is decomposed

into two orthonormal matrices of singular vectors U and V and a

diagonal matrix Σ containing the singular values in non-increasing

orderA = UΣV⊤ [9]. In the federated domain, SVD has been studied

extensively, and multiple algorithms exist (e. g. [2, 4, 10]). Given the

vertically distributed matrix A𝑠 ∈ R𝑚×𝑛𝑠 with dimension𝑚 ×𝑛𝑠 at
sites 𝑠 the federated singular value decomposition is defined as

A𝑠 = UΣV𝑠⊤ (11)

where U is the full left singular vector and V𝑠 are the partial right
singular vectors. The right singular vectors should not be shared

due to potential privacy breaches [10].

2.6 Solution of systems of linear equations
In centralized computation, QR factorization can be used to compute

the solution of systems of linear equations. Given a system Ax = b,
one can compute A = QR. By setting QRx = b⇔ Rx = Q−1b the

system can be solved efficiently because due to the orthonormality

of Q, Q−1 = Q⊤ and y = Q−1b can be computed. This leaves to

solve a system of the form Rx = y, which can be solved efficiently

as R is an upper triangular matrix [3]. This can be used for instance

for linear regression [14].

3 FEDERATED QR DECOMPOSITION

A

𝑑

𝑛1

𝑛2

𝑛3

Q

𝑑

𝑛1

𝑛2

𝑛3

R

𝑑

Figure 1: Schematic QR decomposition with 3 participants. A
and Q remain private. R is known to all participants.

In this section, we describe and analyse approaches to federate

QR factorization. To our knowledge, there exist no deceptions of

federated versions of the Householder reflection or Givens rotation-

based algorithms. Therefore, we first provide descriptions of the

federated algorithms and demonstrate that they are not suitable for

the chosen federated setting. Lastly, we describe a novel, extended

Gram-Schmidt algorithm which also returns the upper triangular

matrix R. Recall that we assume the data A ∈ R𝑛×𝑚 to be parti-

tioned row-wise into chunks A𝑠 ∈ R𝑛𝑠×𝑚 . The goal of federated

QR decomposition is to compute Q𝑠
and R such that A𝑠

and Q𝑠

stay private, meaning the raw data does not leave site 𝑠 and Q can

only be computed at 𝑠 . R is common to all sites.

3.1 Federated Householder algorithm
We describe a straightforward algorithm for a federated House-

holder reflector. This subroutine could be used to compute the full

QR decomposition in a federated manner. Let 𝑡𝑠 be the row index

set of A𝑠 at site 𝑠 .

Algorithm 3: Federated Householder reflection Client-side

computations are marked in gray.

Input: Data matrix A𝑠 ∈ R𝑛×𝑚
// 𝑡𝑠 is the index set for the rows of A𝑠

// Compute the global max element | |A•,𝑖 | |∞
1 𝑚𝑠 ← send-to-aggregator(| |A𝑡𝑠 ,𝑖 | |∞);
2 | |A•,𝑖 | |∞ = max𝑠∈[𝑆]𝑚

𝑠
;

3 // Compute the local portion of u

4 ā𝑠 ← A𝑡𝑠 ,𝑖

| |A•,𝑖 | |∞ ;

5 u𝑠 ← ā𝑠 ± ||ā𝑠 | |2 · e;
6 // Oracle step: u𝑠 are stacked to compute uu⊤

7 u← stack-vertically([u1, · · · u𝑠]) ;
8 // Update A

9 A𝑠 = Q𝑠
𝑖
A𝑠 = A𝑠 − 𝛽uu𝑇A𝑠

;

10 return A𝑠
, u;

11

In algorithm 3 we describe a federated householder reflector.

The algorithm proceeds column wise. Initially, the global infinity

norm | |A•,𝑖 | |∞ is computed as the max over all local infinity norms

(lines 1 to 2). Then, the clients locally compute u (lines 4 to 5). In

order to compute the Householder reflector, the clients send their

partial vectors u𝑠 to the aggregator (line 7). We call this step an

“oracle step” to indicate that under the chosen secure computation

paradigm, the aggregation itself cannot be performed privately.

Finally, at the clients, the reflection is performed (line 9).

Ad-hoc, this naive federated implementation of the procedure

would take three communication rounds per column vector, one for

the computation of the maximal element, one for the computation

of the norm and one for the computation of the reflector.

In the federated setting, the computation of the Householder

reflector itself is immediately problematic regarding the confiden-

tiality of the data. Recall that algorithm relies on the computation

of the outer product of u which is a direct transformation of the

original column vectors of A. In step 6, we call this operation an

oracle step because it cannot be performed using the SMPC scheme

we choose. Furthermore, even if secure multiplication is used, this

“summary statistics” constitutes a privacy breach because the diag-

onal of uu⊤ contains the squared entries of u. If u, and | |a| |∞ are

Article under review at SIGKDD at time of submission

Federated QR decomposition – algorithms, privacy, and applications KDD, August 14–18, 2022, Washington DC

known, then the original vector A•,𝑖 can be reconstructed. There-

fore, it is not straightforward to privately compute the Householder

transform using hybrid federated learning with secure aggregation.

Knowledge of the procedures allows the reverse engineering of the

data. This can potentially be prevented by performing the entire

computation under homomorphic encryption, or SMPC which al-

lows the evaluation of arbitrarily complex circuits. When using

SMPC, it would not be sufficient to compute the outer product se-

curely, the intermediate parameters cannot become known to any

of the computing parties. Based on these violation of our privacy

demands, we exclude federated Householder reflection from any

further considerations.

3.2 Federated Givens rotation
In this section we describe a direct translation of a Givens rotation

to a federated setting. Again, we only describe the relevant subrou-

tine which would allow the implementation of the complete QR

decomposition, albeit inefficiently. Realistically, one would choose

a parallelized version of the operator.

Algorithm 4: QR factorization using Givens rotation

Client-side computations are marked in gray.

Input: Data matrix A𝑠 ∈ R𝑛×𝑚
/* Perform local precomputations, setting all

possible elements to 0, send all non-zero
indices to the aggregator */

1 foreach 𝑖 ∈ [1, ...,𝑚 − 1] do
2 foreach 𝑗 ∈ [𝑖 + 1, ...,𝑚] do

// Compute 𝑐 and 𝑠, using values from two

clients 𝑘1, 𝑘2 ∈ [𝑆]
3 send-to-client(𝑖, 𝑗);
4 𝑥𝑖,𝑖 ← send-to-aggregator(𝑎𝑘1

a𝑖,𝑖);
5 𝑥 𝑗,𝑖 ← send-to-aggregator(𝑎𝑘2

a𝑗,𝑖);
6 𝑐 =

𝑥𝑖,𝑖√︃
𝑥2

𝑖,𝑖
+𝑥𝑠

𝑗,𝑖

;

7 𝑠 =
𝑥𝑖,𝑗√︃

𝑥2

𝑖,𝑖
+𝑥𝑠

𝑖,𝑗

;

8 A𝑠 = 𝐽 (𝑖, 𝑗, 𝑐, 𝑠)A𝑠
;

9 Q𝑠 = 𝐽 (𝑖, 𝑗, 𝑐, 𝑠)Q;
10

11 R = A;
12 Q = Q⊤ return Q,R

Algorithm 4 summarizes the federated procedure described in

the following. As precomputations, the clients perform Givens

rotations to set all elements to 0 which only depend on their data.

Then, the clients communicate all remaining non-zero indices below

the diagonal to the aggregator. Setting an element to 0 requires only

two rows 𝑖 , and 𝑗 to be manipulated. The clients associated with

these rows are called 𝑘1 and 𝑘2. In the main loop, the aggregator

announces the current 𝑖 and 𝑗 to the current clients𝑘1 and𝑘2 (line 3).

Client 𝑘1 and 𝑘2 compute and announce the Givens parameters 𝑠

and 𝑐 in collaboration with the aggregator (lines 6 to 7). This is an

“oracle step”, as this implies the communication of 𝑥𝑖 and 𝑥 𝑗 and

is not trivially to compute using secure addition. The aggregator

announces 𝑐 and 𝑠 to 𝑘1 and 𝑘2 and the clients update R and Q. The
broadcast can be combined with the new index broadcast (line 3) if

applicable. Lines 3 to 9 are repeated until all elements below the

diagonal are 0.

The naive implementation of this procedure would require in

the order of 𝑁 = O(2·𝑛 · (𝑚−1)
2

) transmission rounds. Each element,

would required an index broadcast and a Givens parameter broad-

cast. The procedure can be parallelized to zero out
𝑛
2
elements per

round [16], reducing the communication complexity to O(𝑛).
However, there is a critical privacy breach when using Givens

rotations. Recall that we assume the data to partitioned into 𝑠 parti-

tions 𝐴𝑠 ∈ R𝑛𝑠×𝑚 . Assuming rows 𝑖 and 𝑗 are located in silo 𝑆1 and

𝑆2 respectively, the aggregator can compute the values 𝑥𝑖 and 𝑥 𝑗
using 𝑐 and 𝑠 (cf. eq. (6), eq. (7)). Even, if 𝑐 and 𝑠 are computed using

SMPC and P2P communication (so that the aggregator does not

gain knowledge of the parameters), 𝑥𝑖 and 𝑥 𝑗 can be reconstructed

at the current clients 𝑘1 and 𝑘2. In order to prevent this breach, the

whole algorithm would have to be performed under encryption,

such that 𝑆1 does not gain access to the intermediate matrices 𝐴′𝑠 .
These considerations render this algorithm unsuitable for hybrid

federated learning with secure parameter aggregation. This leaves

the Gram-Schmidt algorithm as the final possible algorithm.

3.3 Federated Gram-Schmidt Algorithm
including the Computation of R

Based on the algorithm described in [10], where the authors showed

that the orthogonal matrix Q can be computed solely based on

the exchange and aggregation of vector norms and co-norms, we

extend the algorithm such that the R matrix can be computed

simultaneously. This can be done without further communication

steps in comparison to the previously presented method. The main

modifications are that the orthonormal vectors in Q need to be

computed right away in order to compute the inner product of

q𝑙a𝑖−1 contained in the matrix R at position 𝑙, 𝑖 − 1. Note, that the

procedure also requires the orthogonal vectors u𝑖 .
Therefore, we develop a detailed description of a federated Gram-

Schmidt orthonormalization procedure (see Algorithm 5). First, the

global vector norm 𝑛𝑖 of u𝑖 is calculated by computing the local

vector norms 𝑛𝑠
𝑖
at the clients and aggregating them at the central

server (lines 2 to 5). The main loop starts at index 𝑖 = 2 and proceeds

in 4 stages. Let R be the upper triangular matrix completed up to

vector 𝑖 ∈ 𝑑 . First, e𝑠
𝑖−1

, is computed by dividing u𝑖−1 through the

global norm (lines 7 to 8). Then, the 𝑖 − 1st local column r𝑠
𝑙,𝑖−1

of R
is computed as the inner product of the partially normalized vector

q𝑠
𝑖−1

and the partial data column a𝑠 (lines 9 to 10). Then the local

residuals 𝑟𝑠
𝑖 𝑗

for vector 𝑖 w. r. t. to the previous 𝑖 − 1 vectors are

computed (lines 11 to 13). In stage 2, the two parameters r𝑠
𝑙,𝑖−1

and

𝑟𝑠
𝑖 𝑗
are sent to the central server and aggregated via element-wise

addition (lines 15 to 18) to form the global copy of R up until 𝑖 − 1.

The global r𝑙,𝑖−1
, and 𝑟𝑖 𝑗 are returned to the clients, where the

orthogonal vector u𝑠
𝑖
is computed (lines 20 to 22). In the last stage,

the norm of the current vector u𝑖 , 𝑛𝑖 is computed by summing up

the local norms of u𝑠
𝑖
(line 23). The procedure is repeated for all

𝑑 vectors of A. After exiting the main loop, the last column of A
is computed, and the partial orthonormal matrices R and Q𝑠

are

Article under review at SIGKDD at time of submission

KDD, August 14–18, 2022, Washington DC Anne Hartebrodt and Richard Röttger

returned (lines 24 to 29). This procedure is equal to the centralized

Gram-Schmidt algorithm because the vector inner products can be

computed exactly in a federated fashion.

Algorithm 5: Federated Gram-Schmidt. Client-side com-

putations are marked in gray.

Input: Data matrices A𝑠 ∈ R𝑛𝑠×𝑑 at sites 𝑠 ∈ [𝑆].
Output: Partial matrices Q𝑠 and full matrix R at sites

𝑠 ∈ [𝑆]
1 // Compute norm of first orthogonal vector.

2 for 𝑠 ∈ [𝑆] do
3 u𝑠

1
← a𝑠

1
;

4 𝑛𝑠
1
← u𝑠

1

⊤u𝑠
1
;

5 𝑛1 ←
∑𝑆
𝑠=1

𝑛𝑠
1
;

// Orthogonalize all subsequent vectors.

6 for 𝑖 ∈ [𝑑] \ {1} do
7 for 𝑠 ∈ [𝑆] do

// Normalise to unit norm

8 q𝑠
𝑖−1
← u𝑠

𝑖−1
/√𝑛𝑖−1 ;

// Compute relevant entries for R
9 for 𝑙 ∈ [𝑖] do
10 r𝑠

𝑙,𝑖−1
← q𝑠

𝑙
a𝑠
𝑖−1

;

// Compute client residuals for current

vector.

11 for 𝑠 ∈ [𝑆] do
12 for 𝑗 ∈ [𝑖 − 1] do
13 𝑟𝑠

𝑖 𝑗
← u𝑠

𝑗
⊤a𝑠

𝑖
/𝑛 𝑗 ;

14 // Aggregate residuals

15 for 𝑗 ∈ [𝑖 − 1] do
16 𝑟𝑖 𝑗 ←

∑𝑆
𝑠=1

𝑟𝑠
𝑖 𝑗
;

// Aggregate R

17 for 𝑙 ∈ [𝑖] do
18 r𝑙,𝑖−1

← ∑𝑆
𝑠=1

a𝑠
𝑙,𝑖−1

;

19 // Orthogonalize vector and compute norm.

20 for 𝑠 ∈ [𝑆] do
21 u𝑠

𝑖
← a𝑠

𝑖
−∑𝑖−1

𝑗=1
𝑟𝑖 𝑗 · u𝑠𝑗 ;

22 𝑛𝑠
𝑖
← u𝑠

𝑖
⊤u𝑠

𝑖
;

23 𝑛𝑖 ←
∑𝑆
𝑠=1

𝑛𝑠
𝑖
;

24 for 𝑠 ∈ [𝑆] do
// Compute last column of R

25 q𝑠
𝑑
← u𝑠

𝑑
/√𝑛𝑖−1;

26 for 𝑙 ∈ [𝑘] do
27 r𝑙𝑑 ← q𝑠

𝑑
a𝑠
𝑙
;

28 Q𝑠 = [q𝑠
1
· · · q𝑠

𝑑
] ;

29 Return Q𝑠 ,R;

30

3.4 Privacy considerations
Recall that according to our privacy definition, privacte federated

QR decomposition returns Q𝑠
and R such that A𝑠

and Q𝑠
stay

private, meaning the raw data does not leave site 𝑠 and Q can only

be computed at 𝑠 . R is common to all sites.

Proposition 3.1. At the end of federated Gram-Schmidt decom-
position, the clients do not have access to more knowledge than their
data matrices A𝑠 , the orthonormal partial matrices Q𝑠 , and the global
matrices R.

Proof. We consider the case, where we have no knowledge of

the type of matrix (for instance, whether it is sparse, or triangular)

to be orthonormalized and analyze the knowledge at the aggregator.

LetA𝑠 = Q𝑠R. At the end of the algorithm, the following knowledge

is available at the aggregator (We only show the global aggregates,

assuming that they are aggregated using secure addition):

• [𝑛1, · · · , 𝑛𝑑], the norms of [u1, · · · , u𝑑]
• R the upper triangular matrix

q1 · a1 q1 · a2 · · · q1 · a𝑑
0 q2 · a2 · · · q2 · a𝑑
.
.
. 0

. . .
.
.
.

0 0 · · · q𝑑 · a𝑑

(12)

• the upper triangular matrix of residuals
u1 · a2 u1 · a3 · · · u1 · a𝑑

0 u2 · a3 · · · u2 · a𝑑
.
.
. 0

. . .
.
.
.

0 0 · · · u𝑑 · a𝑑

(13)

• In particular, we do not have access to the matrices U𝑠
, Q𝑠

or A𝑠
.

Since q𝑖 =
u𝑖
𝑛𝑖
, the total information available amounts to the

information encoded in the R matrix. We hence have only access

to one factor of the decomposition which does not allow us to

find a unique solution to A = QR. We specified our privacy goal

as keeping the input matrices A𝑠
and the orthogonal matrices Q𝑠

private, therefore the presented algorithm is private as per our

definition. □

It should be noted that R does disclose information on the data

in form of the feature covariance matrix:

A⊤A = R⊤Q⊤QR = R⊤R (14)

4 FURTHER PRIVACY INVESTIGATIONS
In this section, we apply federated QR factorization as a subroutine

in federated PCA to reveal a privacy breach that can occur, if se-

cure aggregation is not used, or if only 2 parties participate in the

computation. The original algorithm uses QR factorization as the

aggregation step [2]. This centralized procedure can be replaced

by federated QR orthonormalization, presumably preventing the

disclosure of the local summary statistics. The algorithm is mainly

of academic interest, because more efficient schemes for PCA are

available for star-like architectures. However, we will show, that

knowledge of the procedure allows an honest-but-curious partici-

pant to exactly reconstruct the other participants’ input data. Our

Article under review at SIGKDD at time of submission

Federated QR decomposition – algorithms, privacy, and applications KDD, August 14–18, 2022, Washington DC

attack exploits the fact, that the input matrices are upper triangular

and that we have full knowledge of the algorithm.

4.1 Algorithm
The algorithm [2] relies on sending a local R to the aggregator,

where a secondary QR decomposition is performed (algorithm 6).

We suggest centering the data globally prior to the computation

of the matrix (line 1). This avoids having to account for inter site

differences in mean later on. The next step is identical to the orig-

inal: all the R matrices are computed at the clients (line 3). The

original algorithm recursively merges the R matrices at a processor

to form the updated R′ matrix until only one matrix remains. By

computing the QR decomposition of all clients’ R matrices at once

using federated Gram-Schmidt decomposition, sending R can be

avoided. The federated QR algorithm returns R at all the clients,

therefore the final SVD can be directly computed at the client. The

clients can also compute the partial left eigenvectors as𝑈 𝑠 = 𝐴𝑠𝑉

(line 6).

Algorithm 6: Federated PCA using QR factorization [2]

Input: Data matrices A𝑠 ∈ R𝑛𝑠×𝑚 , # eigenvectors 𝑘 .

1 A𝑠 ← federated-centering() ;
2 for 𝑠 ∈ [𝑆] do

// Compute local R at all clients

3 Q𝑠 ,R𝑠 ← orthonormalize(A𝑠);
4 [Q𝑠],R← federated-gram-schmidt([R1, · · ·R𝑠]);
5 U, Σ,V⊤ = SVD(R);
6 U𝑠 ← A𝑠V;
7 Return U𝑘

𝑠 ,V𝑘

4.2 Privacy considerations
In the original algorithm, the communication of R poses a prob-

lem: Let 𝐴⊤A be the covariance matrix of the data. Using the fact

that Q is an orthonormal matrix, R can be used to compute the

local covariance matrices of the data and hence leaks information

(eq. (14)). Therefore, this algorithm is no more private than sending

the entire set of local eigenvectors to the next party. The advan-

tage of algorithm 6 over its previous version is that it allows the

computation of the global R without communicating the local R in

clear text. The same can be achieved by using secure addition of the

covariance matrices or computing the global R based on the data

instead of R. Nonetheless, we investigate this algorithm, because

with close analysis it reveals a privacy breach if secure aggregation

is not used or only two participants join. We show, that in this case

the federated QR decomposition of upper triangular matrices is

no more private than sending the upper triangular matrices them-

selves. The reason for this is the fact that the initial vector norm

of the QR step is not technically an aggregate. We visualize the

aggregation step in algorithm 6 in eq. (15), as it is the motivation

for our investigation. To avoid ambiguity, we denote the resulting

upper triangular matrix S with elements 𝑠𝑖, 𝑗 . For the remainder of

this section, we assume that secure aggregation is not used.

Proposition 4.1. Let R∗ =
[
R1 R2 · · · R𝑠

]⊤ be a vertical
stack of upper triangular matrices, of which we want to compute
the QR decomposition as R∗ = QS. Denote Q𝑠 = [u𝑠

1
, u𝑠

2
, · · · u𝑠

𝑑
] the

block wise orthogonal matrices at sites 𝑠 . It is possible to reconstruct
all

[
R1 R2 · · · R𝑠

]
as well as all

[
Q1 Q2 · · · Q𝑠

]
when

applying the federated QR algorithm on R∗, given one knows that R𝑠

are upper triangular.

R∗ =

R1

R2

.

.

.

R𝑠

=

©«
𝑟 1

11
𝑟 1

12
· · · 𝑟 1

1𝑑

0 𝑟 1

22
· · · 𝑟 1

2𝑑

.

.

. 0

. . .
.
.
.

0 0 · · · 𝑟 1

𝑑𝑑

ª®®®¬©«
𝑟 2

11
𝑟 2

12
· · · 𝑟 2

1𝑑

0 𝑟 2

22
· · · 𝑟 2

2𝑑

.

.

. 0

. . .
.
.
.

0 0 · · · 𝑟 2

𝑑𝑑

ª®®®¬
.
.
.©«

𝑟𝑠
11

𝑟𝑠
12
· · · 𝑟𝑠

1𝑑

0 𝑟𝑠
22
· · · 𝑟𝑠

2𝑑

.

.

. 0

. . .
.
.
.

0 0 · · · 𝑟𝑠
𝑑𝑑

ª®®®¬

=

Q1

Q2

.

.

.

Q𝑠

S (15)

Proof. Let R∗ =
[
R1 R2 · · · R𝑠

]⊤
be the matrix to be de-

composed into Q and S. Denote R𝑠 and Q𝑠
the partial matrices only

available at site 𝑠 ∈ [𝑆]. Denote [u𝑠
1
· · · u𝑠

𝑑
] the partial orthogonal

vectors at sites 𝑠 . We show by induction on 𝑖 that R𝑠 and Q𝑠
can

be reconstructed at the aggregator based on the intermediate sum-

mary statistics exchanged during the execution of algorithm 5. Let

𝑖 = 1. In the first step of the algorithm (lines 3 to 5, algorithm 5),

when computing 𝑛1 =
∑𝑆
𝑠=1

r𝑠⊤
1

r𝑠
1
the clients disclose (r𝑠

1,1
)2 to the

aggregator which can compute

u1 = [
√︃
r1

1,1
, 0, · · · , 0,

√︃
r2

1,1
, · · · , 0,

√︃
r𝑠
1,1
, 0, · · · , 0]⊤ . (16)

Let now 𝑖 = 2 and 𝑗 = 1, the residuals 𝑝𝑠
2,1
← u𝑠

1

⊤r𝑠
2

𝑛1

are com-

puted and aggregated as 𝑝2,1 =
∑𝑆
𝑠=1

𝑝𝑠
2,1

(line 13 and line 16). 𝑛1

and u1 are known. We can compute 𝑟𝑠
1,1

= q𝑠⊤
1
𝑠𝑠
1,1

because q𝑠
1
is

orthonormal and only contains a single non-zero entry (line 9, (𝑠

corresponds to 𝑟 in the algorithm description)). For the same reason,

we can also compute 𝑟𝑠
1,2

=
𝑝𝑠

2,1
·𝑛1

𝑞1,1
(line 13).

Finally, we compute 𝑛2 ←
∑𝑆
𝑠=1

𝑛𝑠
2
, with 𝑛𝑠

2
= u𝑠

2

⊤u𝑠
2
where

u𝑠
2
← r𝑠

2
−∑𝑖−1

𝑗=1
𝑝21 ·u𝑠

1
. This can be simplified to u𝑠

2
=

(
𝑟𝑠

12
−𝑝21 ·𝑢𝑠

11

𝑟𝑠
22

)
,

because only 𝑢𝑠
1,1

is non-zero. 𝑟𝑠
1,2
, 𝑝2,1 and 𝑢𝑠

1,1
are known, so

𝑟𝑠
2,2

=
√︃
𝑛𝑠

2
− (𝑟𝑠

1,2
− 𝑝2,1 · 𝑢𝑠

1,𝑖
)2 can be computed, which in turn

means u𝑠
2
is known completely. At this point, u1, u2, r𝑠

1
and r𝑠

2
are

known to the aggregator.

For the inductive step, we assume to have computed Q and

[R1 · · ·R𝑠]⊤ up to column 𝑖 − 1, we can compute column 𝑖 . We set

𝑗 = 𝑖 − 1.

The residuals 𝑝𝑠
𝑖 𝑗
← u𝑠

𝑗
⊤r𝑠

𝑖
/𝑛 𝑗 are computed, and aggregated

as 𝑝𝑖 𝑗 =
∑𝑆
𝑠=1

𝑟𝑠
𝑖 𝑗
. 𝑛 𝑗 , r𝑗 and u𝑗 are known for 𝑗 ∈ [𝑖 − 1]. We can

Article under review at SIGKDD at time of submission

KDD, August 14–18, 2022, Washington DC Anne Hartebrodt and Richard Röttger

compute 𝑟𝑠
𝑖 𝑗
for 𝑗 ∈ [𝑖 − 1] via successive variable substitution due

to the fact that the R𝑠
𝑖
are upper triangular.

𝑟1,𝑖 =
𝑝𝑖,1 ·𝑛1

𝑢1,1

𝑟2,𝑖 =
𝑝𝑖,2 ·𝑛2−𝑢1,2 ·𝑟1,𝑖

𝑢2,2

.

.

.

𝑟 𝑗−1,𝑖 =
𝑝𝑖,𝑗 ·𝑛 𝑗−

∑𝑖
𝑛=0

𝑢𝑛−1 ·𝑝𝑖,𝑛−1

𝑢𝑛−1,𝑛−1

(17)

Finally, we compute 𝑛𝑖 ←
∑𝑆
𝑠=1

𝑛𝑠
𝑖
, with 𝑛𝑠

𝑖
= u𝑠

𝑖
⊤u𝑠

𝑖
where

u𝑠
𝑖
← r𝑠

𝑖
−∑𝑖−1

𝑗=1
𝑝𝑖 𝑗 · u𝑠𝑗 which can be rewritten as

u𝑠𝑖 =

©«

𝑟𝑠
1,𝑖
−∑𝑖−1

𝑗=1
𝑝𝑖, 𝑗 · 𝑢𝑠

1, 𝑗

𝑟𝑠
2,𝑖
−∑𝑖−1

𝑗=1
𝑝𝑖, 𝑗 · 𝑢𝑠

2, 𝑗

.

.

.

𝑟𝑠
𝑗,𝑖
−∑𝑖−1

𝑗=1
𝑝𝑖, 𝑗 · 𝑢𝑠𝑗, 𝑗

𝑟𝑠
𝑖,𝑖

ª®®®®®®®¬
(18)

where r𝑖,𝑖 is the only unknown. r𝑗𝑖 =
√︃
𝑛𝑠
𝑖
−∑𝑖−1

𝑗=1
(r𝑠

𝑗,𝑖
− 𝑝𝑖, 𝑗 · u𝑠𝑗,𝑖)2,

which in turn means u𝑠
𝑗
is complete, because 𝑛𝑖 , 𝑝𝑖, 𝑗 and u𝑠

𝑗
as well

as r𝑗,𝑖 are known. □

When using general matrices, even with only two participants,

and if SMPC is used, this attack is not possible, because the first

vector norm summarizes more than one element. However, the

previous application highlights that tracking the parameters during

federated iterations could reveal more information on the input

data than the participants intend, especially when the methods are

fully traceable and do not involve randomized steps. In the case

of sparse matrices, a partial column a𝑠
𝑖
which contains no entries,

can be detected at the aggregator as the inner product in R would

be 0. The problem, with the methods presented here, is that the

knowledge of algorithmic procedure and the absence of random

elements in the algorithm allow us to backtrack more information

than intended, given an ’attack angle’.

5 SYSTEMS OF LINEAR EQUATIONS
To showcase the realistic use of our algorithm, we consider the

application of federated orthonormalization for the solution of

systems of linear equations. A popular use of QR decomposition

is linear regression. For example, R’s lm() function uses the QR

algorithm by default [15]. Here, we demonstrate how it is possible to

solve a system of linear equations of the form Ax = bwith only one

further round of communication, based on the QR decomposition.

This technique can be used to replace the solver implemented for

instance in [14]. It does not require matrix inversion and is therefore

more suitable for large scale matrices. Let A and b be partitioned

into A𝑠
and b𝑠 respectively, and x the solution common to all sites.

After the QR decomposition of the matrix A, Q𝑠
is known at the

sites, and R is known at all sites and the aggregator. In order to

compute x, the clients have to send their vector inner product

of y𝑠 = Q⊤b𝑠 to the aggregator which securely computes the

global vector y =
∑𝑆
𝑠 . The aggregator can directly compute x

by successive variable substitution and share the result with the

clients (see section 2.6). With one additional step, one can also

compute p-values and 𝑟2
statistics. The clients compute the sum

of the squared residuals as 𝑟𝑠𝑠𝑠 =
∑(A𝑠x − b)2 and the sum of the

squared fitted values𝑚𝑠𝑠𝑠 =
∑
A𝑠b and send them to the aggregator,

which computes the global sums 𝑟𝑠𝑠 =
∑𝑆
𝑠 𝑟𝑠𝑠𝑠 , and𝑚𝑠𝑠 =

∑𝑆
𝑠 𝑚𝑠𝑠𝑠 .

For the p-value, the variance is computes as 𝜎 = 𝑟𝑠𝑠
𝑛−𝑚−1

(R⊤R)−1
,

and standard error as 𝑆𝐸 =
√
𝜎 . Here, we exploit the fact that the

covariance matrix can be expressed using R (eq. (14)). The T-statistic

used to determine the p-value can be computed as𝑇 = x
𝑆𝐸

. For more

details see [14] who provide a detailed description of the p-value

calculation. 𝑟2
can be computed as follows: 𝑟2 = 𝑚𝑠𝑠

𝑚𝑠𝑠+𝑟𝑠𝑠 .

Q⊤

𝑑

𝑛1𝑛2𝑛3

b

=

= y R
𝑑

𝑑 =

=x y

Figure 2: Schematic solution of a system of linear equations
based on federated QR factorization of matrix A.

6 EXPERIMENTS & IMPLEMENTATION
We implement the QR decomposition scheme and a prototype for

linear regression in python to show that they provide accurate

results in practice. In this experimental study we use three example

data sets from sklearn and Kaggle: the Pima Indians diabetes [8],

WHO life expectancy [12] and fish market [7] data sets. We split the

data sets horizontally in 5 chunks. We compute the baseline reduced

QR decomposition using scipy.linalg.qr. As an error measure,

we use the Frobenius norm between the centralized and federatedQ
and Rmatrices (| |Q𝑐 −Q𝑓 | |𝐹 ,| |R𝑐 −R𝑓 | |𝐹). For the linear regression,
we use the lm function in R as it uses QR decomposition as its stan-

dard solver. As additional error measures we compute the sum of

the absolute differences between the coefficients (

∑
𝑠∈[𝑆] x𝑐 − x𝑓),

𝑟2
-values (𝑟2

𝑐 − 𝑟2

𝑓
), and 𝑝-values (

∑
𝑠∈[𝑆] (𝑝𝑐 − 𝑝 𝑓)). The results of

these experiments are summarized in table 2. The matrices, coeffi-

cients and 𝑟2
values are identical, and there only minor variations

in the 𝑝−𝑣𝑎𝑙𝑢𝑒 . The simulation code and example data are available

online https://anonymous.4open.science/r/federated-qr-7D3F/.

Table 2: Results of the experiments

Dataset Diabetes WHO Fish market

| |Q𝑐 − Q𝑓 | |𝐹 3.0𝑒−14
1.1𝑒−14

3.8𝑒−13

| |R𝑐 − R𝑓 | |𝐹 1.7𝑒−14
7.5𝑒−7

9.3𝑒−12

x𝑐 − x𝑓 2.23𝑒−11
4.5𝑒−12

3.04𝑒−11∑
𝑑 (𝑝𝑐 − 𝑝 𝑓) 0.003 0.019 0.029

𝑟2

𝑐 − 𝑟2

𝑓
1.4𝑒−17

0 2.5𝑒−15

7 RELATEDWORK
Federated QR algorithms have been suggested mainly in the field

of peer-to-peer networks relying on the PushSum algorithm and

gossiping [17, 18, 20]. While these schemes can be implemented in

Article under review at SIGKDD at time of submission

Federated QR decomposition – algorithms, privacy, and applications KDD, August 14–18, 2022, Washington DC

a modern federated learning system, the assumptions governing FL

make these algorithms unsuited. Notably, in cross-device FL, the

client-to-client communication is assumed to be a bottleneck [11]

and client-aggregator communication is preferred. Secondly, cross-

silo FL assumes more data and higher compute power at the nodes,

so local computational constraints do not impact the computations

as severely. In medical systems, practitioners might want to avoid

approximation errors at the cost of higher compute time [21].

8 DISCUSSION AND FUTURE DIRECTIONS
Based on the previous analyses, we have suggested a novel extended

QR decomposition algorithm with clear privacy considerations,

extensively analyzing all the options for the first time. Further,

this work is backed by a detailed analysis of the other popular QR

algorithms and exposing their weaknesses in particular with respect

to privacy. As explained in section 3.1 and section 3.2, Householder

reflection and Givens rotation have immediate drawbacks that make

them unsuitable to hybrid federated learning where the parameters

are securely aggregated, because it is possible to extract the original

data from the parameters. Thismakes the presented federated Gram-

Schmidt QR algorithm the only algorithm which does not trivially

expose the original data under the assumed federated setting. We

argued that the parameters revealed during the orthonormalization

procedure contain no more information than the upper triangular

matrix R, and therefore fulfills our privacy specification of federated
QR decomposition.

In this article, we assume a hybrid federated learning setup,

where the global parameters become known in clear text. This

means, the results may only partially translate to systems which

rely on encrypting the entire learning process under homomor-

phic encryption or computing the whole algorithm using secure

multiparty computation. These techniques are still expensive in

practice [1, 5] but might be required to provide secure algorithms

for Householder factorization and Givens rotation. If privacy is not

a concern, detailed investigations of potential gains in transmission

rounds would be required to find the most efficient QR scheme,

most likely Givens algorithm according to our preliminary analysis.

The investigation of information leakage associated with the

parameters exchanged during the federated QR orthonormalization

spins a cautionary tale. We showed that it is possible to reconstruct

the input matrices, if they are upper triangular, solely from the

exchanged parameters, because the first aggregate is technically

not an aggregate and triggers a revealing cascade. This means that

with fewer than three parties, even the clients could reconstruct

the other participants’ matrices. We showed that for upper trian-

gular matrices privacy breaches are possible. Therefore, further

investigations on other special types of matrices will be required.

Another interesting application of federated QR decomposition

is a recently suggested masking based PCA, which relies on or-

thonormal masks to hide the raw data from an aggregator [4]. In

this scheme, QR factorization can be used to create the orthonor-

mal masking matrices instead of trusting a third party server to

generate these matrices.

9 CONCLUSION
This work presented federated implementations of three popular

QR algorithms and thoroughly investigated them with respect to

their privacy, if they are deployed in a hybrid federated system with

secure parameter aggregation. We come to the conclusion, that

only our suggested Gram-Schmidt QR decomposition is suitable,

due to it’s reliance on inner vector products. The use of the outer

vector product in Householder factorization, introduces a trivial

confidentiality breach. Likewise, a trivial privacy leak in Givens

rotation makes this algorithm unsuitable for the chosen federated

learning paradigm. We illustrate the versatility and power of the

novel federated QR decomposition algorithm by demonstrating

how it can be used to compute federated linear regression.

ACKNOWLEDGMENTS
The FeatureCloud project has received funding from the European

Union’s Horizon 2020 research and innovation programme under

grant agreement No 826078. This pub- lication reflects only the

authors’ view and the European Commission is not responsible for

any use that may be made of the information it contains.

REFERENCES
[1] M Al-Rubaie, P.-Y. Wu, J M Chang, and S.-Y. Kung. 2017. Privacy-preserving PCA

on horizontally-partitioned data. EEE DSC 2017 (2017), 280–287.

[2] Zheng-Jian Bai, Raymond H. Chan, and Franklin T. Luk. 2005. Principal Com-

ponent Analysis for Distributed Data Sets with Updating. In Advanced Parallel
Processing Technologies, Jiannong Cao, Wolfgang Nejdl, and Ming Xu (Eds.).

Springer Berlin Heidelberg, Berlin, Heidelberg, 471–483.

[3] Robert A. Beezer. 2016. A second course in linear algebra. http://linear.ups.edu/

scla/html/gfdl.html. [Online book; accessed 2022-01-31].

[4] Di Chai, Leye Wang, Kai Chen, and Qiang Yang. 2019. Secure Federated Matrix

Factorization. CoRR abs/1906.05108 (2019). arXiv:1906.05108

[5] Hyunghoon Cho, David J. Wu, and Bonnie Berger. 2018. Secure genome-wide

association analysis using multiparty computation. Nat Biotechnol 36, 6 (2018),
547–551.

[6] Ronald Cramer, Ivan Bjerre Damgr ard, and Jesper Buus Nielsen. 2015. Secure
Multiparty Computation and Secret Sharing. Cambridge University Press.

[7] Fish Market data set. 2022. https://www.kaggle.com/aungpyaeap/fish-market.

Accessed: 2022-01-31.

[8] Pima Indians Diabetes Database. 2022. https://www.kaggle.com/uciml/pima-

indians-diabetes-database. Accessed: 2022-01-31.

[9] William Ford. 2014. Numerical Linear Algebra with Applications : Using MATLAB.
Elsevier Science & Technology.

[10] Anne Hartebrodt, Reza Nasirigerdeh, David Blumenthal, and Richard Rottger.

2021. Federated Principal Component Analysis for Genome-Wide Association

Studies. IEEE ICDM 2021, 1090–1095.
[11] Peter Kairouz et al. 2021. Advances and open problems in federated learning.

Foundations and Trends in Machine Learning 14, 1-2 (2021), 1–210. https://doi.

org/10.1561/2200000083 arXiv:1912.04977

[12] WHO life expectancy data set. 2022. https://www.kaggle.com/kumarajarshi/life-

expectancy-who. Accessed: 2022-01-31.

[13] H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise

Agüera y Arcas. 2017. Communication-Efficient Learning of Deep Networks

from Decentralized Data. 54 (2017), 10.

[14] Reza Nasirigerdeh, Reihaneh Torkzadehmahani, Julian Matschinske, Tobias

Frisch, Markus List, Julian Späth, Stefan Weiss, Uwe Völker, Esa Pitkänen, Do-

minik Heider, Nina Kerstin Wenke, Georgios Kaissis, Daniel Rueckert, Tim

Kacprowski, and Jan Baumbach. 2022. sPLINK: a hybrid federated tool as a

robust alternative to meta-analysis in genome-wide association studies. Genome
Biol 23 (2022).

[15] R Core Team. 2021. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.

org/

[16] Ahmed H. Sameh. 1971. On Jacobi and Jacobi-Like Algorithms for a Parallel

Computer. Math. Comp. 25, 115 (1971), 579.
[17] Ondrej Sluciak, Hana Straková, Markus Rupp, and Wilfried Gansterer. 2016.

Distributed Gram-Schmidt orthogonalization with simultaneous elements refine-

ment. Eurasip Journal on Advances in Signal Processing 2016, 1 (2016), 1–13.

Article under review at SIGKDD at time of submission

KDD, August 14–18, 2022, Washington DC Anne Hartebrodt and Richard Röttger

[18] Ondrej Sluciak, Hana Strakova, Markus Rupp, and Wilfried N. Gansterer. 2012.

Distributed Gram-Schmidt orthogonalization based on dynamic consensus. AC-
SSC (2012), 1207–1211.

[19] Peter Snyder. 2014. Yao ’ s Garbled Circuits : Recent Directions and Implementa-

tions.

[20] Hana Straková, Wilfried N. Gansterer, and Thomas Zemen. 2012. Distributed

QR Factorization Based on Randomized Algorithms. In Parallel Processing and
Applied Mathematics, Roman Wyrzykowski, Jack Dongarra, Konrad Karczewski,

and Jerzy Waśniewski (Eds.). Springer Berlin Heidelberg, 235–244.

[21] Joo Hun Yoo, Hyejun Jeong, Jaehyeok Lee, and Tai-Myoung Chung. 2021. Feder-

ated Learning: Issues in Medical Application. (2021), 3–22. arXiv:2109.00202

Article under review at SIGKDD at time of submission

Chapter 6
Federated K-Means – evaluation

of initialization, clustering
strategies, and k-selection

6.1 Summary
Federated Learning is a novel data analysis paradigm, dealing with data
that is physically distributed over several data holders. Instead of com-
puting a global model at a central server, each participant sends only pa-
rameters to an aggregator which computes the global models. A number
of K-Means algorithms have been suggested for federated clustering. They
generally perform well if k is known. However, there is a lack of algorithms
which automatically determine k. This is especially important because with
the data distributed over several sites, k cannot be easily determined using
for example visual inspection. Another problem in federated machine learn-
ing is the fact, that the data is not necessarily independently and identically
distributed (iid). In this article, we identify existing algorithms for feder-
ated K-Means, evaluate them with respect to their suitability for non-iid
data. Lastly, we suggest a strategy to infer k from the data in a federated
fashion. Instead of performing many untargeted clusterings in parallel, we
suggest to identify locally optimal clusterings and send the centroids, as well
as summary statistics for each cluster to the aggregator which determines a
good global k and appropriate centroids by sampling artificial data. Once
the candidate centroids are found, the final clustering is performed using
the real data.

105

6. Federated K-Means

6.2 Introduction
Federated learning (FL) has recently gained traction in the machine learning
(ML) community. ML requires large amounts of data in order to train
sufficiently generalizable models. However, in the medical setting, data is
distributed over several data holders, such as doctors and hospitals. Those
parties are usually not willing or allowed to share the patient-level data
due to privacy regulations such as the GDPR. FL has been proposed as
a method to overcome the challenges of limited data availability in the
medical sector, while adhering to legal standards and protecting the privacy
of the patients. The idea of FL is to compute local models which can
be safely disclosed to a central aggregator as they do not contain patient
level information (Matschinske et al. 2021; Yoo et al. 2021). The central
aggregator computes a global model from the local model it obtains from
the parties, and redistributes it to the participants.

Different versions of federated learning have been proposed in the literature.
Cross-silo federated learning assumes the presence of relatively few data
silos, for instance hospitals or banks, which contain larger data sets and
have access to powerful computing infrastructure. The orthogonal case
is called cross-device federated learning where many small (edge) devices
with limited compute power contribute data belonging to one individual
(Kairouz et al. 2021). In this article, we assume the setting of cross-silo FL.

As federated learning is a relatively new concept, many traditional algo-
rithms in ML need to be adapted to suit the federated setting (Kairouz
et al. 2021). In this article, we are investigating federated K-Means clus-
tering. Several federated K-Means versions have been suggested recently.
Many of these articles provide good adaptations of centralized K-Means to
federated learning. However, many neglect a crucial step in K-Means: the
initialization and selection of an appropriate k. When applied to real world
data, K-Means is usually run multiple times using randomly selected initial
centroids to avoid a solution that corresponds to a local minimum (Fränti
and Sieranoja 2019). To promote the application of federated K-Means in
practice, a development of a suitable initialization strategy and methods
for choosing an appropriate k are required.

Another challenge in federated learning is the data distribution over the
participating sites. Generally, it cannot be assumed that the data is drawn
from the same underlying distribution (Kairouz et al. 2021). A particular
problem for clustering is quantity skew, where different number of points
are assigned to the same cluster at different data sites. While some articles

106

Introduction

evaluate this to some extend, not all do it in an exhaustive manner. This
will be elaborated in section 6.3.5. For the adoption of federated learning in
practice it is necessary to know the expected performance of the tools even
with unfavorably distributed data. Therefore, in this article, we devise a
scheme to thoroughly investigate the performance of clustering algorithms
when used on non-iid data.

A bottleneck in federated learning is the transmission of parameters be-
tween the computing parties, as every communication step creates a run
time overhead (Kairouz et al. 2021). In many federated K-Means adap-
tations the amount of transmitted data essentially amounts to the cluster
centroids, so the volume is small. This would allow K-Means to be run with
multiple initializations for multiple k in parallel, to find a consensus solu-
tion and the best k. However, the random initialization poses a problem
as random centroids can be initialized in sparse regions of the data space.
In that case, only few points would be assigned to certain centroids, which
could leak information. Therefore, it is beneficial to let the clients initialize
the clustering locally, so that they can suggest initial centroids from data
dense regions. This also avoids running K-Means with a potentially poor
clustering result.

The goal of the clustering is to gain a general understanding of the data
without disclosing too much information about the individual. Therefore,
we deem allowing the other participants to know, where dense regions are,
a reasonable privacy trade-off in collaborative clustering. In a scenario,
where patients are clustered into subgroups for diagnostic application, a
doctor would like to know what groups there are, i. e. all possible centroids.
The doctor might also want to know, how likely the diagnosis is, i. e. how
many patients belong to the cluster, and how clear the cluster is separated
from other clusters. This requires a certain amount of information to be
disclosed to other participants. However, contrary to centralized clustering
in the federated clustering scheme suggested in this article, the individual
data points are not disclosed, only the global characteristics.

6.2.1 Summary of the contributions

• We identify and evaluate different approaches to compute a federated
K-Means clustering of the data.

• We suggest an evaluation strategy for federated clustering in general,
with the aim of promoting a more thorough evaluation of clustering

107

6. Federated K-Means

Table 6.1 – Notation table.

Syntax Semantics
[N] ⊂ N index set [N] = {i ∈ N | 1 ≤ i ≤ N}
S ∈ N number of sites
m ∈ N number of features (i. e. SNPs)
n ∈ N total number of samples
ns ∈ N number of samples at site s ∈ [S]
k ∈ N number of eigenvectors
A ∈ Rn×m complete data matrix
As ∈ Rns×m subset of data available at site s ∈ [S]
c the set of centroids
ci the set of centroids at iteration i
iid independently and identically distributed

algorithms using non-iid data.

• We suggest a method to automatically infer k from the data based
on the gap statistic and random sampling and evaluate our method
using the suggested evaluation procedure.

The remainder of this article is organized as follows. In section 6.3 we will
introduce the problem formally. Section 6.4 will cover related work. Sec-
tion 6.5 details the suggested scheme for the thorough empirical evaluation
of the algorithms. In section 6.6 we will provide a description of the algo-
rithms enabling practical application of K-Means in the federated setting.
Section 6.7 shows the empirical benchmark both of the previously suggested
algorithms as well as the new scheme for the determination of a suitable k.

6.3 Preliminaries
6.3.1 Data distribution model and federated architecture
In federated learning, the data can be distributed over the different parties
in different ways. Horizontal data partitioning refers to the case where all
clients have a common set of attributes, but distinct set of samples. Vertical
data partitioning is the complementary case, where all parties have the same
set of samples, but different attributes. In the remainder of this article, we
will treat the case of horizontal data partitioning. Let the data A ∈ Rn×m

108

Preliminaries

be distributed over S sites with As ∈ Rns×m the local data matrices at sites
s ∈ [S].

In this article, we focus on systems suitable for cross-silo federated learn-
ing. We describe our algorithms in terms of a star-like architecture with
a central aggregator. Peer-to-peer (P2P) architectures do not rely on a
central parameter server, only on communication between the clients. The
aggregation operations used in K-Means rely on simple aggregations, such
as summing and averaging of small parameters. They can be computed in
any architecture, at the expense of higher communication overhead. For
secure multiparty aggregation, peer-to-peer communication is necessary, to
mask the individual contributions (Matschinske et al. 2021).

6.3.2 Security model & Secure addition
We assume honest-but-curious participants who try to infer as much infor-
mation as they can from the shared parameters, but do not deviate from
the protocol, such as arbitrarily modifying parameters. Under this security
model, a simple and efficient scheme has been suggested to securely add
values from different parties. In a system with N participants, the parties
shard their values into N random values which add up to their secret sn
mod p with p a large prime. Each participant sends each of the N−1 shares
to the other N − 1 parties. Every partner computes the sum of the random
shards, and communicates those to all participants (or only the aggregator,
to save bandwidth) so that the global sum of all secrets can be computed
(Cramer et al. 2015).

6.3.3 Centralised K-Means
K-Means is a popular algorithm in unsupervised data analysis, therefore it
has been extensively studied. It has initially been suggested by MacQueen
(1967) and Lloyd (1982). The goal of K-Means is to minimize the objective
function, ususally the mean squared error (MSE) of the points and their
respective centroids. Very briefly, the algorithm proceeds as follows. (1)
A set C0 of k initial centroids is chosen. (2) Then, every data point is
attributed to its nearest centroid. (3) Finally, the centroids are updated
by computing the average over all the points belonging to one centroid.
Steps (2) and (3) are repeated until the centroids converge to a stable
solution. Several versions of this algorithm have been proposed which differ
in implementation details, such as when the centroids are updated.

109

6. Federated K-Means

6.3.4 Challenges in centralised K-Means, local
mitigation, and their translation into the federated
case

Selection of k
K-Means is a popular algorithm due too its conceptual simplicity and in-
terpretability. There are several challenges in the application of K-Means
to real world data. Firstly, the choice of a suitable k, which corresponds to
the number of expected clusters. k is usually not know a-priori. Several
methods have been proposed to find an optimal k, such as the elbow method
(Hastie 2017) and the gap statistic (Tibshirani et al. 2001). In K-Means
clustering, an error of 0 can be achieved when choosing k as the number of
points. Naturally, this is not the k, the user will be interested in. In prac-
tice, the user wants to choose k such that the error becomes small, without
unduly partitioning natural clusters. The elbow method plots k against the
clustering error. The ’elbow’ in the curve, meaning the point where the
curve becomes flat, signifies the point where the gain due to the increase of
k becomes small. A more theoretically founded method is the gap statis-
tic introduced by Tibshirani et al. (2001). For the method, data is sampled
uniformly from a space approximately spanning the data, meaning random
data without cluster structure is generated. This data can be considered
the null model. Then, with varying k the artificial random data and the
real data are clustered and the errors of the clusterings are compared. The
k maximizing the difference in error between the data under the null model
and the real data is chosen.

Choice of initial centroids
Secondly, the choice of initial centroids plays a crucial role in the perfor-
mance of the algorithm. With unsuitable initialization, K-Means is know
converge to a local minimum and produce bad clusterings. Fränti and
Sieranoja (2019) evaluate the initialization of K-Means extensively. They
identify several groups of initialization strategies: random initialization,
furthest-first initialization (with K-Means++ a special case of it), sorting-
based, projection based, and density based initialization, as well as iterative
splitting of the ensemble data. They conclude that taking the consensus of
several executions of K-Means with randomized furthest-first initialization
performs well in practice. Furthest-first initialization iteratively chooses
the point to be included in the set of initial centroids which has the largest
distance to the closest centroid among the already chosen ones. In practice,

110

Preliminaries

K-Means is often executed multiple times in order to avoid returning a local
optimum as the solution. This could be parallelized easily by computing
multiple clusterings at once, such that the number of iterations is equal to
to worst run.

High dimensional data
Another problem of distance based methods in general is, that the distance
metrics tend to “degenerate” in high dimensions, meaning all data points
appear to be at a similar distance from each other. A popular strategy to
mitigate this problem is the application of Principal Component Analysis
(PCA) prior to the application of K-Means and to cluster the projections of
the data into a reduced eigenspace instead of the high dimensional original
data. Such an approach has been suggested by M. F. Balcan et al. (2013).
Furthermore PCA is a useful tool for the detection of an appropriate k and
can be used in an advanced version of the gap statistic. Algorithms for the
efficient retrieval of the federated principal subspace have been proposed
previously (M.-F. Balcan et al. 2014; Hartebrodt et al. 2021).

6.3.5 Evaluation of K-Means in the literature
Many authors include evaluation of their algorithm on non-iid data, as
many of the algorithms are designed with non-iid data in mind. However,
often the non-iid scenarios evaluated are ad-hoc data distributions, which
focus on a particular type of data distribution. Brandão et al. (2021) use
data sets available online and distribute them based on arbitrarily set val-
ues. Naldi and Campello (2014) evaluate their approach on online available
data by distributing the clusters such that a randomly selected cluster Ci

contributes a high fraction of points to a site j and few points to all other
sites. Depending on the number of sites, the remaining sites might receive
a still significant fraction of points of a cluster, or “skewed noise”. Dennis
and Smith (2019) evaluate their algorithm on iid data as well as structured
partitions where each site receives data of only a subset of clusters. Liu
et al. (2020) and Rao et al. (2016) evaluate on iid data. Datta et al. (2009)
use a Zipf distribution over the network. A few works focusing on privacy
rather than proposing a new algorithm omit practical evaluation in terms
of accuracy or practical run time.

111

6. Federated K-Means

6.4 Related work
6.4.1 Federated k-means
Federated K-means has the same goal as centralized k-means, to compute
a partitioning of the data, with the difference that the data is available at
multiple sites which cannot transmit their shares to a central server. Despite
the relative novelty of federated learning, a number of k-means algorithms
approaching the problem in different ways have been proposed. Here, we
sub divide into “one shot” approaches which require a single communica-
tion round between the clients and the aggregating server; and iterative
approaches which allow more communication rounds.

Exact k-means
K-means can be computed exactly with respect to the centralized solution
based on summary statistics shared between the central server and the
clients (Brandão et al. 2021; Mohassel 2020; Ghosal and Chatterjee 2018).
At each iteration there is a local phase where the clients compute the local
sum of distances from each point to the nearest global centroid broadcast
by the aggregator css = (

∑
p dist(p, ci)|ci ∈ Ci). The css is broadcast to

the aggregator together with the vector of number of elements belonging
to the sums cns . At the aggregator the global centroids are computed as
ci =

∑
s∈S c

s
s/

∑
s∈S c

n
s . These global centroids are then broadcast to the

clients again, where they can be updated. The process is then repeated
until convergence. This can for example be defined as the stability of the
centroids with regards to the previous iteration.

The set of initial centroids can be determined using several methods pro-
posed in the literature. Mohassel (2020) suggests a local round of k-means
at each client to create the initial centroids. The initialization proposed by
Brandão et al. (2021) leads to a collapse in k in practice. The idea is to
generated random points close to the center of the data. Each client then
computes local centroids and uses the fake initial centroids to align their
centroids, which fails if two initial centroids are close to the same fake clus-
ter and are assembled to one. Ghosal and Chatterjee (2018) use random
initialization which has been shown to perform badly in practice (Fränti
and Sieranoja 2019)

112

Related work

Table 6.2 – Federated k-means algorithms

Type initialization Global centroid Article
Single
pass

Local k-means Furthest first Dennis and Smith 2019
Local k-means K-means This article

Fully
federated

Random Ghosal and Chatterjee 2018
Zhang et al. 2022

Local k-means Brandão et al. 2021
Mohassel 2020

Multipass Random Naldi and Campello 2014

One shot approaches
One shot approaches may not reach the exact same clustering as federated
exact k-means, because they follow a different protocol. There is a local
phase at the clients, where an optimal clustering of the data is computed,
and the centroids are shared with the aggregator. The aggregator computes
global centroids given the local centroids and broadcasts the result to the
clients. Dennis and Smith (2019) propose the following approach to ag-
gregate the centroids: The aggregator selects a random site as the leading
party and includes all its centroids in the set of global centroids. Then,
from all remaining candidates, the furthest centroid to the existing set are
added until there are k centroids in the set of global centroids. According to
the authors, this algorithm is able to deal with heterogeneous data, which
in this context means that clusters do not necessarily need to be available
at all sites. After the initial phase the clustering is computed immediately,
by assigning the local points to the global centroids

6.4.2 Other methods
Khedr and Bhatnagar (2014) devise a way to deal with arbitrary data par-
titioning. Their main contribution is the generation of a joint feature space.
As this is not our primary concern here, we omit this algorithm from the
benchmark.

Naldi and Campello (2014) propose an evolutionary k-means algorithm,
based on a previous non-federated evolutionary k-means algorithm. As this
version is so strongly modified from the base k-means version and uses the
silhouette score instead of the MSE as a secondary evaluation criterion, we
exclude it from the comparison.

113

6. Federated K-Means

Many methods have been suggested for peer-to-peer (P2P) networks op-
erating under a fundamentally different computation and communication
model (Datta et al. 2009; Liu et al. 2020; Soliman et al. 2020; Qin et al.
2017). For instance the number of devices is assumed to be high, but each
device has little computation power. Furthermore, devices are assumed to
communicate with a few of their immediate neighbors (Datta et al. 2009)
and therefore the aggregation process differs. As a consequence P2P al-
gorithms are highly specialized to the architecture and not immediately
applicable to cross-silo federated learning.

6.4.3 Private K-means clustering
The federated learning paradigm means that the data cannot leave the
owner’s data center. However this does not necessarily prevent attack-
ers from inferring knowledge about the data from aggregated statistics.
Therefore, several privacy preserving k-means algorithms, both federated
and centralised have been proposed. Among the federated versions there
are several relying on secure multiparty computation (Omri et al. 2019;
Ramírez and Auñón 2020; Jagannathan and Wright 2005; Rao et al. 2016;
Mohassel 2020). Jagannathan and Wright (2005)’s protocol is designed for
two parties. Ramírez and Auñón (2020) and Rao et al. (2016) have a rela-
tively high run time, while Omri et al. (2019) do not provide an empirical
evaluation. Mohassel (2020) require 18 minutes using two compute clusters
to cluster 100,000 points with k = 2. Kaplan and Stemmer (2018), M. F.
Balcan et al. (2013), and Feldman et al. (2017) suggest the use of differential
privacy by computing a private core set. The common denominator of the
SMPC based approaches is to replace the insecure mean computation in of
the ’exact’ federated k-means algorithms by secure aggregation. Feldman
et al. (2017) develop a clustering scheme with reasonable privacy guaran-
tees, but the scheme is limited to small k and high numbers of samples.
Hou et al. (2021) use secure outsourcing of the data to compute K-Means
on the server side. The centers are initialized randomly. Their article also
contains an overview of related methods.

6.5 Systematization of evaluation of federated
clustering

Many articles perform an empirical evaluation, and some do so on non-iid
data, but not all take multiple types of non-iidness into account. There-
fore, we attempt to devise a systematic way of evaluating the clustering

114

Systematization of evaluation of federated clustering

algorithms. In the following section, we describe several scenarios for the
distribution of data over multiple sites. We will use the term ‘cluster’ to
refer to all data points labeled as belonging to the same cluster. We de-
vise two major generic sources of bias, firstly, unequal distribution of the
clusters, i.e. all samples belonging to a cluster, over the sites, secondly,
unequal distribution of the number of samples per cluster over the sites, i.e.
some sites having a larger proportion of samples of one cluster than others.
The first one (cluster centric bias) can be seen as an extreme version of the
latter (sample centric bias), but the full spectrum of scenarios is impossible
to investigate. Therefore, we make this attempt at disentangling the two.

As we chose K-Means as a demonstration case, here we use terminology
used to describe K-Means for the number of clusters. Naturally, we suggest
to use this clustering evaluation for different clustering algorithms as well.

The data D with n samples and m features is distributed among S sites.
All data points have the same m features. The global data (‘oracle data’)
can be divided into kglobal clusters. We assume to have an oracle clustering,
meaning we know the number of global clusters, as well the labels, and for
each site we know the number of local clusters including their labels. This
oracle may be the clustering induced by a centralised version of K-Means
or an independent gold standard. In a real test case, the number of kglobal
and klocal is naturally not known and should be determined independently.

To illustrate this we imagine fictional data with 10 clusters of 100 points
each to be distributed over 5 sites. Also refer to figure 6.1 to gain a visual
intuition of the data partitioning.

iid data distribution : All s sites receive an equally sized iid sample of
data points belonging to all kglobal clusters. I.e. our fictional data would be
distributed such that all 5 sites receive 20 points of each fo the 10 clusters,
sampled iid with respect to the cluster.

cluster-centric non iid data distribution : A number of clusters kiid <
kglobal is distributed equally over all sites. The remainder of the data is
distributed over S ′ < S sites, such that S − S ′ sites miss some clusters.
For each cluster, the points are distributed equally over all sites having the
respective cluster. I.e. In our example S = 5 and let S ′ be 3. Let further
kiid = 5. These 5 clusters would be distributed iid over all S = 5 sites.
Every one of the 5 remaining clusters would be distributed equally over
S − S ′ = 2 randomly selected sites. (The non iid clusters do not all go to

115

6. Federated K-Means

iid

non-iid
(cluster)

non-iid
(points)

 (Cs0,..,C
s
k) (C20,..,C

2
k) (C10,..,C

1
k)

 (C0,..,Ck)

Local models
(centroids)

Global model

Aggregator

Clients (data holders)

Figure 6.1 – Overview over the possible data partionings in federated
clustering. Data can be distributed iid with respect to the labels, non-iid
with repect to the clusters and non-iid with respect to the number of
points.

116

Systematization of evaluation of federated clustering

the same two sites). One would say “5 clusters are not available at 3 sites”.
The corner cases might be noteworthy (see also figure for illustration):

• If kiid == 0 and S ′ = S − 1 every cluster will only be available at a
single site, the clusters will be completely disjoint.

• if kiid == k′ for k′ a small integer and S ′ is small, this will result in
some sites having extra clusters.

• if kiid == k′ for k′ a large integer and S ′ is large, some sites will have
missing clusters.

point-centric non-iid : All sites receive a random unequal share of points
for each cluster, but the fraction is non-zero. This version can be seen as
a continuous version of the previous scenario, where for each cluster a ran-
dom probability vector p ∈ Rs.t.

∑
p = 1 is generated. For the discretized

example described in the previous paragraph with S ′ = 3 such a random
share could for instance be [0, 0.5, 0, 0.5, 0]. In the current case the prob-
abilities are non-zero for all participants and clusters. The points of the
cluster are then distributed according to the generated probabilities. The
full space of all possible probability vectors cannot, and does not need be,
explored as there are too many possibilities. Therefore, we suggest to use
’scenarios’ to reduce the search space to a manageable size and maintain
interpretability, which would be lost using completely arbitrary data splits.
Here, we proposed two example scenarios, but suggest the use of additional
ones if applicable.

• ’Stairs’ (Algorithm 1): The distributions are generated based on a
base probability pb and the remaining probability pr which is initially
set to 1 and which is updated as pr = pb ∗ pr. So, the first site
receives pb, every subsequent site a fraction in function of this initial
probability. This leads to a ’stair’ like pattern, which might need
to be randomized, unless one site should systematically receive more
points of every cluster. Depending on the number of sites, the base
probability should be set such that there are not too few points in the
smallest cluster.

• ’High-low’ (Algorithm 2): In this scenario, for every cluster, there are
only two modes, ’large’ and ’small’. Large sites receive pb/sl percent
of the point of a cluster where sl is the number of large sites and pb
a base probability. Small sites receive (1− pb)/(1− sl) percent of the

117

6. Federated K-Means

points for the respective cluster. Again, bp should be chosen carefully
to avoid overly small sites, unless this scenario is intended.

• Other specific scenarios, such as points, that appear as outlier at one
location, but are part of a larger cluster at another location could be
modeled seamlessly using this approach.

To summarize, we suggest the following partitions of the data over the
different sites:

• iid data distribution with respect to the clusters and the number of
points per clusters.

• non-iid data w. r. t. to the number of points per cluster which can be
as serious as not having any points per site.

Algorithm 1: Stairs
Input: Base probability pb, number of sites S
Output: Probability vector pd

1 pc = pb
2 pr = 1
3 for s in 1..S-1 do
4 pd[s] = pb ∗ pr
5 pr = 1− pd[s]

6 pd[s] = pr
7 return pd

Algorithm 2: High-low
Input: Base probability pb, number of sites S, number of large

large sites Sl

Output: Probability vector pd
1 pd[1..Sl] = pb/Sl

2 pd[Sl + 1..S] = (1− pb)/(S − Sl)
3 return pd

6.5.1 Other possible sources of error
Federated learning is likely to suffer from other batch effects which are
difficult to predict and may lead to complete failure. While label shift will

118

Practical federated clustering using federated k-means

not be a problem, due to the unsupervised nature of the algorithms, a shift
or rotation of the data within the coordinate system, need to be addressed
prior to the application of federated clustering. In practice, these problems
will be difficult to detect and likely require more traditional data mining
techniques such as visual data inspection.

6.6 Practical federated clustering using
federated k-means

The second goal of this work is to suggest a practical k-means clustering
scheme, which is able to determine a good choice of k, arrives at at good
clustering score and is communication efficient. Based on prior work, we
identify components which can be used in federated k-means. These meth-
ods assume k to be known. We assemble these components into several
meta k-means versions to evaluate their performance. Based on the com-
bination(s) which achieve good performance, we suggest a strategy which
also allows to infer k during the execution of the algorithm

6.6.1 Algorithm components
We investigate the following components and a few of their combinations in
the search for a practical k-means strategy for federated learning. We also
introduce a few additional ideas from the centralized K-Means literature in
an attempt to provide a more comprehensive evaluation. We introduce the
notation and general ideas of the components and then proceed to explain
the new strategies in more detail below.

• Initialization strategies:

– LCLU Perform a locally optimal k-means clustering and broad-
cast the centroids (Dennis and Smith 2019; Mohassel 2020). In
addition to the centroids, the empirical covariance matrix of each
cluster can be computed and broadcast. The clustering stays the
same but more parameters are transmitted.

– FFI - Furthest first initialization: adaptation of the local furthest
first procedure. One of the sites selects an initial centroid, all
subsequent sites select a centroid furthest from the current set
of candidate centroids. In order to not disclose data points, a
local average over several data points is formed.

119

6. Federated K-Means

• Aggregation strategies:

– FFA - Furthest first aggregation: Procedure to compute a set
of global centroids from a multiset of local centroids. Similar to
furthest first initialization, an initial centroid is chosen from all
available local centroids and further candidates are added to the
set until the desired k is reached (Dennis and Smith 2019).

– CCLU - Clustering of the local centroids at the aggregator to
form global centroids.

– SAMCLU - Generation of artificial data based on the centroids
and the covariance information, followed by the clustering of the
artificial data with the optimal k inferred using the gap statistics
based on the artificial data (See section 6.6.2 for further expla-
nation). The centroids computed based on the artificial data
are transmitted to the clients, which either proceed with further
iterations or label the data directly.

• Cluster refinement strategies:

– LU - Local refinement of the global centroids which amounts to
a single round of k-means at the local site using the global clus-
ters as initial centroids, and the computation of new centroids
locally. These are then sent to the aggregator which clusters
the centroids and returns the aggregated centroids back to the
clients.

– FKA - Fully federated k-means, a direct adaptation of central-
ized k-means. A global set of centroids is broadcast, then the
clients compute the sum of the distances of the points belonging
to each centroid, and the aggregator computes the new global
centroids, based on the sums and the corresponding numbers of
points (Mohassel 2020).

6.6.2 Determination of k

In this section, we describe an extension of previous approaches to determine
a good choice of k simultaneously with a good clustering. The gap statistics
works well in the centralized case, but faces an important issue in federated
k-means. As the data cannot be moved to the central server, even with
a global null model, the local optimal clusterings may lead to different
optimal k at the sites. Averaging, or maximizing the number of clusters are
unwise choices, because different sites can have identical numbers of clusters,

120

Practical federated clustering using federated k-means

but they might be subsets of a larger set of clusters. It would possible to
compute the global gap statistics by running k-means in a parallel manner,
so choosing a range of k, computing the clustering, and selecting the best
k after the computation. This however, creates communication overhead,
and potentially allows to triangulate data points, because many summary
statistics are available. Therefore, we test two strategies to compute a good
number of k.

First the locally optimal clustering is determined using the gap statistics.
This can be done without any communication overhead. After determina-
tion of a good local k, the locally optimal cluster centroids are sent to the
aggregator. At the aggregator, the local centroids are clustered for a range
of k and the clustering and the k with the best score is selected and the
corresponding cluster centers are returned to the clients. We allow clusters
of centroids containing only one centroid to account for the possibility of
client-specific clusters. This approach is called CCLU.

The number of points available in the centroid clustering is potentially
small, with few participants. Therefore, we suggest a second strategy to
determine a good k which discloses more information on the local clus-
terings. In addition to the centroids, the covariance matrix of the points
belonging to the centroid is sent to the aggregator. The aggregator creates
artificial data from this information by sampling from a multivariate Gaus-
sian distribution. This allows to account for the number of cluster members
by choosing the number of samples appropriately. This approach is called
SAMCLU.

There are two possible strategies to select the optimal k according to the
gap statistic. The gap statistic quantifies how much better the clustering
becomes by adding an additional k. For a range of k there are k− 1 values.
The original version by Tibshirani et al. uses the k corresponding to the first
maximum. We denote this selection strategy T. An alternative is to choose
the k corresponding to the global maximum (GM). As a third strategy,
we investigate the silhouette score as a measure to determine the locally
optimal clustering and the global k (S). The silhouette score estimates how
well the clusters are separated.

121

6. Federated K-Means

6.7 Practical evaluation of federated K-Means
clustering

6.7.1 Synthetic data and data partitioning
We generate Gaussian clusters using different parameter combinations, and
partition the generated data using the setups describes earlier. As we focus
on K-Means, an algorithm which has been shown to under perform on other
data, here we focus on Gaussian data, but the distribution used for data
generation can naturally be replaced by more task appropriate generators.
Table 6.2 summarizes the parameters used. First, we generate the cluster
centers. For every set of cluster centers, we generate data sets with different
variances, such that we have data sets with matching centroids, but varying
variances. Each cluster consists of 500 points. We furthermore vary the
number of features, and create datasets with 2, 5, and 10 features. For each
of the data sets we create versions with and without outliers. Outliers are
data points that have a higher variance, for example by a factor of 2, than
data points belonging to the cluster.

Once, we have generated the data, based on the considerations in sec-
tion 6.5, we generate a cluster-centric non-iid distribution with an increasing
number of clusters which are only available at very few sites. Tests with
this data partitioning strategy are called “grid”. We then use the two point
centric generators to generate ’softer’ non-iid distributions where the clus-
ters are available at all sites but with an increasingly skewed distribution
(stairs, and high-low). As a baseline we generate an iid-distributed dataset
which assigns an equal number of points to every cluster across all sites.

6.7.2 Test setup
We run two sets of tests. One evaluating the different K-Means algorithms
from the literature, with the aim to find the most accurate and most com-
munication efficient algorithm when k is known. See table 6.4 for a summary
of all the test configurations. Based on the initial tests, we run a second set
of tests where k is unknown and needs to be inferred during the federated
clustering process using the clustering strategies that performed best in the
initial test in terms of accuracy and communication efficiency together with
the federated gap statistic. Note that the one-shot approaches come “for
free” and thereby are evaluated implicitly.

122

Test metrics

Table 6.3 – List of parameters for data generation and partitioning

Name Values

Data
generation

Number of clusters 5
Number of Points 500

Variance
0.5
1.5
2.5

Number of Features
2
5
10

Percentage of outliers 0%
1%

Data
partitioning

Scheme

iid
disjoint
stairs
high-low

Sites 5

6.8 Test metrics
We use the the average F1-Score to determine the overall quality of the
clustering. It is calculated as the harmonic average over precision and
recall. TN denotes the number of true negative predictions; TP the number
of true positives; FN the number of false negatives and FP the number of
false positive predictions. The F1 score is computed as follows.

P =
TP

TP + FP
(6.1)

R =
TP

TP + FN
(6.2)

F1 =
∑ 2 · P ·R

P +R
∗ 1

#Samples
(6.3)

For the generated data, we have the true labels. The test metric we report
is the F1 Score obtained from the federated clustering normalized by the

123

6. Federated K-Means

Table 6.4 – Algorithm configurations

Abbreviation Description
LCLU - CCLU One shot approximate clustering
LCLU - CCLU - LU Clustered initialisation with iterative

refinement
LCLU - FFA One shot approximate clustering

with furthest first aggeregation
CLUL - FFA - LU Clustered initialisation with iterative

refinement.
FFA - FKA Furthest first initialisation with fully

federated K-Means
CLU - FKA Clustered initialisation with fully

federated K-Means.
LCLU - CCLU - (T/GM/S) One shot approximate clustering

with automatic k selection.
LCLU - CCLU - LU - (T/GM/S) Clustered initialisation with iterative

refinement with automatic k selec-
tion.

CLU - FKA - (T/GM/S) Clustered initialisation with fully
federated K-Means with automatic k
selection.

F1 score obtained from the centralized clustering evaluated based on the
gold standard solution. Therefore, the reported scores are a measure for
how faithful the federated clustering is to the centralized clustering. We
also report the number of iterations until convergence of the results.

6.8.1 Test results
Figure 6.2 shows the evaluation results for test run with the grid evaluation
strategy regarding the number of iterations. The figure is structured as
follows: There are three rows of panels, which show the results for the
different number of features. Each row is divided into three colums for the
different variances. Within each panel, the three columns show the results
for three evaluation strategies (’stairs’, high-low’ and ’grid’). The rows in
each panel contain the values for the different algorithm versions described
earlier. The maximal number of iterations allowed was 100. The data did
not contain outliers.

124

Test metrics

643
111
721
111
822
333
333
333
333
621
511
621
333
433
333
622
832
622

131011
111

10077
111

10088
685
554
555
554
2343
843
1843
654
654
643
1043
1044
733

192019
111
351413
111
461815
131512
787
875
887
1366
1154
1766
855
975
653
855
1067
653

333
111
511
111
622
333
333
333
333
521
511
511
333
333
333
522
522
522

444
111
621
111
722
333
333
333
333
622
622
622
333
433
333
622
722
622

766
111
7343
111
8454
444
444
744
455
5543
2833
5454
544
544
544
7044
2643
5744

333
111
511
111
522
333
333
333
333
511
511
511
333
333
333
422
522
422

333
111
511
111
622
333
333
333
333
521
511
511
333
333
333
522
522
522

433
111
522
111
622
333
333
333
333
622
522
622
333
333
333
522
522
522

2

5

10

0.5 1.5 2.5

FFI−FKM

LCLU−CCLU

LCLU−CCLU−LU

LCLU−FFA

LCLU−FFA−LU

LCLU−FKM

LCLU−GCLU−FKM−GM

LCLU−GCLU−FKM−S

LCLU−GCLU−FKM−T

LCLU−GCLU−LU−GM

LCLU−GCLU−LU−S

LCLU−GCLU−LU−T

LCLU−SAMCLU−FKM−GM

LCLU−SAMCLU−FKM−S

LCLU−SAMCLU−FKM−T

LCLU−SAMCLU−LU−GM

LCLU−SAMCLU−LU−S

LCLU−SAMCLU−LU−T

FFI−FKM

LCLU−CCLU

LCLU−CCLU−LU

LCLU−FFA

LCLU−FFA−LU

LCLU−FKM

LCLU−GCLU−FKM−GM

LCLU−GCLU−FKM−S

LCLU−GCLU−FKM−T

LCLU−GCLU−LU−GM

LCLU−GCLU−LU−S

LCLU−GCLU−LU−T

LCLU−SAMCLU−FKM−GM

LCLU−SAMCLU−FKM−S

LCLU−SAMCLU−FKM−T

LCLU−SAMCLU−LU−GM

LCLU−SAMCLU−LU−S

LCLU−SAMCLU−LU−T

FFI−FKM

LCLU−CCLU

LCLU−CCLU−LU

LCLU−FFA

LCLU−FFA−LU

LCLU−FKM

LCLU−GCLU−FKM−GM

LCLU−GCLU−FKM−S

LCLU−GCLU−FKM−T

LCLU−GCLU−LU−GM

LCLU−GCLU−LU−S

LCLU−GCLU−LU−T

LCLU−SAMCLU−FKM−GM

LCLU−SAMCLU−FKM−S

LCLU−SAMCLU−FKM−T

LCLU−SAMCLU−LU−GM

LCLU−SAMCLU−LU−S

LCLU−SAMCLU−LU−T

gr
id

hi
gh

_l
ow

st
ai

rs

gr
id

hi
gh

_l
ow

st
ai

rs

gr
id

hi
gh

_l
ow

st
ai

rs

Data partitioning

110100Median
iterations

Figure 6.2 – Number of iterations until convergence for different numbers
of features, different variances (panel columns), test configurations and
data splits. 125

6. Federated K-Means

We observe that generally, a low number of iterations is sufficient for the
algorithms to converge. Data which is distributed using the grid strat-
egy required a slightly higher number, but still generally below 10 rounds.
With a low number of features (2, and 5) the grid strategy lead to worse
convergence, especially for the ’LU’ refinement strategy. This is due to
few points at the edge of the cluster constantly switching labels. For the
2 dimensional data set the convergence was worse compared to the higher
dimensional ones. We hypothesize, that in the artificially generated data,
the clusters are generally well separated, even for higher dimensions, so
the algorithm benefits from additional planes separating the clusters. To
summarize, most strategies perform adequately according to the number of
iterations, however the LU refinement strategy is prone to bad convergence
and should be excluded from further investigation. This is further backed
by supplemental fig. C.4.

Figure 6.3 (on the next page) summarizes the results for the accuracy eval-
uation based on the grid strategy for the data sets without outliers. The
figure is organized as follows. The panel columns contain experiments for
data sets with different variances. We observe, the following trend: with
growing cluster variance, the clustering results deviate more strongly from
the gold standard clustering. In the bottom row of each cluster we show the
expected result from the centralized clustering. We did not expect the fed-
erated clustering to perform generally better than the centralized clustering
algorithm, therefore these results are not surprising.

Now we describe, how to understand each panel. Each panel row represents
the number of clusters missing. The columns within each panel stand for
the number of sites where a cluster is missing. For the top left most cell,
one would read ”Four clusters are missing at 5 sites”. This corresponds to
a completely disjoint clustering, with 1 cluster per site. Within each panel,
the rows show the performance of each algorithm. Globally, the strategies
with known k perform better than the adaptive clustering strategies. We
have two sets of adaptive clustering strategies: the ones, which clusters
the centroids (blue), and the strategies which generate artificial data at
the aggregator based on the covariance matrix. Based on the figure and
further material included in the supplement (figs. C.1 to C.3), both cluster-
ing strategies perform similarly. The overall best selection criterion for the
best k is the global maximum selection strategy which consistently delivers
relatively good results, although not quite reaching the baseline accuracy.

126

11111
11111
11111
11111
110.6510.67
11111
11111
11111

0.730.730.730.730.73
11111
11111

0.730.730.730.730.73
11111
11111
11111
11111
11111
11111
11111

0.930.930.930.930.93
0.660.680.930.670.93
0.930.930.930.930.93
0.930.920.930.930.92
0.930.930.670.420.64
0.930.730.930.930.71
0.930.930.930.930.93
0.730.730.730.930.89
0.730.930.730.730.73
0.730.730.730.890.89
0.730.730.730.730.74
0.730.920.720.730.73
0.730.730.720.880.7
0.730.730.730.930.73
0.730.730.730.730.73
0.730.730.730.730.93
0.730.730.720.920.73
0.730.730.720.730.73
0.730.730.720.730.71

0.840.840.840.840.84
0.840.840.650.840.84
0.840.830.830.830.85
0.840.790.670.820.66
0.830.830.620.430.55
0.840.810.690.840.66
0.840.840.840.840.84
0.710.710.710.710.71
0.280.280.80.710.84
0.710.710.710.710.71
0.710.710.70.710.7
0.280.280.790.710.68
0.710.710.70.710.7
0.710.710.710.710.71
0.490.490.490.490.71
0.710.710.710.710.71
0.710.710.70.710.7
0.490.490.470.470.7
0.710.710.70.710.7

11111
1110.671
11111
11111
10.910.560.43
11111
11111
11111

0.73110.730.73
11111
11111

0.73110.730.73
11111
11111
11111
11111
1110.990.99
11111
11111

0.930.930.930.930.93
0.930.670.670.670.93
0.930.930.930.930.93
0.730.730.730.910.71
0.780.930.930.610.93
0.710.720.730.910.71
0.930.930.930.930.93
0.730.890.730.930.73
0.730.930.730.730.73
0.730.730.730.930.73
0.730.910.730.730.72
0.730.930.730.730.72
0.730.730.730.730.73
0.730.730.730.730.73
0.730.730.730.730.73
0.730.730.930.730.73
0.730.730.730.730.72
0.730.730.730.730.72
0.730.730.740.730.73

0.840.840.840.840.84
0.650.650.650.650.84
0.830.850.830.810.84
0.80.790.670.640.7

0.710.740.540.840.45
0.80.780.680.690.68

0.840.840.840.840.84
0.710.710.710.840.71
0.490.280.840.710.28
0.710.710.710.710.71
0.70.70.70.780.7

0.460.280.70.70.27
0.70.70.710.70.7

0.710.280.710.710.71
0.490.490.710.710.49
0.710.280.710.710.71
0.70.280.70.70.7

0.460.460.70.70.48
0.70.280.710.70.69

11111
0.670.670.6710.67

11111
110.9910.98

0.6510.420.390.61
110.990.990.99
11111
11111
11110.73
11111
10.990.9911
110.990.990.69
110.9911
11111
11111
11111
110.9911
10.990.9911
110.9911

0.930.930.930.930.93
0.670.930.930.930.93
0.930.930.930.930.93
0.920.720.710.70.71
0.890.670.620.550.32
0.920.90.690.920.72
0.930.930.930.930.93
0.730.930.730.930.93
0.730.730.730.930.73
0.730.730.730.930.93
0.720.720.730.720.92
0.720.720.720.710.73
0.720.720.730.730.72
0.730.670.730.730.73
0.730.730.730.730.73
0.730.730.730.730.73
0.720.730.730.730.73
0.720.720.730.730.73
0.720.720.730.730.73

0.840.840.840.840.84
0.650.840.840.840.84
0.820.820.810.840.84
0.790.640.680.470.68
0.780.650.40.290.37
0.780.690.610.690.66
0.840.840.840.840.84
0.710.710.710.710.84
0.840.710.280.280.49
0.840.710.710.710.84
0.70.70.690.70.69

0.690.70.280.240.48
0.690.70.690.690.67
0.710.710.710.710.71
0.490.490.490.71
0.710.710.710.710.71
0.70.70.690.70.69

0.460.480.470.68
0.70.70.690.70.69

11111
10.840.520.831
11111
10.9910.990.99
11111

0.99110.980.99
11111

0.87110.390.87
0.730.730.730.390.73
0.870.730.870.390.87
0.870.9910.390.86
0.730.730.730.390.72
0.870.730.870.390.86

11110.07
0.97111

11110.07
11110.07

0.990.990.990.99
11110.07

0.930.930.930.930.93
0.80.80.930.80.93

0.930.920.930.930.93
0.910.730.70.710.81
0.930.920.930.930.93
0.910.730.720.80.81
0.930.930.930.930.93
0.730.830.50.730.73
0.730.50.280.280.73
0.730.730.50.50.73
0.730.710.50.720.69
0.730.50.280.250.69
0.730.730.50.50.66
0.830.730.730.730.07
0.830.80.730.73
0.730.730.730.730.07
0.820.720.720.710.07
0.820.80.730.68
0.730.730.720.720.07

0.840.840.840.840.84
0.740.650.740.840.84
0.830.830.830.830.84
0.730.660.620.660.63
0.840.730.810.840.84
0.730.660.630.670.62
0.840.840.840.840.84
0.710.490.710.280.28
0.560.380.770.280.38
0.710.490.770.280.28
0.70.470.680.160.28

0.480.370.670.150.38
0.70.480.680.210.28

0.710.710.710.710.07
0.490.710.710.710.71
0.710.490.710.60.07
0.70.660.540.690.07

0.490.660.680.360.67
0.70.460.70.540.07

1

2

3

4

0.5 1.5 2.5

baseline

FFI−FKM

LCLU−CCLU

LCLU−CCLU−LU

LCLU−FFA

LCLU−FFA−LU

LCLU−FKM

LCLU−GCLU−FKM−GM

LCLU−GCLU−FKM−S

LCLU−GCLU−FKM−T

LCLU−GCLU−LU−GM

LCLU−GCLU−LU−S

LCLU−GCLU−LU−T

LCLU−SAMCLU−FKM−GM

LCLU−SAMCLU−FKM−S

LCLU−SAMCLU−FKM−T

LCLU−SAMCLU−LU−GM

LCLU−SAMCLU−LU−S

LCLU−SAMCLU−LU−T

baseline

FFI−FKM

LCLU−CCLU

LCLU−CCLU−LU

LCLU−FFA

LCLU−FFA−LU

LCLU−FKM

LCLU−GCLU−FKM−GM

LCLU−GCLU−FKM−S

LCLU−GCLU−FKM−T

LCLU−GCLU−LU−GM

LCLU−GCLU−LU−S

LCLU−GCLU−LU−T

LCLU−SAMCLU−FKM−GM

LCLU−SAMCLU−FKM−S

LCLU−SAMCLU−FKM−T

LCLU−SAMCLU−LU−GM

LCLU−SAMCLU−LU−S

LCLU−SAMCLU−LU−T

baseline

FFI−FKM

LCLU−CCLU

LCLU−CCLU−LU

LCLU−FFA

LCLU−FFA−LU

LCLU−FKM

LCLU−GCLU−FKM−GM

LCLU−GCLU−FKM−S

LCLU−GCLU−FKM−T

LCLU−GCLU−LU−GM

LCLU−GCLU−LU−S

LCLU−GCLU−LU−T

LCLU−SAMCLU−FKM−GM

LCLU−SAMCLU−FKM−S

LCLU−SAMCLU−FKM−T

LCLU−SAMCLU−LU−GM

LCLU−SAMCLU−LU−S

LCLU−SAMCLU−LU−T

baseline

FFI−FKM

LCLU−CCLU

LCLU−CCLU−LU

LCLU−FFA

LCLU−FFA−LU

LCLU−FKM

LCLU−GCLU−FKM−GM

LCLU−GCLU−FKM−S

LCLU−GCLU−FKM−T

LCLU−GCLU−LU−GM

LCLU−GCLU−LU−S

LCLU−GCLU−LU−T

LCLU−SAMCLU−FKM−GM

LCLU−SAMCLU−FKM−S

LCLU−SAMCLU−FKM−T

LCLU−SAMCLU−LU−GM

LCLU−SAMCLU−LU−S

LCLU−SAMCLU−LU−T

12345 12345 12345
#Number of sites

6. Federated K-Means

Figure 6.3 – (previous page) Evaluation results using the grid evaluation
strategy without outliers.

The FFA aggregagtion strategy did not return good results already on the
easy cases with clusters that were well separated and had a low variance.
Therefore, this strategy will be removed from further considerations in the
future.

A higher number of outliers did lead to a generally worse performance of
the algorithms and to the complete failure of some test runs, where the
automatic detection of k lead to a high number of very small clusters. On
data with completely disjoint clusters, the federated algorithms achieved
better performance, because they had to detect only one dense clustering
(see fig. C.1).

6.9 Conclusion & Outlook
Our evaluation of the K-Means algorithms and their extension to unknown
k closes a practicability gap in federated learning. For general use cases,
local clustering followed by global clustering are reasonable choices. Overall
the number of iterations (the number of communication rounds) is low.
Predictably, bad cluster separation leads to worse clustering results. If k is
known, the federated clustering performs well. The algorithms are generally
not suited to handle edge cases in data distribution and outliers. This
emphasizes the need to evaluate the clustering algorithms to obtain realistic
estimates of their performance. Future work will require the evaluation of
the algorithms on real data. With unknown k the algorithms achieve worse
performance compared to the case where k is known. Based on these results,
future improvements of the adaptive federated clustering strategies can be
made.

128

References

References
Balcan, M. F., Ehrlich, S., and Liang, Y. (2013). “Distributed k-Means and k-

Median Clustering on General Topologies”. In: pp. 1–9. arXiv: 1306.0604.
url: http://arxiv.org/abs/1306.0604.

Balcan, M.-F. et al. (2014). “Improved Distributed Principal Component Analy-
sis”. In: Proceedings of the 27th International Conference on Neural Informa-
tion Processing Systems - Volume 2. NIPS’14. Montreal, Canada: MIT Press,
pp. 3113–3121.

Brandão, A., Mendes, R., and Vilela, J. P. (2021). “Efficient Privacy Preserving
Distributed K-Means for Non-IID Data”. In: pp. 439–451. doi: 10.1007/978-
3-030-74251-5_35.

Cramer, R., Damgård, I. B., and Nielsen, J. B. (2015). Secure Multiparty Com-
putation and Secret Sharing. Cambridge University Press. doi: 10.1017/
CBO9781107337756.

Datta, S., Giannella, C. R., and Kargupta, H. (2009). “Approximate distributed
K-means clustering over a peer-to-peer network”. In: IEEE Transactions on
Knowledge and Data Engineering 21.10, pp. 1372–1388. issn: 10414347. doi:
10.1109/TKDE.2008.222.

Dennis, D. K. and Smith, V. (2019). “Heterogeneity for the Win: Communication-
Efficient Federated Clustering”. In: arXiv: arXiv:2103.00697v1.

Feldman, D. et al. (2017). “Coresets for differentially private k-means clustering
and applications to privacy in mobile sensor networks”. In: Proceedings -
2017 16th ACM/IEEE International Conference on Information Processing
in Sensor Networks, IPSN 2017, pp. 3–15. doi: 10.1145/3055031.3055090.

Fränti, P. and Sieranoja, S. (2019). “How much can k-means be improved by
using better initialization and repeats?” In: Pattern Recognition 93, pp. 95–
112. issn: 00313203. doi: 10.1016/j.patcog.2019.04.014.

Ghosal, R. and Chatterjee, S. (2018). Privacy Preserving Multi-server k-means
Computation over Horizontally Partitioned Data. Vol. 11281 LNCS. Springer
International Publishing, pp. 189–208. isbn: 9783030051709. doi: 10.1007/
978-3-030-05171-6_10. arXiv: 1808.03811. url: http://dx.doi.org/
10.1007/978-3-030-05171-6_10.

Hartebrodt, A. et al. (2021). “Federated Principal Component Analysis for Genome-
Wide Association Studies”. In: Icdm, pp. 1090–1095. doi: 10.1109/ICDM51629.
2021.00127.

Hastie, T. T. (2017). “The Elements of Statistical Learning Second Edition”.
In: Math. Intell. 27.2, pp. 83–85. issn: 03436993. doi: 111. eprint: arXiv:
1011.1669v3.

Hou, R. et al. (2021). “Multi-Party Verifiable Privacy-Preserving Federated k
-Means Clustering in Outsourced Environment”. In: Security and Communi-
cation Networks 2021. issn: 19390122. doi: 10.1155/2021/3630312.

129

https://arxiv.org/abs/1306.0604
http://arxiv.org/abs/1306.0604
https://doi.org/10.1007/978-3-030-74251-5_35
https://doi.org/10.1007/978-3-030-74251-5_35
https://doi.org/10.1017/CBO9781107337756
https://doi.org/10.1017/CBO9781107337756
https://doi.org/10.1109/TKDE.2008.222
https://arxiv.org/abs/arXiv:2103.00697v1
https://doi.org/10.1145/3055031.3055090
https://doi.org/10.1016/j.patcog.2019.04.014
https://doi.org/10.1007/978-3-030-05171-6_10
https://doi.org/10.1007/978-3-030-05171-6_10
https://arxiv.org/abs/1808.03811
http://dx.doi.org/10.1007/978-3-030-05171-6_10
http://dx.doi.org/10.1007/978-3-030-05171-6_10
https://doi.org/10.1109/ICDM51629.2021.00127
https://doi.org/10.1109/ICDM51629.2021.00127
https://doi.org/111
arXiv:1011.1669v3
arXiv:1011.1669v3
https://doi.org/10.1155/2021/3630312

6. Federated K-Means

Jagannathan, G. and Wright, R. N. (2005). “Privacy-preserving distributed k-
means clustering over arbitrarily partitioned data”. In: Proceedings of the
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 593–599. doi: 10.1145/1081870.1081942.

Kairouz, P. et al. (2021). “Advances and open problems in federated learning”.
In: Foundations and Trends in Machine Learning 14.1-2, pp. 1–210. issn:
19358245. doi: 10.1561/2200000083. arXiv: 1912.04977.

Kaplan, H. and Stemmer, U. (2018). “Differentially private k-means with con-
stant multiplicative error”. In: Advances in Neural Information Processing
Systems. Vol. 2018-Decem, pp. 5431–5441. arXiv: 1804.08001.

Khedr, A. M. and Bhatnagar, R. K. (2014). “New algorithm for clustering dis-
tributed data using K-means”. In: Computing and Informatics 33.4, pp. 943–
964. issn: 13359150.

Liu, Y. et al. (2020). “Privacy-preserving fe derate d k -means for proactive
caching in next generation cellular networks”. In: Information Sciences 521,
pp. 14–31. doi: 10.1016/j.ins.2020.02.042. url: https://doi.org/10.
1016/j.ins.2020.02.042.

Lloyd, S. P. (1982). “Least Squares Quantization in PCM”. In: IEEE Transactions
on Information Theory 28.2, pp. 129–137. issn: 15579654. doi: 10.1109/TIT.
1982.1056489.

MacQueen, J. (1967). “SOME METHODS FOR CLASSIFICATION AND ANAL-
YSIS OF MULTIVARIATE OBSERVATIONS”. In: 233.233, pp. 281–297.

Matschinske, J. et al. (2021). “The FeatureCloud AI Store for Federated Learning
in Biomedicine and Beyond”. In: pp. 1–32.

Mohassel, P. (2020). “Practical Privacy-Preserving K-means Clustering”. In: pp. 1–
31.

Naldi, M. C. and Campello, R. J. (2014). “Evolutionary k-means for distributed
data sets”. In: Neurocomputing 127, pp. 30–42. issn: 09252312. doi: 10.1016/
j.neucom.2013.05.046. url: http://dx.doi.org/10.1016/j.neucom.
2013.05.046.

Omri, O. E. et al. (2019). “Privacy-Preserving k-means Clustering: an Appli-
cation to Driving Style Recognition”. In: Lecture Notes in Computer Sci-
ence (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics) 11928 LNCS, pp. 685–696. issn: 16113349. doi:
10.1007/978-3-030-36938-5_43.

Qin, J. et al. (2017). “Distributed k-Means Algorithm and Fuzzy c-Means Al-
gorithm for Sensor Networks Based on Multiagent Consensus Theory”. In:
IEEE Transactions on Cybernetics 47.3, pp. 772–783. issn: 21682267. doi:
10.1109/TCYB.2016.2526683.

Ramírez, D. H. and Auñón, J. M. (2020). “Privacy Preserving K-Means Cluster-
ing: A Secure Multi-Party Computation Approach”. In: arXiv: 2009.10453.
url: http://arxiv.org/abs/2009.10453.

130

https://doi.org/10.1145/1081870.1081942
https://doi.org/10.1561/2200000083
https://arxiv.org/abs/1912.04977
https://arxiv.org/abs/1804.08001
https://doi.org/10.1016/j.ins.2020.02.042
https://doi.org/10.1016/j.ins.2020.02.042
https://doi.org/10.1016/j.ins.2020.02.042
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1016/j.neucom.2013.05.046
https://doi.org/10.1016/j.neucom.2013.05.046
http://dx.doi.org/10.1016/j.neucom.2013.05.046
http://dx.doi.org/10.1016/j.neucom.2013.05.046
https://doi.org/10.1007/978-3-030-36938-5_43
https://doi.org/10.1109/TCYB.2016.2526683
https://arxiv.org/abs/2009.10453
http://arxiv.org/abs/2009.10453

References

Rao, F. Y. et al. (2016). “Privacy-Preserving and Outsourced Multi-user K-Means
Clustering”. In: Proceedings - 2015 IEEE Conference on Collaboration and
Internet Computing, CIC 2015, pp. 80–89. doi: 10.1109/CIC.2015.20.

Soliman, A. et al. (2020). Decentralized and Adaptive K-Means Clustering for
Non-IID Data Using HyperLogLog Counters. Vol. 12084 LNAI. Springer Inter-
national Publishing, pp. 343–355. isbn: 9783030474256. doi: 10.1007/978-
3- 030- 47426- 3_27. url: http://dx.doi.org/10.1007/978- 3- 030-
47426-3_27.

Tibshirani, R., Walther, G., and Hastie, T. (2001). Estimating the number of data
clusters via the gap statistic.

Yoo, J. H. et al. (2021). “Federated Learning: Issues in Medical Application”. In:
pp. 3–22. issn: 16113349. doi: 10.1007/978- 3- 030- 91387- 8_1. arXiv:
2109.00202.

Zhang, E. et al. (2022). “Practical multi-party private collaborative k-means clus-
tering”. In: Neurocomputing 467, pp. 256–265. doi: 10.1016/j.neucom.
2021.09.050. url: https://doi.org/10.1016/j.neucom.2021.09.050.

131

https://doi.org/10.1109/CIC.2015.20
https://doi.org/10.1007/978-3-030-47426-3_27
https://doi.org/10.1007/978-3-030-47426-3_27
http://dx.doi.org/10.1007/978-3-030-47426-3_27
http://dx.doi.org/10.1007/978-3-030-47426-3_27
https://doi.org/10.1007/978-3-030-91387-8_1
https://arxiv.org/abs/2109.00202
https://doi.org/10.1016/j.neucom.2021.09.050
https://doi.org/10.1016/j.neucom.2021.09.050
https://doi.org/10.1016/j.neucom.2021.09.050

Chapter 7
Discussion & Conclusion

The previous chapters were dedicated to the study of specific unsupervised
federated machine learning problems. As an emerging research field, many
questions in federated learning have no definite answer yet, and not all of
them can be addressed at once. The investigated three methods, singular
value decomposition, QR factorization and K-means clustering are popu-
lar applications in bioinformatics and will be required for the adoption of
federated learning in computational biology. The five manuscripts address
crucial issues for federated learning: privacy, accuracy, and communication
and resource efficiency. This final chapter discusses the manuscripts with
respect to these challenges. First, in section 7.1, chapters 2 to 6 will be
summarized briefly, highlighting the main contributions. Then the overall
conclusions will be drawn in sections 7.2 to 7.4, followed by a brief discus-
sion of future directions in section 7.5. The final section 7.6 will conclude
the work.

7.1 Summary
Chapter 1 introduced the necessary terminology and open problems in fed-
erated learning in general. Based on these open challenges, the aim of
this thesis was the investigation and development of communication and
resource efficient, privacy-preserving and accurate algorithms for federated
unsupervised learning.

Chapter 2 identified a number of PCA algorithms suitable for horizontally
partitioned PCA. They were investigated with respect to their accuracy and
communication efficiency. The focus of the manuscript was the accuracy

133

7. Discussion & Conclusion

of the methods when using non-iid data. We found federated approximate
PCA to be unsuited to detect batch effects. Otherwise most methods per-
form adequately. Low communication overhead can be attained at the
privacy cost of communicating the entire covariance matrix.

Chapter 3 represents initial work on federated PCA for Genome-Wide As-
sociation Studies. In this context, we suggest power iteration. To achieve
orthonormality, while keeping the sample associated eigenvectors private, in
the last iteration, federated Gram-Schmidt orthonormalization can be used.
The results converge to the centralized equivalent after sufficient iterations.

Chapter 4 builds on the work in the third chapter, and extends the presented
algorithms, by applying approximate PCA as an initialization strategy. A
second improvement was made by using randomized projections reducing
the overall volume of transmitted data greatly. Additionally, proofs for the
equivalence of the methods to their centralized counterparts are provided.

Chapter 5 extends the Gram-Schmidt procedure developed for the third and
fourth chapter to return the full QR decomposition and can hence be used
for other applications such as linear regression as well. This manuscript has
a stronger emphasis on privacy, investigating the Householder, Givens and
Gram-Schmidt algorithms with respect to their privacy when transformed
into a federated algorithm. We conclude that Gram-Schmidt decomposition
is the most suited method. Even with this algorithm, privacy breaches can
occur, if users are not careful or the attacker has auxiliary knowledge.

Chapter 6 investigates different strategies for federated K-Means clustering,
and evaluates them under strong non-iid assumptions. The aim is to pro-
vide an adaptive clustering strategy which allows to find a good partition
without specifying k. This should be achieved while remaining communi-
cation efficient and privacy-aware. The preliminary conclusion is that most
well performing clustering strategies are also communication efficient. Out-
liers and strongly skewed data distributions lead to a worse performance
of federated K-Means compared to the centralized algorithm. The solu-
tions which include the determination of k do not quite achieve the same
performance yet.

7.2 Communication and resource efficiency
Communication efficient PCA methods are available, but, as explained in
chapter 2, they come with the drawback of immediately exposing the full
covariance matrix, or accuracy loss. Therefore, we made an effort to reduce

134

Communication and resource efficiency

the communication overhead of federated power iteration. In our current
implementations, presented in chapter 4 the overhead is mainly due to the
high number of iterations. The volume of transmitted data plays a minor
role. For power iteration, the high number of communication steps is a
disadvantage to its practical applicability, but the execution times are still
reasonable, given that the data sourcing process is expensive and time con-
suming in medical studies. As detailed in chapters 3 to 4 for very large
data, the computation of the covariance matrix is computationally very de-
manding and therefore not feasible. In this case, covariance-free methods,
such as federated power iteration, are the only viable solution. The commu-
nication effort of randomized PCA can be reduced to a constant number
of iterations. This can be achieved by sending the covariance matrix of
the randomized projection of the data, instead of proceeding with power
iteration. We will suggest this improvement in further iterations of the
manuscript. This will make federated power iteration suitable for repeated
application on high dimensional data.

In the federated Gram-Schmidt algorithm, the number of communication
steps scales linearly with the number of columns (see chapter 3). According
to our analyses in chapter 5, it outperforms a naïve implementation of the
Householder reflection based algorithm. Due to it’s parallelizability, Givens
rotation may enjoy better communication properties, which remains to be
determined. Generally, the algorithms can be implemented efficiently on
centralized systems and do not require extensive compute power locally. In
federated Gram-Schmidt factorization, the communicated parameter size
is small. Therefore, the property which needs to be improved is the num-
ber of communication steps. Future work may try to provide approximate
versions of the Gram-Schmidt algorithm to remove the dependence on the
dimensionality of the data.

As shown in chapter 6, for federated K-means, the communication overhead
is generally favorable. There are algorithms which, with limited data trans-
mission are sufficient to achieve very good approximations of the centralized
algorithm in the federated setting with a low number of iterations. Out-
liers and skewed data lead to slightly increase communication requirements,
but overall they remain reasonable. Therefore, for the intended use case of
cross-silo federated learning in the medical domain, K-Means is suited for
routine application.

135

7. Discussion & Conclusion

7.3 Accuracy
As detailed in chapter 2, systematic batch effects are assumed to be present
in many biomedical data sets. Generally, the non-iid-ness of data is not
a problem for the PCA and Gram-Schmidt orthonormalization algorithms
developed in this thesis, as they are provably equivalent to their centralized
counterparts, as shown in chapter 4. Approximate PCA should be avoided,
given its application for batch effect detection, where the violation of iid-
ness is assumed.

With regards to federated K-Means, in chapter 6, we come to the conclusion
that most schemes cope reasonably well in different types of non-iid-ness in
the literature when used on well separated, clean data. Outliers and edge
cases in the data distribution skew, predictably lead to worse performance.
Schemes which automatically determine k perform reasonably well, but
improvements can be made in the future. A challenge in the evaluation of
the algorithms with respect to their suitability for non-iid data is the high
number of possible data configurations. We aimed at establishing a good
trade-of between computational feasibility and coverage of the cases.

7.4 Privacy
In this thesis, federated learning in combination with secure additive ag-
gregation is used as the federated learning paradigm. This means, the lo-
cal parameter updates are hidden, but the aggregated parameters become
known in clear text (see chapter 1).

In federated SVD, the amount of information encoded in these parame-
ters is quite extensive. If the top left and right singular vectors become
known, an approximation of the data matrix is possible. Therefore, in the
context of GWAS, we suggested to only compute partial right eigenvec-
tors, which prevents data approximation and further data reconstruction.
If either the top left or top right singular vector become known, an approxi-
mation of the respective covariance matrix is possible. We established that
the sample-by-sample covariance matrix cannot be shared, as it allows the
computation of the full eigenvectors. An open question that remains, is how
privacy preserving the feature-by-feature covariance matrix is in practice.
In combination with the column mean it can be used to generate data rep-
resentatives. These representatives may be used to create shadow models
(Shokri et al. 2017; Pustozerova and Mayer 2021) and thus enable a pri-
vacy breach. In chapter 4, we show that the eigenvector updates in power

136

Privacy

iteration can be used to recreate the full covariance matrix under some con-
ditions. We therefore provided an algorithm which prevents this leakage for
high-dimensional data. If the disclosure of the exact covariance matrix is
found to be critical, hybrid federated learning is not a suitable option for
federated principal component analysis, and only ’oracle’ algorithms which
perform the entire algorithm under encryption, or secure multiparty compu-
tation schemes are suitable. Even then, the approximate covariance matrix
is disclosed once the top k subspace is announced. If the disclosure of an
approximate matrix is deemed critical, the eigenvectors cannot be disclosed.
In this case, it is also doubtful, that the analyst would allow a utility pre-
serving differentially private release of the covariance matrix (Dwork et al.
2014). Even with DP eigenvectors, computing the projections of the data
is not covered by the closure under post-processing. Overall, if a data an-
alyst wants to disclose the result of PCA or SVD to the public, they need
to have a very good understanding of the nature of the parameters, the
eigenvectors. Even if measure are taken to prevent blatant privacy leakage,
the publication of utility preserving PCA and SVD may be considered as
in inherent opposition to strict privacy guarantees.

While investigating the federated QR algorithms in chapter 5, we showed
that some algorithms are fundamentally unsuited to federated learning with
secure aggregation. Notably, the recommended algorithms for centralized
QR factorization, Givens rotation, and Householder reflection are not pri-
vate, even if secure aggregation is used, due to the information encoded in
their parameters. They could only be computed using more comprehen-
sive secure-multiparty computation schemes. We came to the conclusion
that the Gram-Schmidt algorithm is currently the most private algorithm,
given the use of secure aggregation. The traceability of federated matrix
computation make attacks cheap to implement and executable on limited
hardware.

Lastly, a detailed investigation of the privacy of federated K-means will
be required. The adaptive federated K-Means scheme intends to avoid the
computation of multiple federated clusterings with multiple k over multiple
initializations, preventing potential triangulation of individual data points.
Nonetheless, in future work, an investigation of the potential privacy breach
during the iterative subroutines will be necessary. Furthermore, the privacy
loss due to the communication of the cluster covariance matrices needs to
be evaluated.

137

7. Discussion & Conclusion

7.5 Future directions
Currently, as part of the manuscripts proof-of-concept implementations and
applications of various federated algorithms are available as pseudocode,
simulation code, standalone federated tools and FeatureCloud apps. Pro-
viding secure and user-friendly tools including good documentation to the
community is required to promote acceptance. Federated learning requires
practitioners to understand two novel concepts at the same time: the feder-
ated algorithm and the relevant privacy-preserving techniques. Therefore,
future work will include the continued development and deployment of the
presented algorithms, for instance in the FeatureCloud AI Store. These
user-friendly tools will include laymen friendly explanations and interfaces
as well as privacy aware visualization of the results.

Regarding the practical application of federated tools for biomedical re-
search, further effort needs to be spent on ensuring that the cumulative in-
formation disclosed during a federated study does not create privacy leaks.
The majority of medical analyses use multiple algorithms and tools to gen-
erate or confirm hypotheses. One cannot assume that a workflow of indi-
vidually private tools is privacy preserving in its entirety.

7.6 Conclusion
This thesis contributed to the field of federated biomedical machine learn-
ing by investigating, developing and testing algorithms with biomedical
data in mind. At the current stage, proof-of-concept solutions have been
implemented and the field is on the verge of shifting towards routine use.
Unsupervised methods will play an important role in future federated stud-
ies.

At the same time, not all concerns regarding federated learning have been
addressed. The research community is actively working on finding a com-
promise not only between the privacy of the individual and the utility of
the model, but also between the privacy and mundane practicalities such
as communication overhead.

Federated machine learning is a research area, that extends beyond the
technical feasibility. By the means of technological solutions and the im-
plementation of new policies, it aims to promote truly privacy-preserving
machine learning.

138

References

References
Dwork, C. et al. (2014). “Analyze Gauss: Optimal bounds for privacy-preserving

principal component analysis”. In: Proceedings of the Annual ACM Sympo-
sium on Theory of Computing, pp. 11–20. issn: 07378017. doi: 10.1145/
2591796.2591883.

Pustozerova, A. and Mayer, R. (2021). “Information Leaks in Federated Learn-
ing”. In: February, pp. 1–6. doi: 10.14722/diss.2020.23004.

Shokri, R. et al. (2017). “Membership Inference Attacks Against Machine Learn-
ing Models”. In: Proceedings - IEEE Symposium on Security and Privacy,
pp. 3–18. isbn: 9781509055326. doi: 10.1109/SP.2017.41. arXiv: 1610.
05820.

139

https://doi.org/10.1145/2591796.2591883
https://doi.org/10.1145/2591796.2591883
https://doi.org/10.14722/diss.2020.23004
https://doi.org/10.1109/SP.2017.41
https://arxiv.org/abs/1610.05820
https://arxiv.org/abs/1610.05820

Appendix A
Supplementary information

A.1 Web repositories
• https://gitlab.com/hartebrodt/federated-k-means – Simulation

code for the federated K-Means algorithms and evaluation strategies
presented in chapter 6.

• https://gitlab.com/hartebrodt/federated_dp_pca – PCA simu-
lation code for horizontally and vertically partitioned PCA used for
chapters 2 to 4.

• https://github.com/AnneHartebrodt/fc-federated-pca – The most
recent version of the feature cloud App for federated PCA implement-
ing various versions of PCA presented in chapter 2

• https://github.com/AnneHartebrodt/hyfed-pca – A standalone
PCA tool based on the Hyfed framework (Nasirigerdeh et al. 2021).
This tool is currently deployed at federated.compbio.sdu.dk how-
ever it will be replaced by the FeatureCloud app soon.

• https://github.com/AnneHartebrodt/federated-qr – Simulation
code for QR decomposition and Linear regression used in chapter 5.

A.2 Additional Literature
The following tables contain annotated lists of relevant literature. The lists
make no attempt to be complete, however they may be interesting to some
readers.

141

https://gitlab.com/hartebrodt/federated-k-means
https://gitlab.com/hartebrodt/federated_dp_pca
https://github.com/AnneHartebrodt/fc-federated-pca
https://github.com/AnneHartebrodt/hyfed-pca
federated.compbio.sdu.dk
https://github.com/AnneHartebrodt/federated-qr

A. Supplementary information

Ta
bl

e
A

.1
–

Li
st

of
pu

bl
ic

at
io

ns
fo

r
fe

de
ra

te
d

PC
A

FL T
yp

e
T

itl
e

A
ut

ho
r

(Y
ea

r)
P

ri
va

cy
C

on
te

nt

H
FL

G
lo

ba
l

pr
in

ci
pa

l
co

m
po

ne
nt

an
al

ys
is

fo
r

di
m

en
si

on
al

ity
re

du
ct

io
n

in
di

s-
tr

ib
ut

ed
da

ta
m

in
in

g
Q

ie
t

al
.2

00
3

-
C

om
pu

te
gl

ob
al

co
va

ri
an

ce
m

at
ri

x
at

ce
nt

ra
la

gg
re

ga
-

to
r

P
ri

nc
ip

al
C

om
po

ne
nt

A
na

ly
si

s
fo

r
D

i-
m

en
si

on
R

ed
uc

tio
n

in
M

as
si

ve
D

is
-

tr
ib

ut
ed

D
at

a
Se

ts
Q

u
et

al
.2

00
2

-
C

om
pu

te
gl

ob
al

co
va

ri
an

ce
m

at
ri

x

P
ri

nc
ip

al
C

om
po

ne
nt

A
na

ly
si

sf
or

D
is

-
tr

ib
ut

ed
D

at
a

Se
ts

w
ith

U
pd

at
in

g
B

ai
et

al
.2

00
5

-
Lo

ca
l

Q
R

de
co

m
po

si
tio

n,
R

is
se

nt
to

th
e

se
rv

er
,
R

m
at

ri
ce

s
ar

e
m

er
ge

d
us

in
g

Q
R

de
co

m
po

si
tio

n,
SV

D
of

th
e

fin
al

R

D
is

tr
ib

ut
ed

P
C

A
an

d
k

-M
ea

ns
C

lu
s-

te
ri

ng
Li

an
g

et
al

.2
01

3
-

C
om

pu
te

Lo
ca

l
SV

D
an

d
an

no
un

ce
Σ

k i
,V

k
⊤

i
to

th
e

se
rv

er
.

R
ec

on
st

ru
ct

ap
pr

ox
im

at
e

co
va

ri
an

ce
m

at
ri

x
M

=
∑ I i

V
k i
Σ

k i
V

k
⊤

i
an

d
co

m
pu

te
SV

D
of

M

Im
pr

ov
ed

D
is

tr
ib

ut
ed

P
ri

nc
ip

al
C

om
-

po
ne

nt
A

na
ly

si
s

B
al

ca
n,

K
an

ch
an

ap
al

ly
,

et
al

.
20

14
-

C
om

pu
te

Lo
ca

l
SV

D
an

d
an

no
un

ce
Σ

k i
,V

k
⊤

i
to

th
e

se
rv

er
.

D
o

no
t

re
co

ns
tr

uc
t

ap
pr

ox
im

at
e

co
va

ri
an

ce
m

at
ri

x
M

=
∑ I i

V
k i
Σ

k i
V

k
⊤

i
in

st
ea

d
st

ac
k
Σ

k i
V

k
⊤

i
an

d
co

m
pu

te
SV

D
w

hi
ch

is
eq

ui
va

le
nt

.

A
n

Im
pr

ov
ed

G
ap

-D
ep

en
de

nc
y

A
na

ly
-

si
s

of
th

e
N

oi
sy

Po
w

er
M

et
ho

d
B

al
ca

n,
D

u,
et

al
.2

01
6

D
P

D
is

tr
ib

ut
ed

po
w

er
ite

ra
tio

n.
T

he
cl

ie
nt

s
co

m
pu

te
H

i
=

A
G

an
d

se
nd

it
to

th
e

se
rv

er
.

T
he

co
m

pu
te

s
H
,X

=
∑ I i

H
i

an
d

sh
ar

es
H

w
ith

th
e

cl
ie

nt
s.

D
is

tr
ib

ut
ed

st
op

pi
ng

cr
ite

ri
a

fo
r

th
e

po
w

er
ite

ra
tio

n
ap

pl
ie

d
to

vi
ru

s
m

iti
-

ga
tio

n

R
am

ir
ez

-L
la

no
s

an
d

M
ar

tin
ez

20
16

-
In

tr
od

uc
es

an
al

te
rn

at
iv

e
to

th
e

R
ay

le
ig

h
co

effi
ci

en
t

P
ri

va
cy

-p
re

se
rv

in
g

P
C

A
on

ho
ri

zo
nt

al
ly

-p
ar

tit
io

ne
d

da
ta

A
l-R

ub
ai

e
et

al
.2

01
7

H
E

;
G

ar
bl

ed
ci

rc
ui

ts
C

om
pu

ta
tio

n
of

th
e

gl
ob

al
co

va
ri

an
ce

m
at

ri
x

by
su

m
-

m
in

g
ov

er
th

e
lo

ca
lc

ov
ar

ia
nc

e
m

at
ri

ce
s.

D
is

tr
ib

ut
ed

es
tim

at
io

n
of

pr
in

ci
pa

l
ei

ge
ns

pa
ce

s
Fa

n
et

al
.2

01
9

-
C

om
pu

te
Lo

ca
l

SV
D

an
d

an
no

un
ce

Σ
k i
,V

k
⊤

i
to

th
e

se
rv

er
.

R
ec

on
st

ru
ct

ap
pr

ox
im

at
e

co
va

ri
an

ce
m

at
ri

x
M

=
∑ I i

V
k i
Σ

k i
V

k
⊤

i
an

d
co

m
pu

te
SV

D
of

M
A

R
ev

ie
w

of
D

is
tr

ib
ut

ed
A

lg
or

it
hm

s
fo

r
P

ri
nc

ip
al

C
om

po
ne

nt
A

na
ly

si
s

W
u

et
al

.2
01

8
-

R
ev

ie
w

ar
tic

le
co

ve
ri

ng
a

su
bs

et
of

th
e

ar
tic

le
s

de
-

sc
ri

be
d

he
re

A
D

is
tr

ib
ut

ed
P

ri
nc

ip
al

C
om

po
ne

nt
A

na
ly

si
s

C
om

pr
es

si
on

fo
r

Sm
ar

t
Se

is
-

m
ic

A
cq

ui
si

tio
n

N
et

w
or

ks
B

.L
iu

et
al

.2
01

8
-

C
om

pu
te

gl
ob

al
co

va
ri

an
ce

m
at

ri
x

142

Additional Literature
FL T

yp
e

T
itl

e
A

ut
ho

r
(Y

ea
r)

P
ri

va
cy

C
on

te
nt

D
iff

er
en

tia
lly

P
ri

va
te

D
is

tr
ib

ut
ed

P
ri

n-
ci

pa
lC

om
po

ne
nt

A
na

ly
si

s
Im

tia
z

an
d

Sa
rw

at
e

20
18

D
P

D
iff

er
en

tia
lly

pr
iv

at
e

P
C

A
ba

se
d

on
sh

ar
in

g
th

e
no

is
y

co
va

ri
an

ce
m

at
ri

ce
s

D
is

tr
ib

ut
ed

D
iff

er
en

tia
lly

P
ri

va
te

C
om

pu
ta

tio
n

of
Fu

nc
tio

ns
w

ith
C

or
re

la
te

d
N

oi
se

Im
tia

z,
M

oh
am

m
ad

i,
et

al
.

20
19

D
P

D
iff

er
en

tia
lly

pr
iv

at
e

P
C

A
ba

se
d

on
sh

ar
in

g
th

e
no

is
y

co
va

ri
an

ce
m

at
ri

ce
s

w
ith

be
tt

er
no

is
e

sc
he

m
e

P
ri

va
cy

P
re

se
rv

in
g

P
C

A
fo

r
M

ul
ti-

pa
rt

y
M

od
el

in
g

Y
.L

iu
et

al
.2

02
0

H
E

&
SM

P
C

(S
ha

m
ir

)
Se

cu
re

co
m

pu
ta

tio
n

of
th

e
gl

ob
al

co
va

ri
an

ce
m

at
ri

x

Fe
de

ra
te

d
P

ri
nc

ip
al

C
om

po
ne

nt
A

na
l-

ys
is

G
ra

m
m

en
os

et
al

. 2
02

0
D

P
Fe

de
ra

te
d

St
re

am
in

g
P

C
A

w
ith

su
bs

pa
ce

m
er

gi
ng

ba
se

d
on

D
is

tr
ib

ut
ed

P
ri

nc
ip

al
C

om
po

ne
nt

A
na

ly
si

s
w

ith
Li

m
ite

d
C

om
m

un
ic

a-
tio

n
A

lim
is

is
et

al
.2

02
1

-
R

ie
m

an
ni

an
G

ra
di

en
t

D
es

ce
nt

w
ith

Ve
ct

or
Q

ua
nt

iz
a-

tio
n

to
re

du
ce

bi
t

co
m

m
un

ic
at

io
n

co
m

pl
ex

ity
.

D
is

tr
ib

ut
ed

E
st

im
at

io
n

fo
r

P
ri

nc
ip

al
C

om
po

ne
nt

A
na

ly
si

s:
A

n
E

nl
ar

ge
d

E
ig

en
sp

ac
e

A
na

ly
si

s
X

.C
he

n,
Le

e,
et

al
. 2

02
1

-
N

ew
tio

ni
an

gr
ad

ie
nt

de
sc

en
t

us
in

g
th

e
H

es
si

an
on

th
e

fir
st

m
ac

hi
ne

.
Ve

ct
or

s
of

ra
nk

k
>

1
ar

e
co

m
pu

te
d

vi
a

m
at

ri
x

de
fla

tio
n.

Fe
de

ra
te

d
Si

ng
ul

ar
Ve

ct
or

D
ec

om
po

si
-

tio
n

C
ha

ie
t

al
.2

02
1

M
as

ki
ng

sc
he

m
e

&
Se

cu
re

ag
gr

e-
ga

tio
n

D
at

a
m

as
ki

ng
sc

he
m

e
al

lo
w

s
to

se
nd

m
as

ke
d

da
ta

,
co

m
pu

te
th

e
P

C
A

gl
ob

al
ly

an
d

un
m

as
k

th
e

re
su

lt
lo

-
ca

lly
.

V
FL

D
is

tr
ib

ut
ed

C
lu

st
er

in
g

U
si

ng
C

ol
le

c-
tiv

e
P

ri
nc

ip
al

C
om

po
ne

nt
A

na
ly

si
s

K
ar

gu
pt

a
et

al
.2

00
1

P
ro

je
ct

io
ns

of
th

e
da

ta
on

to
th

e
fir

st
fe

w
E

ig
en

ve
ct

or
s

ar
e

se
nt

to
th

e
ag

gr
eg

at
or

w
hi

ch
co

m
pu

te
s

th
e

gl
ob

al
ap

pr
ox

im
at

io
n

of
th

e
da

ta
.

A
co

va
ri

an
ce

-fr
ee

ite
ra

tiv
e

al
go

ri
th

m
fo

r
di

st
ri

bu
te

d
pr

in
ci

pa
l

co
m

po
ne

nt
an

al
ys

is
on

ve
rt

ic
al

ly
pa

rt
iti

on
ed

da
ta

G
uo

et
al

.2
01

2
-

Po
w

er
ite

ra
tio

n
ba

se
d

on
gr

ad
ie

nt
de

sc
en

t.

Fe
de

ra
te

d
P

ri
nc

ip
al

C
om

po
ne

nt
A

na
l-

ys
is

fo
r

G
en

om
e-

W
id

e
A

ss
oc

ia
tio

n
St

ud
ie

s
H

ar
te

br
od

t
et

al
.2

02
1

Po
w

er
ite

ra
tio

n
ba

se
d

P
C

A
fo

r
ve

rt
ic

al
ly

pa
rt

iti
on

ed
da

ta
w

ith
ou

t
sh

ar
in

g
th

e
sa

m
pl

e
ei

ge
nv

ec
to

rs
.

D
iff

er
en

tia
lly

P
ri

va
te

P
ri

nc
ip

al
C

om
-

po
ne

nt
A

na
ly

si
so

ve
rH

or
iz

on
ta

lly
Pa

r-
tit

io
ne

d
D

at
a

S.
W

an
g

an
d

M
or

ri
s

C
ha

ng
20

19
H

E
&

D
P

Se
cu

re
co

m
pu

ta
tio

n
of

no
is

y
gl

ob
al

co
va

ri
an

ce
m

at
ri

x

Se
cu

re
pr

in
ci

pa
lc

om
po

ne
nt

an
al

ys
is

in
m

ul
tip

le
di

st
ri

bu
te

d
no

de
s

W
on

et
al

.2
01

6
-

C
om

pu
ta

tio
n

of
gl

ob
al

co
va

ri
an

ce
m

at
ri

x
an

d
ap

pl
ic

a-
tio

n
ca

se

H
FL

V
FL

O
n

th
e

pe
rf

or
m

an
ce

ov
er

he
ad

tr
ad

e-
off

of
di

st
ri

bu
te

d
pr

in
ci

pa
lc

om
po

ne
nt

an
al

ys
is

vi
a

da
ta

pa
rt

iti
on

in
g

A
n

an
d

W
eb

er
20

16
-

E
m

pi
ri

ca
le

va
lu

at
io

n
of

B
al

ca
n,

K
an

ch
an

ap
al

ly
,e

t
al

.
20

14
an

d
K

ar
gu

pt
a

et
al

.
20

01
w

ith
re

sp
ec

t
to

co
m

-
m

un
ic

at
io

n

143

A. Supplementary information

FL T
yp

e
T

itl
e

A
ut

ho
r

(Y
ea

r)
P

ri
va

cy
C

on
te

nt

E
ffi

ci
en

t
pr

ot
oc

ol
s

fo
r

pr
in

ci
pa

l
ei

ge
n-

ve
ct

or
co

m
pu

ta
tio

n
ov

er
pr

iv
at

e
da

ta
Pa

th
ak

an
d

R
aj

20
11

SM
P

C
&

H
E

Se
cu

re
P

C
A

ba
se

d
on

po
w

er
ite

ra
tio

n.

D
FL

E
ffi

ci
en

t
an

d
R

ob
us

t
Fu

lly
D

is
tr

ib
ut

ed
Po

w
er

M
et

ho
d

w
ith

an
A

pp
lic

at
io

n
to

Li
nk

A
na

ly
si

s
C

an
ri

gh
t

et
al

. 2
00

5
-

Po
w

er
ite

ra
tio

n
by

w
ei

gh
t

pr
op

ag
at

io
n

in
a

ad
ja

ce
nc

y
m

at
ri

x

A
sy

nc
hr

on
ou

s
D

is
tr

ib
ut

ed
Po

w
er

It
-

er
at

io
n

w
ith

G
os

si
p-

B
as

ed
N

or
m

al
iz

a-
tio

n
Je

la
si

ty
et

al
. 2

00
7

E
xt

en
si

on
of

di
st

ri
bu

te
d

po
w

er
ite

ra
tio

n

A
di

st
ri

bu
te

d
ei

ge
ns

ol
ve

r
fo

r
lo

os
el

y
co

up
le

d
ne

tw
or

ks
St

ra
ko

vá
an

d
G

an
st

er
er

20
13

-
Q

R
ba

se
d

ei
ge

nv
ec

to
r

co
m

pu
ta

tio
n

us
in

g
go

ss
ip

in
g

A
sy

nc
hr

on
ou

s
go

ss
ip

pr
in

ci
pa

lc
om

po
-

ne
nt

s
an

al
ys

is
Fe

llu
s

et
al

. 2
01

5
-

P
C

A
ba

se
d

on
di

st
ri

bu
te

d
av

er
ag

in
g

A
D

is
tr

ib
ut

ed
Fr

am
ew

or
k

fo
r

D
im

en
-

si
on

al
ity

R
ed

uc
tio

n
an

d
D

en
oi

si
ng

Sc
hi

za
s

an
d

A
du

ro
ja

20
15

-
P

C
A

fo
r

se
ns

or
ne

tw
or

ks

C
M

L

P
ri

nc
ip

al
C

om
po

ne
nt

A
na

ly
si

s
Jo

lli
ffe

20
02

-
R

ef
er

en
ce

lit
er

at
ur

e
fo

r
P

C
A

N
um

er
ic

al
M

et
ho

ds
fo

r
La

rg
e

E
ig

en
-

va
lu

e
P

ro
bl

em
s

Sa
ad

20
11

G
en

er
al

In
tr

od
uc

tio
n

to
E

ig
en

va
lu

e
P

ro
bl

em
s

Fi
nd

in
g

st
ru

ct
ur

e
w

ith
ra

nd
om

ne
ss

:
pr

ob
ab

ili
st

ic
al

go
ri

th
m

s
fo

r
co

ns
tr

uc
t-

in
g

ap
pr

ox
im

at
e

m
at

ri
x

de
co

m
po

si
-

tio
ns

H
al

ko
et

al
. 2

01
1

-
D

iv
er

se
P

C
A

al
go

ri
th

m
s

in
cl

ud
in

g
ra

nd
om

iz
ed

pr
oj

ec
-

tio
n

ba
se

d
P

C
A

A
na

ly
ze

G
au

ss
:

O
pt

im
al

bo
un

ds
fo

r
pr

iv
ac

y-
pr

es
er

vi
ng

pr
in

ci
pa

l
co

m
po

-
ne

nt
an

al
ys

is
D

w
or

k
et

al
.2

01
4

D
P

C
ov

ar
ia

nc
e

pe
rt

ur
ba

tio
n

m
et

ho
d

to
co

m
pu

te
pr

iv
at

e
E

ig
en

ve
ct

or
s

T
he

N
oi

sy
Po

w
er

M
et

ho
d:

A
M

et
a

A
l-

go
ri

th
m

w
ith

A
pp

lic
at

io
ns

H
ar

dt
an

d
E

.P
ri

ce
20

14
D

P
Lo

ca
l

Po
w

er
It

er
at

io
n

w
ith

D
P,

A
pp

lic
at

io
n

to
St

re
am

in
g

C
oo

rd
in

at
e-

w
is

e
po

w
er

m
et

ho
d

Le
ie

t
al

.2
01

6
-

O
nl

y
co

or
di

na
te

s
w

hi
ch

ha
ve

no
t

co
nv

er
ge

d
ye

t
ar

e
up

da
te

d
Fa

st
er

P
C

A
an

d
lin

ea
r

re
gr

es
si

on
th

ro
ug

h
hy

pe
rc

ub
es

in
H

E
lib

R
at

he
e

et
al

.2
01

8
H

E
E

nc
ry

pt
ed

po
w

er
ite

ra
tio

n

144

Additional Literature
Ta

bl
e

A
.2

–
Ex

am
pl

es
of

ap
pl

ic
at

io
ns

of
PC

A
in

bi
oi

nf
or

m
at

ic
s

FL T
yp

e
T

itl
e

A
ut

ho
r

(Y
ea

r)
C

on
te

nt

C
M

L

P
ri

nc
ip

al
co

m
po

ne
nt

sa
na

ly
si

sc
or

re
ct

s
fo

r
st

ra
tifi

ca
tio

n
in

ge
no

m
e-

w
id

e
as

so
-

ci
at

io
n

st
ud

ie
s

A
.L

.P
ri

ce
et

al
.2

00
6

In
te

re
st

in
g

P
C

A

O
ut

lie
r-

R
ob

us
t

P
C

A
:

T
he

H
ig

h-
D

im
en

si
on

al
C

as
e

X
u

et
al

.2
01

3
P

C
A

w
hi

ch
ca

n
de

al
w

ith
co

rr
up

te
d

da
ta

G
en

e
ex

pr
es

si
on

an
al

ys
is

id
en

tifi
es

gl
ob

al
ge

ne
do

sa
ge

se
ns

iti
vi

ty
in

ca
n-

ce
r

Fe
hr

m
an

n
et

al
. 2

01
5

A
pp

lic
at

io
n

of
P

C
A

Se
co

nd
-g

en
er

at
io

n
P

LI
N

K
:

R
is

in
g

to
th

e
ch

al
le

ng
e

of
la

rg
er

an
d

ri
ch

er
da

ta
se

ts
C

ha
ng

et
al

.2
01

5
pl

in
k

–
P

C
A

fo
r

po
pu

la
tio

n
st

ra
tifi

ca
tio

n

Fa
st

P
ri

nc
ip

al
-C

om
po

ne
nt

A
na

ly
si

s
R

ev
ea

ls
C

on
ve

rg
en

t
E

vo
lu

tio
n

of
A

D
H

1B
in

E
ur

op
e

an
d

E
as

t
A

si
a

G
al

in
sk

y
et

al
. 2

01
6

Fa
st

pr
in

ci
pa

lc
om

po
ne

nt
an

al
ys

is
fo

r
G

W
A

S

C
on

se
qu

en
ce

s
of

P
C

A
gr

ap
hs

,
SN

P
co

di
ng

s,
an

d
P

C
A

va
ri

an
ts

fo
r

el
uc

i-
da

tin
g

po
pu

la
tio

n
st

ru
ct

ur
e

G
au

ch
et

al
. 2

01
9

A
pp

lic
at

io
n

of
P

C
A

in
G

W
A

S

E
ffi

ci
en

t
in

te
gr

at
io

n
of

he
te

ro
ge

-
ne

ou
s

si
ng

le
-c

el
l

tr
an

sc
ri

pt
om

es
us

in
g

Sc
an

or
am

a
H

ie
et

al
.2

01
9

A
pp

lic
at

io
n

of
P

C
A

fo
r

si
ng

le
ce

ll
in

te
gr

at
io

n

R
ob

us
t

pr
in

ci
pa

l
co

m
po

ne
nt

an
al

ys
is

fo
ra

cc
ur

at
e

ou
tli

er
sa

m
pl

e
de

te
ct

io
n

in
R

N
A

-S
eq

da
ta

X
.C

he
n,

Zh
an

g,
et

al
.2

02
0

P
C

A
fo

r
ou

tli
er

de
te

ct
io

n

U
nl

ab
el

ed
P

ri
nc

ip
al

C
om

po
ne

nt
A

na
l-

ys
is

Ya
o

et
al

.2
02

1
P

C
A

w
hi

ch
ca

n
de

al
w

ith
co

rr
up

te
d

da
ta

(e
.g

.
bl

oc
k

pe
rm

u-
ta

tio
ns

).
Fa

st
Po

p:
A

ra
pi

d
pr

in
ci

pa
lc

om
po

ne
nt

de
ri

ve
d

m
et

ho
d

to
in

fe
r

in
te

rc
on

tin
en

-
ta

la
nc

es
tr

y
us

in
g

ge
ne

tic
da

ta
Li

et
al

.2
01

6
P

C
A

fo
r

po
pu

la
tio

n
st

ra
tifi

ca
tio

n

R
ob

us
t

Su
bs

pa
ce

Le
ar

ni
ng

:
R

ob
us

t
P

C
A

,R
ob

us
t

Su
bs

pa
ce

Tr
ac

ki
ng

,a
nd

R
ob

us
t

Su
bs

pa
ce

R
ec

ov
er

y
Va

sw
an

ie
t

al
.2

01
8

O
ut

lie
r

ro
bu

st
P

C
A

145

A. Supplementary information

FL T
yp

e
T

itl
e

A
ut

ho
r

(Y
ea

r)
C

on
te

nt

H
FL

Fa
ul

t
de

te
ct

io
n

in
w

as
te

w
at

er
tr

ea
t-

m
en

t
pl

an
ts

us
in

g
di

st
ri

bu
te

d
P

C
A

m
et

ho
ds

Sa
nc

he
z-

Fe
rn

an
de

z
et

al
.2

01
5

A
pp

lic
at

io
n

of
Q

R
ba

se
d

P
C

A
to

w
as

te
w

at
er

tr
ea

tm
en

t
pl

an
t

fa
ul

t
de

te
ct

io
n

146

Additional Literature
Ta

bl
e

A
.3

–
Pu

bl
ic

at
io

ns
re

la
te

d
to

ot
he

r
un

su
pe

rv
ise

d
le

ar
ni

ng

FL T
yp

e
U

FL
T

yp
e

T
itl

e
A

ut
ho

r
(Y

ea
r)

C
on

te
nt

H
FL

Te
ns

or
fa

ct
or

iz
at

io
n

Fe
de

ra
te

d
Te

ns
or

Fa
ct

or
iz

at
io

n
fo

r
C

om
pu

ta
tio

na
lP

he
no

ty
pi

ng
K

im
et

al
.2

01
7

Te
ns

or
fa

co
tr

iz
at

io
n

to
de

te
ct

ph
en

o-
ty

pe
s.

M
at

ri
x

is
de

co
m

po
se

d
in

to
a

fe
at

ur
e

an
d

a
pa

tie
nt

co
m

po
ne

nt
,s

im
-

ila
r

to
P

C
A

bu
t

no
n-

lin
ea

r.

H
FL

C
-M

ea
ns

Fe
de

ra
te

d
FC

M
:C

lu
st

er
in

g
U

nd
er

P
ri

-
va

cy
R

eq
ui

re
m

en
ts

Pe
dr

yc
z

20
21

Fu
zz

y
C

-M
ea

ns
,

ob
je

ct
iv

e
fu

nc
tio

n
ba

se
d

cl
us

te
ri

ng
.

Lo
ca

l
ro

un
ds

fo
l-

lo
w

ed
by

gl
ob

al
gr

ad
ie

nt
up

da
te

H
FL

Sp
ec

tr
al

cl
us

te
ri

ng
Fe

de
ra

te
d

M
ul

ti-
V

ie
w

Sp
ec

tr
al

C
lu

s-
te

ri
ng

H
.W

an
g

et
al

.2
02

0
Sp

ec
tr

al
cl

us
te

ri
ng

w
ith

H
om

om
or

ph
ic

en
cr

yp
tio

n
(B

as
ed

on
fe

de
ra

te
d

P
C

A
)

Ta
bl

e
A

.4
–

Pu
bl

ic
at

io
ns

re
la

te
d

to
cl

us
te

re
d

FL

FL T
yp

e
T

itl
e

A
ut

ho
r

(Y
ea

r)
C

on
te

nt

H
FL

Ze
ro

K
no

w
le

dg
e

C
lu

st
er

in
g

B
as

ed
A

d-
ve

rs
ar

ia
l

M
iti

ga
tio

n
in

H
et

er
og

en
eo

us
Fe

de
ra

te
d

Le
ar

ni
ng

Z.
C

he
n

et
al

.2
02

1

C
lu

st
er

ed
Fe

de
ra

te
d

Le
ar

ni
ng

:
M

in
m

ax
in

iti
al

iz
at

io
n

an
d

cl
us

te
rs

pl
itt

in
g/

m
er

gi
ng

st
ra

te
gy

to
cl

us
te

rg
ra

di
en

tu
pd

at
ed

.
C

lu
st

er
in

g
ha

pp
en

s
at

th
e

ag
gr

eg
at

or
,

th
e

up
da

te
s

no
t

th
e

da
ta

its
el

fi
s

cl
us

te
re

d.

H
FL

C
lu

st
er

G
ra

d:
A

da
pt

iv
e

G
ra

di
en

tC
om

-
pr

es
si

on
by

C
lu

st
er

in
g

in
Fe

de
ra

te
d

Le
ar

ni
ng

C
ui

et
al

.2
02

0
C

lu
st

er
ed

Fe
de

ra
te

d
Le

ar
ni

ng
:

G
ra

di
en

ts
ar

e
cl

us
te

re
d

be
fo

re
se

nd
in

g,
to

id
en

tif
y

in
fo

rm
at

iv
e

up
da

te
s

an
d

av
er

ag
e

th
e

re
st

.

H
FL

Fe
dG

ro
up

:
E

ffi
ci

en
t

Fe
de

ra
te

d
Le

ar
n-

in
g

vi
a

D
ec

om
po

se
d

Si
m

ila
ri

ty
-B

as
ed

C
lu

st
er

in
g

D
ua

n
et

al
.2

02
1

C
lu

st
er

ed
Fe

de
ra

te
d

Le
ar

ni
ng

:
A

no
ve

lG
ra

di
en

tu
pd

at
e

st
ra

t-
eg

y

147

A. Supplementary information

References
Alimisis, F. et al. (2021). “Distributed Principal Component Analysis with Lim-

ited Communication”. In: NeurIPS. arXiv: 2110.14391. url: http://arxiv.
org/abs/2110.14391.

An, N. and Weber, S. (2016). “On the performance overhead tradeoff of dis-
tributed principal component analysis via data partitioning”. In: 2016 50th
Annual Conference on Information Systems and Sciences, CISS 2016, pp. 578–
583. doi: 10.1109/CISS.2016.7460567.

Bai, Z.-J., Chan, R. H., and Luk, F. T. (2005). “Principal Component Analysis
for Distributed Data Sets with Updating”. In: Advanced Parallel Process-
ing Technologies. Ed. by J. Cao, W. Nejdl, and M. Xu. Berlin, Heidelberg:
Springer Berlin Heidelberg, pp. 471–483.

Balcan, M.-F., Du, S. S., et al. (2016). “An Improved Gap-Dependency Anal-
ysis of the Noisy Power Method”. In: 29th Annual Conference on Learning
Theory. Proceedings of Machine Learning Research 49. Ed. by V. Feldman,
A. Rakhlin, and O. Shamir, pp. 284–309. url: http://proceedings.mlr.
press/v49/balcan16a.html.

Balcan, M.-F., Kanchanapally, V., et al. (2014). “Improved Distributed Principal
Component Analysis”. In: Proceedings of the 27th International Conference
on Neural Information Processing Systems - Volume 2. NIPS’14. Montreal,
Canada: MIT Press, pp. 3113–3121.

Canright, G., Engø-Monsen, K., and Jelasity, M. (2005). “Efficient and Robust
Fully Distributed Power Method with an Application to Link Analysis”. In:
Technical Report UBLCS-2005-17 September.

Chai, D. et al. (2021). Federated Singular Vector Decomposition. Vol. 1. 1. Asso-
ciation for Computing Machinery. arXiv: 2105.08925. url: http://arxiv.
org/abs/2105.08925.

Chang, C. C. et al. (2015). “Second-generation PLINK: Rising to the challenge
of larger and richer datasets”. In: GigaScience 4.1, pp. 1–16. issn: 2047217X.
doi: 10.1186/s13742-015-0047-8. arXiv: 1410.4803.

Chen, X., Lee, J. D., et al. (2021). “Distributed Estimation for Principal Compo-
nent Analysis: An Enlarged Eigenspace Analysis”. In: Journal of the Ameri-
can Statistical Association. issn: 1537274X. doi: 10.1080/01621459.2021.
1886937. arXiv: 2004.02336.

Chen, X., Zhang, B., et al. (2020). “Robust principal component analysis for
accurate outlier sample detection in RNA-Seq data”. In: BMC Bioinformatics
21.1, pp. 1–20. issn: 14712105. doi: 10.1186/s12859-020-03608-0.

Chen, Z. et al. (2021). “Zero Knowledge Clustering Based Adversarial Mitigation
in Heterogeneous Federated Learning”. In: IEEE Transactions on Network
Science and Engineering 8.2, pp. 1070–1083. issn: 2327-4697. doi: 10.1109/
TNSE.2020.3002796. url: https://ieeexplore.ieee.org/document/
9119145/.

148

https://arxiv.org/abs/2110.14391
http://arxiv.org/abs/2110.14391
http://arxiv.org/abs/2110.14391
https://doi.org/10.1109/CISS.2016.7460567
http://proceedings.mlr.press/v49/balcan16a.html
http://proceedings.mlr.press/v49/balcan16a.html
https://arxiv.org/abs/2105.08925
http://arxiv.org/abs/2105.08925
http://arxiv.org/abs/2105.08925
https://doi.org/10.1186/s13742-015-0047-8
https://arxiv.org/abs/1410.4803
https://doi.org/10.1080/01621459.2021.1886937
https://doi.org/10.1080/01621459.2021.1886937
https://arxiv.org/abs/2004.02336
https://doi.org/10.1186/s12859-020-03608-0
https://doi.org/10.1109/TNSE.2020.3002796
https://doi.org/10.1109/TNSE.2020.3002796
https://ieeexplore.ieee.org/document/9119145/
https://ieeexplore.ieee.org/document/9119145/

References

Cui, L. et al. (2020). “ClusterGrad: Adaptive Gradient Compression by Clus-
tering in Federated Learning”. In: 2020 IEEE Global Communications Con-
ference, GLOBECOM 2020 - Proceedings. doi: 10.1109/GLOBECOM42002.
2020.9322527.

Duan, M. et al. (2021). “FedGroup: Efficient Federated Learning via Decomposed
Similarity-Based Clustering”. In: 2021 IEEE Intl Conf on Parallel Distributed
Processing with Applications, pp. 228–237. doi: 10.1109/ISPA-BDCloud-
SocialCom-SustainCom52081.2021.00042.

Dwork, C. et al. (2014). “Analyze Gauss: Optimal bounds for privacy-preserving
principal component analysis”. In: Proceedings of the Annual ACM Sympo-
sium on Theory of Computing, pp. 11–20. issn: 07378017. doi: 10.1145/
2591796.2591883.

Fan, J. et al. (2019). “Distributed estimation of principal eigenspaces”. In: Annals
of Statistics 47.6, pp. 3009–3031. issn: 21688966. doi: 10.1214/18-AOS1713.
arXiv: 1702.06488.

Fehrmann, R. S. et al. (2015). “Gene expression analysis identifies global gene
dosage sensitivity in cancer”. In: Nature Genetics 47.2, pp. 115–125. issn:
15461718. doi: 10.1038/ng.3173.

Fellus, J., Picard, D., and Gosselin, P.-H. (2015). “Asynchronous gossip principal
components analysis”. In: Neurocomputing 169, pp. 262–271. issn: 09252312.
doi: 10 . 1016 / j . neucom . 2014 . 11 . 076. url: https : / / linkinghub .
elsevier.com/retrieve/pii/S0925231215003628.

Galinsky, K. J. et al. (2016). “Fast Principal-Component Analysis Reveals Con-
vergent Evolution of ADH1B in Europe and East Asia”. In: The American
Journal of Human Genetics 98.3, pp. 456–472. issn: 00029297. doi: 10 .
1016/j.ajhg.2015.12.022. url: http://dx.doi.org/10.1016/j.ajhg.
2015.12.022%20https://linkinghub.elsevier.com/retrieve/pii/
S0002929716000033.

Gauch, H. G. et al. (2019). “Consequences of PCA graphs, SNP codings, and PCA
variants for elucidating population structure”. In: PLoS ONE 14.6, pp. 1–26.
issn: 19326203. doi: 10.1371/journal.pone.0218306.

Grammenos, A. et al. (2020). “Federated Principal Component Analysis”. In: Ad-
vances in Neural Information Processing Systems. Ed. by H. Larochelle et al.
Vol. 33. Curran Associates, Inc., pp. 6453–6464. url: https://proceedings.
neurips . cc / paper / 2020 / file / 47a658229eb2368a99f1d032c8848542 -
Paper.pdf.

Guo, Y. F. et al. (2012). “A covariance-free iterative algorithm for distributed
principal component analysis on vertically partitioned data”. In: Pattern
Recognition 45.3, pp. 1211–1219. issn: 00313203. doi: 10.1016/j.patcog.
2011.09.002. url: http://dx.doi.org/10.1016/j.patcog.2011.09.002.

Halko, N., Martinsson, P. G., and Tropp, J. A. (2011). “Finding structure with
randomness: probabilistic algorithms for constructing approximate matrix
decompositions”. In: pp. 1–74. arXiv: arXiv:0909.4061v2.

149

https://doi.org/10.1109/GLOBECOM42002.2020.9322527
https://doi.org/10.1109/GLOBECOM42002.2020.9322527
https://doi.org/10.1109/ISPA-BDCloud-SocialCom-SustainCom52081.2021.00042
https://doi.org/10.1109/ISPA-BDCloud-SocialCom-SustainCom52081.2021.00042
https://doi.org/10.1145/2591796.2591883
https://doi.org/10.1145/2591796.2591883
https://doi.org/10.1214/18-AOS1713
https://arxiv.org/abs/1702.06488
https://doi.org/10.1038/ng.3173
https://doi.org/10.1016/j.neucom.2014.11.076
https://linkinghub.elsevier.com/retrieve/pii/S0925231215003628
https://linkinghub.elsevier.com/retrieve/pii/S0925231215003628
https://doi.org/10.1016/j.ajhg.2015.12.022
https://doi.org/10.1016/j.ajhg.2015.12.022
http://dx.doi.org/10.1016/j.ajhg.2015.12.022%20https://linkinghub.elsevier.com/retrieve/pii/S0002929716000033
http://dx.doi.org/10.1016/j.ajhg.2015.12.022%20https://linkinghub.elsevier.com/retrieve/pii/S0002929716000033
http://dx.doi.org/10.1016/j.ajhg.2015.12.022%20https://linkinghub.elsevier.com/retrieve/pii/S0002929716000033
https://doi.org/10.1371/journal.pone.0218306
https://proceedings.neurips.cc/paper/2020/file/47a658229eb2368a99f1d032c8848542-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/47a658229eb2368a99f1d032c8848542-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/47a658229eb2368a99f1d032c8848542-Paper.pdf
https://doi.org/10.1016/j.patcog.2011.09.002
https://doi.org/10.1016/j.patcog.2011.09.002
http://dx.doi.org/10.1016/j.patcog.2011.09.002
https://arxiv.org/abs/arXiv:0909.4061v2

A. Supplementary information

Hardt, M. and Price, E. (2014). “The Noisy Power Method: A Meta Algorithm
with Applications”. In: Proceedings of the 27th International Conference on
Neural Information Processing Systems - Volume 2. NIPS’14, pp. 2861–2869.

Hartebrodt, A. et al. (2021). “Federated Principal Component Analysis for Genome-
Wide Association Studies”. In: Icdm, pp. 1090–1095. doi: 10.1109/ICDM51629.
2021.00127.

Hie, B., Bryson, B., and Berger, B. (2019). “Efficient integration of heterogeneous
single-cell transcriptomes using Scanorama”. In: Nature Biotechnology 37.6,
pp. 685–691. issn: 15461696. doi: 10 . 1038 / s41587 - 019 - 0113 - 3. url:
http://dx.doi.org/10.1038/s41587-019-0113-3.

Imtiaz, H., Mohammadi, J., and Sarwate, A. D. (2019). “Distributed Differen-
tially Private Computation of Functions with Correlated Noise”. In: pp. 1–40.
arXiv: arXiv:1904.10059v1.

Imtiaz, H. and Sarwate, A. D. (2018). “Differentially Private Distributed Princi-
pal Component Analysis”. In: 2018 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP). IEEE, pp. 2206–2210. isbn:
978-1-5386-4658-8. doi: 10.1109/ICASSP.2018.8462519. url: https://
ieeexplore.ieee.org/document/8462519/.

Jelasity, M., Canright, G., and Engø-Monsen, K. (2007). “Asynchronous Dis-
tributed Power Iteration with Gossip-Based Normalization”. In: Euro-Par
2007, pp. 514–525. doi: 10.1007/978- 3- 540- 74466- 5_55. url: http:
//link.springer.com/10.1007/978-3-540-74466-5_55.

Jolliffe, I. (2002). Principal Component Analysis. Springer-Verlag. doi: 10.1007/
b98835. url: https://doi.org/10.1007/b98835.

Kargupta, H. et al. (2001). “Distributed Clustering Using Collective Principal
Component Analysis”. In: Knowledge and Information Systems. doi: 10 .
4324/9781315799476-12.

Kim, Y. et al. (2017). “Federated Tensor Factorization for Computational Pheno-
typing”. In: Proceedings of the 23rd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. Vol. 176. 12. New York, NY, USA:
ACM, pp. 887–895. isbn: 9781450348874. doi: 10.1145/3097983.3098118.
url: https://dl.acm.org/doi/10.1145/3097983.3098118.

Lei, Q., Zhong, K., and Dhillon, I. S. (2016). “Coordinate-wise power method”.
In: Advances in Neural Information Processing Systems Nips, pp. 2064–2072.
issn: 10495258.

Li, Y. et al. (2016). “FastPop: A rapid principal component derived method to
infer intercontinental ancestry using genetic data”. In: BMC Bioinformatics
17.1, pp. 1–8. issn: 14712105. doi: 10.1186/s12859- 016- 0965- 1. url:
http://dx.doi.org/10.1186/s12859-016-0965-1.

Liang, Y., Balcan, M.-f., and Kanchanapally, V. (2013). “Distributed PCA and k
-Means Clustering”. In: The Big Learning Workshop in NIPS 2013, pp. 1–8.

Liu, B. et al. (2018). “A Distributed Principal Component Analysis Compres-
sion for Smart Seismic Acquisition Networks”. In: IEEE Transactions on

150

https://doi.org/10.1109/ICDM51629.2021.00127
https://doi.org/10.1109/ICDM51629.2021.00127
https://doi.org/10.1038/s41587-019-0113-3
http://dx.doi.org/10.1038/s41587-019-0113-3
https://arxiv.org/abs/arXiv:1904.10059v1
https://doi.org/10.1109/ICASSP.2018.8462519
https://ieeexplore.ieee.org/document/8462519/
https://ieeexplore.ieee.org/document/8462519/
https://doi.org/10.1007/978-3-540-74466-5_55
http://link.springer.com/10.1007/978-3-540-74466-5_55
http://link.springer.com/10.1007/978-3-540-74466-5_55
https://doi.org/10.1007/b98835
https://doi.org/10.1007/b98835
https://doi.org/10.1007/b98835
https://doi.org/10.4324/9781315799476-12
https://doi.org/10.4324/9781315799476-12
https://doi.org/10.1145/3097983.3098118
https://dl.acm.org/doi/10.1145/3097983.3098118
https://doi.org/10.1186/s12859-016-0965-1
http://dx.doi.org/10.1186/s12859-016-0965-1

References

Geoscience and Remote Sensing 56.6, pp. 3020–3029. issn: 01962892. doi:
10.1109/TGRS.2018.2789354.

Liu, Y. et al. (2020). “Privacy Preserving PCA for Multiparty Modeling”. In:
arXiv: 2002.02091. url: http://arxiv.org/abs/2002.02091.

Nasirigerdeh, R. et al. (2021). “HyFed: A Hybrid Federated Framework for Privacy-
preserving Machine Learning”. In: CoRR abs/2105.10545. arXiv: 2105.10545.
url: https://arxiv.org/abs/2105.10545.

Pathak, M. A. and Raj, B. (2011). “Efficient protocols for principal eigenvec-
tor computation over private data”. In: Transactions on Data Privacy 4.3,
pp. 129–146. issn: 18885063.

Pedrycz, W. (2021). “Federated FCM: Clustering Under Privacy Requirements”.
In: IEEE Transactions on Fuzzy Systems 6706.c, pp. 1–6. issn: 19410034.
doi: 10.1109/TFUZZ.2021.3105193.

Price, A. L. et al. (2006). “Principal components analysis corrects for stratifica-
tion in genome-wide association studies”. In: Nature Genetics 38.8, pp. 904–
909. issn: 10614036. doi: 10.1038/ng1847.

Qi, H., Wang, T. W., and Birdwell, J. D. (2003). “Global principal component
analysis for dimensionality reduction in distributed data mining”. In: Sta-
tistical Data Mining and Knowledge Discovery. Chapman and Hall/CRC,
pp. 323–338. isbn: 9780203497159. doi: 10 . 1201 / 9780203497159 . ch19.
url: http://www.crcnetbase.com/doi/10.1201/9780203497159.ch19.

Qu, Y. et al. (2002). “Principal Component Analysis for Dimension Reduction
in Massive Distributed Data Sets”. In: Workshop on High Performance Data
Mining at the Second SIAM International Conference on Data Mining, pp. 4–
9.

Ramirez-Llanos, E. and Martinez, S. (2016). “Distributed stopping criteria for the
power iteration applied to virus mitigation”. In: Conference Record - Asilomar
Conference on Signals, Systems and Computers 2016-Febru, pp. 1328–1332.
issn: 10586393. doi: 10.1109/ACSSC.2015.7421358.

Rathee, D., Mishra, P. K., and Yasuda, M. (2018). “Faster PCA and linear regres-
sion through hypercubes in HElib”. In: Proceedings of the ACM Conference
on Computer and Communications Security 1, pp. 42–53. issn: 15437221.
doi: 10.1145/3267323.3268952.

Al-Rubaie, M. et al. (2017). “Privacy-preserving PCA on horizontally-partitioned
data”. In: 2017 IEEE Conference on Dependable and Secure Computing,
pp. 280–287. doi: 10.1109/DESEC.2017.8073817.

Saad, Y. (2011). Numerical Methods for Large Eigenvalue Problems. Classics
in Applied Mathematics. Society for Industrial and Applied Mathematics.
isbn: 978-1-61197-072-2. doi: 10 . 1137 / 1 . 9781611970739. url: https :
//epubs.siam.org/doi/book/10.1137/1.9781611970739.

Sanchez-Fernandez, A., Fuente, M., and Sainz-Palmero, G. (2015). “Fault de-
tection in wastewater treatment plants using distributed PCA methods”. In:
2015 IEEE 20th Conference on Emerging Technologies & Factory Automa-

151

https://doi.org/10.1109/TGRS.2018.2789354
https://arxiv.org/abs/2002.02091
http://arxiv.org/abs/2002.02091
https://arxiv.org/abs/2105.10545
https://arxiv.org/abs/2105.10545
https://doi.org/10.1109/TFUZZ.2021.3105193
https://doi.org/10.1038/ng1847
https://doi.org/10.1201/9780203497159.ch19
http://www.crcnetbase.com/doi/10.1201/9780203497159.ch19
https://doi.org/10.1109/ACSSC.2015.7421358
https://doi.org/10.1145/3267323.3268952
https://doi.org/10.1109/DESEC.2017.8073817
https://doi.org/10.1137/1.9781611970739
https://epubs.siam.org/doi/book/10.1137/1.9781611970739
https://epubs.siam.org/doi/book/10.1137/1.9781611970739

A. Supplementary information

tion (ETFA). IEEE, pp. 1–7. isbn: 978-1-4673-7929-8. doi: 10.1109/ETFA.
2015.7301504. url: http://ieeexplore.ieee.org/document/7301504/.

Schizas, I. D. and Aduroja, A. (2015). “A Distributed Framework for Dimension-
ality Reduction and Denoising”. In: IEEE Transactions on Signal Processing
63.23, pp. 6379–6394. issn: 1053587X. doi: 10.1109/TSP.2015.2465300.

Straková, H. and Gansterer, W. N. (2013). “A distributed eigensolver for loosely
coupled networks”. In: Proceedings of the 2013 21st Euromicro International
Conference on Parallel, Distributed, and Network-Based Processing, PDP
2013, pp. 51–57. doi: 10.1109/PDP.2013.18.

Vaswani, N. et al. (2018). “Robust Subspace Learning: Robust PCA, Robust Sub-
space Tracking, and Robust Subspace Recovery”. In: IEEE Signal Processing
Magazine 35.4, pp. 32–55.

Wang, H. et al. (2020). “Federated Multi-View Spectral Clustering”. In: IEEE
Access 8, pp. 202249–202259. issn: 21693536. doi: 10.1109/ACCESS.2020.
3036747.

Wang, S. and Morris Chang, J. (2019). “Differentially Private Principal Com-
ponent Analysis over Horizontally Partitioned Data”. In: DSC 2018 - 2018
IEEE Conference on Dependable and Secure Computing, pp. 1–8. doi: 10.
1109/DESEC.2018.8625131.

Won, H.-S. et al. (2016). “Secure principal component analysis in multiple dis-
tributed nodes”. In: Security and Communication Networks 9.14, pp. 2348–
2358. issn: 19390114. doi: 10.1002/sec.1501. arXiv: 0806.0557. url:
http://arxiv.org/abs/0806.0557%20http://doi.wiley.com/10.1002/
sec.1501.

Wu, S. X. et al. (2018). “A Review of Distributed Algorithms for Principal Com-
ponent Analysis”. In: Proceedings of the IEEE 106.8, pp. 1321–1340. issn:
00189219. doi: 10.1109/JPROC.2018.2846568.

Xu, H., Caramanis, C., and Mannor, S. (2013). “Outlier-Robust PCA: The High-
Dimensional Case”. In: IEEE Transactions on Information Theory 59.1, pp. 546–
572.

Yao, Y., Peng, L., and Tsakiris, M. C. (2021). “Unlabeled Principal Component
Analysis”. In: CoRR abs/2101.09446. arXiv: 2101.09446. url: https://
arxiv.org/abs/2101.09446.

152

https://doi.org/10.1109/ETFA.2015.7301504
https://doi.org/10.1109/ETFA.2015.7301504
http://ieeexplore.ieee.org/document/7301504/
https://doi.org/10.1109/TSP.2015.2465300
https://doi.org/10.1109/PDP.2013.18
https://doi.org/10.1109/ACCESS.2020.3036747
https://doi.org/10.1109/ACCESS.2020.3036747
https://doi.org/10.1109/DESEC.2018.8625131
https://doi.org/10.1109/DESEC.2018.8625131
https://doi.org/10.1002/sec.1501
https://arxiv.org/abs/0806.0557
http://arxiv.org/abs/0806.0557%20http://doi.wiley.com/10.1002/sec.1501
http://arxiv.org/abs/0806.0557%20http://doi.wiley.com/10.1002/sec.1501
https://doi.org/10.1109/JPROC.2018.2846568
https://arxiv.org/abs/2101.09446
https://arxiv.org/abs/2101.09446
https://arxiv.org/abs/2101.09446

Appendix B
Supplementary Material for

Manuscript 1: Federated
Horizontally Partitioned Principal

Component Analysis for
Biomedical Applications

153

Supplementary Material to Federated Horizontally Partitioned

Principal Component Analysis for Biomedical Applications

Anne Hartebrodt∗ and Richard Röttger*

February 13, 2022

1 Visualization of the sample distribution in TCGA according to
TSS

Stomach Thyroid gland

Liver and intrahepatic bile ducts Ovary Prostate gland Skin

Cervix uteri Colon Corpus uteri Kidney

Bladder Brain Breast Bronchus and lung

B
R

C
D

C
G

D
7

F
P

H
U IN R
D

V
Q B
J

D
E

D
J

E
8

E
L

E
M E
T

F
E

F
Y J8 K
S

2Y B
C

C
C

D
D

E
D

F
V

G
3

W
5 04 09 13 23 24 25 29 30 61 2A C
H

E
J

G
9

H
C J4 K
C

K
K

V
1

V
N

V
P

X
K

Y
L

Z
G

B
F

D
3

D
9

D
A

E
B

E
E

E
R

F
R

F
S

G
N

W
E

C
5

D
S

E
A

E
K

F
U

Q
1

V
S Z
J

A
6

A
A

A
D

AY A
Z

C
A

C
K

C
M

D
5

D
M F
4

G
4

A
5

A
J

A
P

A
X

B
5

B
G

B
K

B
S

D
1

E
O

E
Y F
I

2Z 5P A
3

A
4

A
K

B
0

B
2

B
8

B
9

B
P

B
Q C
J

C
W C
Z

D
V

D
W G
7

G
L

K
L

K
N

K
O P
4

S
X

U
Z

4Z B
T

C
F

D
K

E
7

F
D

G
2

G
C

G
U

G
V

K
4

U
Y

X
F

Z
F

06 12 14 19 27 28 32 C
S

D
B

D
H

D
U

E
1

F
G

H
T

H
W P
5

Q
H

S
9

T
M

T
Q A
1

A
2

A
7

A
8

A
C

A
N

A
O

A
R

B
6

B
H

C
8

D
8

E
2

E
9

E
W

G
M LL O
L

S
3 05 18 21 22 33 34 37 38 39 43 44 49 50 55 56 58 60 62 63 64 66 69 73 75 77 78 85 86 91 95 97 98 M
P

N
C

0

25

50

75

0

50

100

0

25

50

75

0

50

100

150

0

20

40

60

80

0

25

50

75

100

0

25

50

75

100

0

50

100

150

0

20

40

60

80

0

25

50

75

0
10
20
30
40
50

0

20

40

60

0

50

100

150

0

30

60

90

Sample site

#S
el

ec
te

d
sa

m
pl

es

Samples per Sample Site for TCGA studies with more than 300
 participants and at least 10 samples per sample site

Figure 1: Distribution of samples over the tissue collection sites for different cancer types. The data was
downloaded from TCGA. Selected studies had to contain at least 300 participants and study sites with fewer
than 10 samples were excluded.

∗Department of Mathematics and Computer Science, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark

1

Centralised SIT APSTACK
S

trong group effect
S

trong batch effect

−10 0 10 −10 0 10 −10 0 10

−10

0

10

−10

0

10

PC1

P
C

2

Batch Batch1 Batch2 Batch3 Batch4 Batch5

Group Group1 Group2

Figure 2: Comparison of centralized PCA, SUB-IT and AP-STACK using simulated single cell count data. The
upper panel depicts data where the group (e.g. case-control) is the strongest variance driving effect across
all sites. The lower panel shows data with a strong batch effect. AP-STACK is not able to reconstruct the
embedding faithfully with strong batch effects.

1.1 Application of federated PCA to simulated count data

Figure 2 shows a comparison of centralized, approximate (AP-STACK) and exact federated PCA (SUB-IT) using
two different simulated data sets. The first data set contains simulated count data without strong batch
effects, meaning that the group effect is the major driver of variation in the data. In this scenario, both
federated methods reconstruct the low dimensional embedding faithfully to the centralized algorithm which
clusters the data according to the group label. The second data set contains count data with a simulated
batch effect that is stronger that the group effect. The centralized algorithm clusters the data according to
the batch variable. SUB-IT computes the same representation, whereas AP-STACK does not properly separate
the batches, but instead separates the groups. The reason for this behavior is the fact, that at one site,
the major driver of variance is the group. The separation of the groups seems still reasonable. This can
be explained by the fact that the batch effect simulation tool adds the same systematic batch effect to all
’sites’, therefore the first eigenvector recovers this effect. This is an unrealistic assumption on batch effects.
In reality, there would likely be different batch effects at each site, leading to eigenvectors which point in
different directions. In that case the groups would not be recovered like they are in the present example.
Nonetheless, this simple example is sufficient to show the unsuitability of federated approximate PCA to
recover batch effects.

2

2 Drop out experiments

It is a known problem of centralized principal component analysis that it is vulnerable to outliers [7].
Outliers are data points which deviate strongly from the overall trend. Since PCA is a variance based linear
decomposition of the covariance matrix, single data points which are ’far’ from the rest can have a very
strong influence on the eigenvectors. The fewer samples are available, the higher the impact of an outlier. In
order to quantify this problematic with respect to our quality criterion the angle between the eigenvectors,
we include an simulation, where we drop single data points from the data. Specifically, we performed the
following computations: The exact PCA of a data set was computed. Then a random sample was removed
from the data and the exact PCA was computed again. The angle between the original eigenvector and the
’dropout’ eigenvector was computed. Figure 3 shows the effect of dropping single samples from the data
and recomputing the PCA. From the box plots it can be seen that most samples do not lead to a strong
deviation of the eigenvector from the original eigenvector, but some distort the result strongly. Therefore,
in a low sample regime, the approximate methods do not perform well. Compared to the angles expected
through approximate PCA in fig. 4, these angles are generally lower. This means that one can expect a
higher ’instability’ of of the results through

●●●●●

●

●●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●
●

●
●
●
●
●

●

●

●

●

●
●

●

●

●

●
●
●
●●

●

●

●
●●
●

●●
●

●

●

●

●
●
●
●●

●●

●

●
●
●

●●

●

●

●

●●

●

●●

●●●
●
●●

●

●●

●

●
●
●
●

●

●
●

●

●
●

●

●
●
●

●

●
●

●

●

●
●

●

●
●

●

●

●
●●

●

●●
●

●

●●
●●●●

●●

●

●
●●
●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●
●●
●●
●●●

●

●

●

●

●●
●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●
●●

●●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●
●
●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●●
●

●

●
●

●

●●
●

●

●●

●

●
●●

●

●●
●

●

●
●
●
●
●
●
●

●●

●

●

●

●●

●

●●

●

●

●

●
●

●

●●
●

●

●

●

●
●

●

●

●
●

●
●

●

●

●●

●

●●
●

●

●●●●

●●
●●●●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●●

●

●

●●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●
●●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●
●●

●●●

●

●

●

●

●

●

●

●●

●

● ●●

●

●
●●

●

●
●

●

●●

●●

●
●

●●●●
●●●●

●

●

●
●
●●●
●

●

●

●

●

●
●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●
●●

●

●●

●
●
●

●

●

●●●●

●

●●●●●

●●

●●●●
●
●

●
●

●

●
●●●●
●●●●
●●
●

●

●

●

●

●

●●●
●●
●
●●

●

●

●

●

●
●
●

●

●
●
●

●

●

●●●

●

●

●

●

●●●

●
●
●

●
●
●

●

●

●

●

●

●●
●●
●

●

●●

●

●

●●

●●
●●●

●
●

●

●●

●●

●●●

●

●

●●

●

●

●

●
●
●●●

●

●
●
●

●

●

●●
●
●

●●

●

●●

●

●

●
●
●●●

●
●

●

●

●●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●●

●

●●
●
●

●●
●
●●

●

●

●●●
●

●

●
●

●

●

●

●

●
●●

●

●

●●●

●
●

●
●
●
●●

●

●

●

●

●●
●

●●

●●
●

●
●

●●●

●

●

●

●

●

●

●

●
●
●●●●

●
●

●

●

●
●
●

●

●

●●

●
●●
●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●●

●

●●●●●●●●
●

●

●●●●

●

●

●

●●
●

●
●

●
●
●
●
●
●

●●

●
●
●

●

●

●

●●
●
●

●

●●

●
●

●

●●

●

●
●

●

●●
●
●
●
●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●●
●●
●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●●●
●
●
●
●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●
●

●
●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●
●

●

●●
●
●

●

●

●
●

●

●

●
●

●●

●
●

●

●

●

●
●
●

●

●●

●

●
●
●●
●

●

●

●
●
●
●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●●

●●

●
●

●●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●●
●
●

●

●
●

●●

●

●

●

●

●

●●●
●

●

●●

●

●

●

●●

●

●

●●
●

●
●

●

●

●

●●
●●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●●

●●

●

●
●●

●

●

●●

●

●
●

●

●
●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●●

●●

●●●●

●●
●

●●
●●

●

●

●

●

●

●●
●
●
●●

●

●

●●

●

●

●

●

●
●

●

●●
●

●

●

●●●

●

●

●

●

●
●

●

●●●
●

●

●

●

●●

●

●●
●●●
●
●●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●
●

●

●●
●●
●

●●

●
●

●

●
●

●

●

●

●●
●

●●

●

●

●●
●

●

●

●

●

●

●●
●
●
●●●
●

●

●

●●
●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●●

●●
●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●●●
●
●

●

●
●
●●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

● ●
●
●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●
●

●

●●●

●

●●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●●●

●

●

●

●●
●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●
●
●

●

●●●
●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●●●

●

●

●

●

●●

●
●

●

●
●●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●
●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●●

●
●

●
●

●

●

●
●●
●●

●

●

●
●

●
●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●
●
●
●●
●●

●

●●
●
●
●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●
●
●

●

●●●●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●●●●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●
●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●
●

●

●

●●

●
●

●

●

●

●
●

●

●●
●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●●
●

●

●●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

0

25

50

75

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Eigenvalue rank

A
ng

le
 w

.r.
t r

ef
er

en
ce

 [d
eg

re
e]

Figure 3: [Power iteration] Angles with respect to the gold standard when leaving out an individual sample.
The plot presents aggregated statistics over all the data sets from TCGA, but all the cancer types were
treated as individual data sets.

3

TCGA 5 2

A
ngle w

.r.t reference
S

R
E

 (norm
alised)

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

0

25

50

75

1.00

1.01

1.02

Eigenvalue rank

Algorithm QR−PCA APSTACK SIT APCOV PCOV

Figure 4: Extended PCA accuracy plot: Comparison of the different PCA algorithms w. r. t. to the angle
between the leading eigenvectors with the TCGA data distributed according to the tissue sample site, and
combined into 2 and 5 meta sites respectively. Proxy naive and the Power method achieve perfect accuracy
both according to the angle between the eigenvectors (upper panel) and the subspace reconstruction error
(SRE). With higher rank, the accuracy of the proxy method deteriorates.

3 Practical utility study

3.1 Data

For the practical application case, we use two publicly available single-cell data sets, a PBMC dataset from
10X Genomics (PBMC), and a myeloid progenitor data set [5] (PAUL). The data sets consist of 2638 cells
× 1838 genes and 2730 cells × 3451 genes respectively. After preprocessing according to standard protocols
as presented in the scanpy vignettes [2, 3], the single cell measurements are split horizontally into 5 batches
which simulate the sites. The preprocessing of the vignettes is not replicated in a federated fashion, however
it could be reproduced as it relies mostly on summary statistics such as mean and variance which can be
computed easily in a federated fashion. This arbitrary split disregards potential batch effects related to the
experimental protocol, as all the cells stem from the same experiment, but is sufficient to illustrate important
pitfalls and challenges of federated machine learning in general.

3.2 Setup

In order to put the simulation results into perspective, we choose three popular single-cell RNASeq applica-
tions [1], namely data visualization, data clustering and gene importance scoring as application studies. To
illustrate the use of federated PCA in these use cases, we implement standard workflows[2, 3] using regular
PCA and using simulated federated code for approximate PCA on the two single cell data sets (PAUL, PBMC).
We follow the same steps as the vignettes. We set k = 50, the suggested default, resulting in 100 transmitted
intermediate dimensions, when using a factor k′ = 2. Here, we only compare the results of the approximate
federated PCA algorithms since the exact methods do not differ from the centralized case at the expense
of computational and communication costs. However, due to the lower number of communication rounds
and reduced amount of communicated data, the approximate methods speed up the analysis significantly.
Therefore, we investigate whether the results of approximate PCA would be acceptable in practice.Many
standard single cell analysis pipelines rely on UMAP [4] as a low dimensional representation of the data.

4

Often, the UMAP is computed on the projections of the data onto the first few eigenvectors, in an attempt
to overcome the curse of dimensionality. Since we use the projections of the data, federated PCA methods
which lead to a small subspace reconstruction error may be sufficient to reproduce the conclusions of the
centralized protocol even when the angles of the eigenvectors differ considerably from the centralized version.
As an additional downstream analysis relying on the projected data, we include a reproduction of clustering
of the PAUL data set results using the Leiden clustering [6] and the PAGA [8] algorithm. In order to identify
correlated and important genes, the eigenvectors themselves (loadings) can be analyzed. For example, the
importance of the genes can be scored using the most extreme positive or negative entries of the eigenvector.

3.3 Results

PC1

PC
2

CST3

0.5

0.0

0.5

1.0

1.5

2.0

2.5

(a)

PC1

PC
2

CST3

0.5

0.0

0.5

1.0

1.5

2.0

2.5

(b)

PC1

PC
2

CST3

0.5

0.0

0.5

1.0

1.5

2.0

2.5

(c)

PC1

PC
2

CST3

0.5

0.0

0.5

1.0

1.5

2.0

2.5

(d)

PC2

PC
3

CST3

0.5

0.0

0.5

1.0

1.5

2.0

2.5

(e)

PC2

PC
3

CST3

0.5

0.0

0.5

1.0

1.5

2.0

2.5

(f)

PC2

PC
3

CST3

0.5

0.0

0.5

1.0

1.5

2.0

2.5

(g)

PC2

PC
3

CST3

0.5

0.0

0.5

1.0

1.5

2.0

2.5

(h)

UMAP1

UM
AP

2

CST3

0.5

0.0

0.5

1.0

1.5

2.0

2.5

(i)

UMAP1

UM
AP

2

CST3

0.5

0.0

0.5

1.0

1.5

2.0

2.5

(j)

UMAP1

UM
AP

2

CST3

0.5

0.0

0.5

1.0

1.5

2.0

2.5

(k)

UMAP1

UM
AP

2

CST3

0.5

0.0

0.5

1.0

1.5

2.0

2.5

(l)

Figure 5: Example application of PCA for single cell RNASeq analysis with different data distributions. a-d)
PC1 vs. PC2; e-h) P2 vs. P3; i-l) UMAP1 vs. UMAP2; a,e&i) centralised PCA (baseline); b,f&j) Approx-
imate federated PCA with favorable data/outlier distribution; c,g&k) approximate PCA with unfavorable
outlier distribution (one site did not contain outliers, removing an axis of variation); d,h&l) approximated
PCA with data split according to the Leiden clustering of data, see supplementary fig. 6. Most visual
representations are quite faithful, disregarding the flip of the eigenvectors. Subfigure (g) deviates from the
centralized baseline, and the angle between the corresponding eigenvectors is high (see also 9 (a)).

UMAP visualization In fig. 5 the results of approximate federated PCA and the original results for the
PBMC data are shown side by side with different data configurations. The first column shows the baseline
PC1 vs. PC2; PC2 vs. PC3; and UMAP1 vs. UMAP2 plots, the second and third columns show the same

5

UMAP1

UM
AP

2

leiden

0
1
2

Figure 6: Leiden groups with 3 clusters, using resolution 0.1 to obtain a coarse clustering of the PBMC data.
This was done with the centralized workflow. This clustering was then used to create three artificial data
sites, each receiving one cluster.

6

PC1

PC
2

CST3

0.5

0.0

0.5

1.0

1.5

2.0

2.5

PC2

PC
3

CST3

0.5

0.0

0.5

1.0

1.5

2.0

2.5

UMAP1

UM
AP

2

CST3

0.5

0.0

0.5

1.0

1.5

2.0

2.5

(a) Exact PCA

PC1

PC
2

CST3

2

1

0

1

2

PC2

PC
3

CST3

2

1

0

1

2

UMAP1

UM
AP

2

CST3

0.5

0.0

0.5

1.0

1.5

2.0

2.5

(b) Approximate PCA (k=10)

PC1

PC
2

CST3

0.5

0.0

0.5

1.0

1.5

2.0

2.5

PC2

PC
3

CST3

0.5

0.0

0.5

1.0

1.5

2.0

2.5

UMAP1

UM
AP

2

CST3

0.5

0.0

0.5

1.0

1.5

2.0

2.5

(c) Approximate PCA (k=5)

Figure 7: Example application of PCA for single cell RNASeq analysis using the PBMC data set: UMAP
visualizations a) reproduced from the vignette and b) reproduced using approximate federated PCA with
k=10 and c) k=5 respectively. Shown are the first vs. second and second vs. third PCs plotted against
each other, as well as the UMAP plot for the first two dimensions. The cluster structure is maintained
even with lower dimensional approximations of the data. For UMAP visualisation purposes, only few eigen-
vectors/projections need to be transmitted which is potentially more privacy preserving. Outliers were
distributed equally among the sites.

7

plots for different randomized data splits via different random seeds. The last column contains the figures
generated when splitting the data such that each of the three clusters identified by Leiden clustering of the
original UMAP embedded space represents a data site (sup. fig. 6). There is not a large visual difference
for the plots showing the first two PCs (up to a rotation) for any of the configurations. For the PC2 vs.
PC3 plots (2nd row), however, the embedding fig. 5 (g) looks different. Table 9a shows the associated angles
between the two randomized splits, corresponding to columns 2 and 3, and the baseline, which reflect a quite
strong deviation of the eigenvectors from the centralized baseline for the latter. The associated UMAP plot
(fig. 5 (k)) preserves the three clusters apparent in the original plot.

Upon close investigation, the difference between the eigenvectors using different seeds stem from an
unequal distribution of the outliers, for instance the outliers identifiable visually on the third principal axis.
These data points create an axis of high variablity, but considering the bulk of the data they may represent
erroneous measurements or cells that should be excluded (e.g. dying cells). In the tests, we created arbitrary
data partitions, which included those outliers. If the outliers are distributed equally, meaning every artificial
site contains some outliers, then the results remain similar to the centralized solution, because the axes of
variation in the data are retained. If there are sites which do not have these outliers, this axis of variation is
removed from the data and the results are distorted with respect to the centralized solution. In figure fig. 5
(g) the result deteriorates with respect to the centralized solution. A similar result is presented in subfigure
(h) where the data is split according to the clustering.

In fig. 7 we include additional figures using a lower k showing essentially the same low dimensional
embeddings. This means, the representation can be reproduced using a lower number of eigenvectors. This
is favorable for the transmission cost and the privacy.

Downstream analysis – clustering As a downstream analysis relying on the projected data, we include
a reproduction of clusterings using the Leiden clustering [6] and the PAGA [8] algorithm. These results are
visualized in fig. 8. Using approximate PCA, the pipeline identifies 2 states more than with canonical PCA.
The layout of the diffusion maps and graphs are different. While the general structure of the graph seems
to be preserved, the upper module of the diffusion map may be prone to different interpretation.

In order to quantify the likeness of the clusterings we compute the macro F1 score, and cluster specific
precision and recall. The procedure is as following: first the cluster labels are matched using a global
contingency matrix. Labels as matched if they have the highest number of points in common. Then for
every cluster precision and recall are calculated:

P =
TP

TP + FP
(1)

R =
TP

TP + FN
(2)

F1 =
∑ 2 · P ·R

P + R
∗ 1

#Samples
(3)

The macro F1 score is 0.47, cluster wise precision and recall are shown in section 3.3. Generally, there is
some overlap between the clusters but the overall results differ quite strongly from the centralized original
solution. We deliverately chose the standard settings, it may be possible to obtain better results which
are closer to the original analysis using other parameters, however, we conclude that even for downstream
analyses, other than visualization of the first few PCs, approximate PCA is unsuited.

8

paul15_clusters 1Ery
2Ery
3Ery
4Ery
5Ery
6Ery
7MEP
8Mk
9GMP
10GMP

11DC
12Baso
13Baso
14Mo
15Mo
16Neu
17Neu
18Eos
19Lymph

0

1

2

3

4

5
6

7
8

9

10

11

12

13

14

15

16

17

18

19

20

21

22
23

24

25

26

27

28

29

30

31

32

(a) Exact PCA

paul15_clusters 1Ery
2Ery
3Ery
4Ery
5Ery
6Ery
7MEP
8Mk
9GMP
10GMP

11DC
12Baso
13Baso
14Mo
15Mo
16Neu
17Neu
18Eos
19Lymph0

1

2
3

4

567
8

9

10

11
12

13

14

15
16

17

18

19

20

21

22
23

24 25

26
27

28
29

30

31

(b) Approximate PCA

Figure 8: Example application of PCA for single cell RNASeq analysis of the PAUL data set: Denoised
Leiden clustering and PAGA trajectories a) adapted from the vignette and b) reproduced using approximate
federated PCA. Section 3.3 contains quantitative measures on the reproduced figures. Although they look
similar, many clusters are not identical.

9

Cluster precision recall

0 0.68 0.54
1 0.71 0.53
2 0.88 0.79
3 0.54 0.68
4 0.57 0.35
5 0.00 0.00
6 0.48 0.64
7 0.45 0.54
8 0.60 0.66
9 0.51 0.55

10 0.70 0.62
11 0.00 0.00
12 0.54 0.44
13 0.00 0.00
14 0.59 0.55
15 0.79 0.69
16 0.35 0.65

Cluster precision recall

17 0.88 0.72
18 0.61 0.46
19 0.81 0.55
20 0.00 0.00
21 0.46 0.90
22 0.00 0.00
23 0.29 0.44
24 0.41 0.55
25 0.00 0.00
26 0.00 0.00
27 1.00 1.00
28 1.00 1.00
29 0.28 0.97
30 0.26 1.00
31 1.00 1.00
32 0.13 1.00

Table 1: Clusterwise precision and recall comparing clustering results of exact and approximate clusterings.
The macro F1 score is 0.47. The cluster labels are the labels from the approximate clustering because it
yielded more clusters.

10

Analysis of loadings In figure 9 we show the cardinality of the overlap of the set of genes identified
by using the top 20 largest positive and negative coordinates of the eigenvectors and the associated angle
between the eigenvectors for two different random data partitions of the PBMC data. While small changes in
the angle only lead to minor changes in the gene set, high deviations in the angles also lead to different sets
of genes identified. This process is especially vulnerable to outliers which is backed by the observation that
the overlap between the baseline genes and the genes identified with approximate PCA is lower for the more
distorted eigenvectors where the ’outliers’ are distributed unfavorably.

1 1.11 1.61
2 2.18 2.21
3 18.15 74.76
4 17.76 74.74
5 8.63 8.34
6 11.48 11.79
7 17.48 19.39
8 26.61 22.32
9 31.92 47.34
10 40.82 36.87

PBMC PMBC.1

(a) Angles

10

9

8

7

6

5

4

3

2

1

P
B

M
C

.to
p

P
B

M
C

.lo
w

P
B

M
C

.1
.to

p

P
B

M
C

.1
.lo

w

E
ig

en
ve

ct
or

 r
an

k
Genes

0

5

10

15

20

(b) Overlap

Figure 9: Single cell examples: 9a) Angles between the leading centralized and approximate eigenvectors
for the PBMC dataset using different random seeds (PMBC and PBMC.1), where PBMC.1 has unequally
distributed outliers, where some sites did not recieve any. Especially the 3rd and 4th eigenvector have high
divergence. 9b Overlap between the genes with the top 20 most positive and most negative loadings identified
using approximate and exact PCA. The higher the angle between the eigenvector the lower the concordance
of the identified gene sets.

4 Application to Psoriasis data

11

GSE123786

GSE123785

GSE117405

GSE107871 GSE67785 GSE74697

GSE83645

Study ID
GSE107871 GSE117405

GSE123785 GSE123786

GSE41745 GSE47944

GSE54456 GSE63979

GSE67785 GSE74697

GSE83645

GSE63979

GSE54456

GSE47944

GSE41745

Figure 10: Comparison of the centralized and local PCA. The individual plots do not allow to obtain an
overview of the data in the same manner than federated PCA. Furthermore, apparent outliers such as in
GSE107871 may not be outliers in the larger analysis.

12

PC1

P
C

2

Case/Control
healthy_control

psoriasis

PC1

P
C

2

Tissue
blood monolayer_keratinocytes

skin

Figure 11: Further sample visualization to visualize the samples with respect to other covariates. For further
downstream clustering, the batch effect (see fig. 10) would have to be removed. Differential Gene expression
tools such as Flimma could be used to find differentially expressed genes in a federated fashion. The model
employed in Flimma [9] accounts for batch effects. In this case, the PCA could be used for sample selection.
For this figure, instead of using the original data projections, the mean and covariance matrix of the projected
data was computed. Then, using a multivariate Gaussian distribution, artificial data points were created to
visualize the samples at the aggregator. This way, the analysis is more private.

13

References

[1] Kevin Blighe and Aaron Lun. Pcatools: everything principal component analysis. https:

//bioconductor.org/packages/release/bioc/vignettes/PCAtools/inst/doc/PCAtools.html#

a-loadings-plot, 2021.

[2] Scanpy Documentation. Preprocessing and clustering 3k pbmcs. https://scanpy-tutorials.

readthedocs.io/en/latest/pbmc3k.html, 2021.

[3] Scanpy Documentation. Trajectory inference for hematopoiesis in mouse. https://scanpy-tutorials.
readthedocs.io/en/latest/paga-paul15.html, 2021.

[4] Leland Mcinnes, John Healy, and James Melville. UMAP : Uniform Manifold Approximation and Pro-
jection for Dimension Reduction arXiv : 1802 . 03426v2 [stat . ML] 6 Dec 2018. 2018.

[5] Franziska Paul, Ya’Ara Arkin, Amir Giladi, Diego Adhemar Jaitin, Ephraim Kenigsberg, Hadas Keren-
Shaul, Deborah Winter, David Lara-Astiaso, Meital Gury, Assaf Weiner, Eyal David, Nadav Cohen,
Felicia Kathrine Bratt Lauridsen, Simon Haas, Andreas Schlitzer, Alexander Mildner, Florent Ginhoux,
Steffen Jung, Andreas Trumpp, Bo Torben Porse, Amos Tanay, and Ido Amit. Transcriptional Hetero-
geneity and Lineage Commitment in Myeloid Progenitors. Cell, 163(7):1663–1677, 2015.

[6] V. A. Traag, L. Waltman, and N. J. van Eck. From Louvain to Leiden: guaranteeing well-connected
communities. Scientific Reports, 9(1):1–12, 2019.

[7] N. Vaswani, T. Bouwmans, S. Javed, and P. Narayanamurthy. Robust subspace learning: Robust pca,
robust subspace tracking, and robust subspace recovery. IEEE Signal Processing Magazine, 35(4):32–55,
2018.

[8] F. Alexander Wolf, Fiona K. Hamey, Mireya Plass, Jordi Solana, Joakim S. Dahlin, Berthold Göttgens,
Nikolaus Rajewsky, Lukas Simon, and Fabian J. Theis. PAGA: graph abstraction reconciles clustering
with trajectory inference through a topology preserving map of single cells. Genome Biology, 20(1):1–9,
2019.

[9] Olga Zolotareva, Reza Nasirigerdeh, Julian Matschinske, Reihaneh Torkzadehmahani, Mohammad
Bakhtiari, Tobias Frisch, Julian Späth, David B. Blumenthal, Amir Abbasinejad, Paolo Tieri, Geor-
gios Kaissis, Daniel Rückert, Nina K. Wenke, Markus List, and Jan Baumbach. Flimma: a federated
and privacy-aware tool for differential gene expression analysis. Genome Biology, 22(1):338, dec 2021.

14

Appendix C
Supplementary Material for

Chapter 6: Federated K-Means –
evaluation of initialization,

clustering strategies, and
k-selection

169

0.850.840.850.84
0.840.840.841
0.970.920.981
0.970.980.961.06
0.840.90.850.9
0.920.980.911.05
0.980.920.971.01
0.890.890.891.07
0.890.890.841.07
0.890.890.841.07
0.890.890.891.07
0.890.890.971.07
0.890.890.971.07

0.891.07
0.890.890.891.07
0.890.890.891.07

0.891.07
0.890.890.891.07
0.890.890.891.07

0.920.920.920.92
0.90.910.91.07

0.950.920.931.09
1.020.881.031.13
0.90.660.891.08

1.021.021.031.12
0.90.920.91.09

0.960.960.960.87
0.720.720.720.87
0.960.910.91.15
0.950.950.950.88
0.730.730.720.88
0.680.921.031.14
0.960.960.961.15
0.960.960.720.87

0.960.961.15
0.950.950.951.15
0.950.950.720.88

0.950.951.14

0.810.810.810.81
0.80.80.80.93

0.810.80.820.97
0.820.810.810.96
0.80.790.770.97

0.790.810.780.96
0.790.790.810.95
0.850.660.660.79
0.660.810.660.79
0.420.660.660.97
0.850.640.640.79
0.640.840.640.79
0.420.640.640.95
0.660.660.660.79
0.180.660.420.79
0.190.070.180.08
0.640.640.640.79
0.180.640.420.79
0.180.070.180.08

0.850.850.850.85
0.840.860.941
0.980.950.981
0.990.980.751.06
0.910.850.850.16
0.990.980.921.06
0.980.940.981
0.890.890.891.07
0.890.890.891.07
0.890.890.891.07
0.890.890.891.07
0.890.890.891.07
0.890.890.891.07
0.890.890.891.07
0.890.890.891.07
0.890.650.891.07
0.890.890.891.07
0.890.890.891.07
0.890.650.891.07

0.920.920.920.92
0.890.890.921.08
1.031.020.91.08
0.90.940.941.13

0.750.910.890.74
0.920.930.741.09
0.90.90.91.1
0.90.90.961.15

0.720.720.960.87
0.90.720.720.87

1.0210.920.86
0.720.710.810.84
1.020.710.690.85
0.960.960.961.15
0.960.720.961.15
0.960.720.221.15
0.960.780.941.09
0.960.730.811.14
0.950.70.220.87

0.810.810.810.81
0.820.790.810.97
0.770.830.810.95
0.750.80.790.95
0.810.820.760.66
0.750.790.750.94
0.770.820.820.95
0.850.660.660.79
0.850.810.850.79
0.610.660.660.79
0.850.640.640.74
0.850.760.820.73
0.620.640.640.74
0.660.190.660.79
0.660.190.660.79
0.190.190.070.79
0.660.20.630.73
0.660.20.630.73
0.20.20.070.74

0.850.840.850.85
0.840.920.851.01
0.920.920.931
0.910.920.951.05
0.840.920.850.49
0.920.920.961.06
0.980.980.921
0.890.920.981.07
0.890.890.891.07
0.890.920.981.07
0.890.920.961.07
0.890.890.891.07
0.890.950.91.07
0.890.890.891.07
0.890.890.891.07
0.890.890.651.07
0.890.890.891.07
0.890.890.891.07
0.890.890.651.07

0.920.920.920.92
0.90.920.91.08

0.911.030.891.09
1.030.730.971.09
0.620.630.320.61
1.031.010.760.79
0.91.030.891.09

0.960.960.961.15
0.960.960.960.26
0.960.960.961.15
0.940.930.81.09
0.940.930.790.26
0.940.930.771.1
0.960.960.690.79
0.960.720.72
0.070.490.681.15
0.940.930.760.86
0.940.680.72
0.070.480.81.11

0.810.810.810.81
0.820.810.820.98
0.820.830.830.98
0.750.80.750.57
0.80.710.490.32

0.760.80.740.71
0.790.810.810.95
0.850.660.660.79
0.620.820.850.22
0.370.660.850.79
0.840.620.640.77
0.630.70.570.22
0.430.620.570.49
0.850.660.660.22
0.190.190.19
0.190.190.190.22
0.840.620.640.23
0.210.210.21
0.210.210.210.23

0.850.850.850.84
0.890.720.84
0.940.940.94
0.970.910.73
0.770.790.6
0.940.930.73
0.950.980.95
0.770.80.53
0.770.650.65
0.770.650.65
0.770.780.53
0.770.650.65
0.770.650.65
0.890.89
0.890.890.78
0.770.89
0.890.65
0.890.880.78
0.770.76

0.920.920.920.92
0.750.910.9
0.990.940.91
0.940.70.72
0.970.690.66

10.860.61
0.970.910.91
0.810.810.72
0.720.840.84
0.810.810.72
0.880.850.62
0.690.570.65
0.880.870.62
0.840.840.96
0.960.840.96
0.840.470.96
0.80.680.86

0.860.580.77
0.740.30.79

0.810.810.810.81
0.820.780.8
0.820.80.79
0.710.620.43
0.670.780.66
0.70.620.52
0.80.790.8

0.660.540.31
0.420.740.19
0.660.830.19
0.640.520.32
0.40.630.21

0.640.740.21
0.660.420.66
0.660.420.66
0.180.130.42
0.640.40.54
0.640.40.55
0.190.130.37

1

2

3

4

0.5 1.5 2.5

baseline

FFI−FKM

LCLU−CCLU

LCLU−CCLU−LU

LCLU−FFA

LCLU−FFA−LU

LCLU−FKM

LCLU−GCLU−FKM−GM

LCLU−GCLU−FKM−S

LCLU−GCLU−FKM−T

LCLU−GCLU−LU−GM

LCLU−GCLU−LU−S

LCLU−GCLU−LU−T

LCLU−SAMCLU−FKM−GM

LCLU−SAMCLU−FKM−S

LCLU−SAMCLU−FKM−T

LCLU−SAMCLU−LU−GM

LCLU−SAMCLU−LU−S

LCLU−SAMCLU−LU−T

baseline

FFI−FKM

LCLU−CCLU

LCLU−CCLU−LU

LCLU−FFA

LCLU−FFA−LU

LCLU−FKM

LCLU−GCLU−FKM−GM

LCLU−GCLU−FKM−S

LCLU−GCLU−FKM−T

LCLU−GCLU−LU−GM

LCLU−GCLU−LU−S

LCLU−GCLU−LU−T

LCLU−SAMCLU−FKM−GM

LCLU−SAMCLU−FKM−S

LCLU−SAMCLU−FKM−T

LCLU−SAMCLU−LU−GM

LCLU−SAMCLU−LU−S

LCLU−SAMCLU−LU−T

baseline

FFI−FKM

LCLU−CCLU

LCLU−CCLU−LU

LCLU−FFA

LCLU−FFA−LU

LCLU−FKM

LCLU−GCLU−FKM−GM

LCLU−GCLU−FKM−S

LCLU−GCLU−FKM−T

LCLU−GCLU−LU−GM

LCLU−GCLU−LU−S

LCLU−GCLU−LU−T

LCLU−SAMCLU−FKM−GM

LCLU−SAMCLU−FKM−S

LCLU−SAMCLU−FKM−T

LCLU−SAMCLU−LU−GM

LCLU−SAMCLU−LU−S

LCLU−SAMCLU−LU−T

baseline

FFI−FKM

LCLU−CCLU

LCLU−CCLU−LU

LCLU−FFA

LCLU−FFA−LU

LCLU−FKM

LCLU−GCLU−FKM−GM

LCLU−GCLU−FKM−S

LCLU−GCLU−FKM−T

LCLU−GCLU−LU−GM

LCLU−GCLU−LU−S

LCLU−GCLU−LU−T

LCLU−SAMCLU−FKM−GM

LCLU−SAMCLU−FKM−S

LCLU−SAMCLU−FKM−T

LCLU−SAMCLU−LU−GM

LCLU−SAMCLU−LU−S

LCLU−SAMCLU−LU−T

1235 1235 1235
#Number of sites

Figure C.1 – (Previous page) Evaluation results of K-Means using data
containing 1% outliers using the grid evaluation strategy. The results are
generally worse than on clean data without outliers. The figure is
structured as follows. Each row of panels determines the number of
clusters not available at a number of sites. The number of sites is
indicated in the columns withing each panel. The “panel-columns”
indicate the variance of the clusters in the data. The rows within each
panel shows the algorithm configuration. The score indicated is the F1
score of the clustering normalized by the F1 score of baseline averaged
over 5 different datasets of the same type. We observe the following: Edge
cases lead to the failure of the runs due to the splintering of the data into
many extremely small clusters. The sampling based strategies perform
worse than the strategy which clusters the centroids. However, when using
the GM selection strategy for k the methods perform the same. Extreme
cases where each site receives the entire cluster lead to better performance
of the clustering (first column per panel).

171

11111

11111

11111

11111

11111

11111

11111

110.9411

0.730.730.730.730.73

11111

110.9511

0.730.730.730.730.73

11111

11111

11110.93

1110.870.73

11111

11110.93

1110.890.73

0.930.930.930.930.93

0.930.680.930.670.93

0.670.930.930.680.93

0.670.930.930.660.93

0.930.670.920.670.93

0.930.670.930.670.93

0.930.930.930.930.93

0.730.730.730.730.73

0.730.730.730.930.73

0.730.730.730.730.73

0.730.730.730.730.73

0.730.730.730.930.73

0.730.730.730.730.73

0.730.730.730.730.73

0.730.730.730.730.73

0.730.730.730.280.73

0.730.730.730.730.73

0.730.730.730.730.73

0.730.730.730.280.73

0.840.840.840.840.84

0.840.840.840.650.84

0.830.710.840.840.66

0.840.840.840.840.84

0.810.660.820.670.7

0.840.840.840.840.84

0.840.840.840.840.84

0.710.710.710.710.71

0.280.280.280.280.28

0.710.710.710.710.71

0.710.710.710.710.71

0.280.280.280.280.28

0.710.710.710.710.71

0.710.710.710.710.71

0.490.490.280.490.49

0.710.710.710.280.71

0.710.710.710.710.71

0.490.490.280.490.49

0.710.710.710.280.71

11111

11111

11111

11111

11111

11111

11111

11111

0.730.730.730.730.73

11110.95

11111

0.730.730.730.730.73

11110.95

11111

10.930.9311

0.930.93111

11111

10.950.9511

0.930.94111

0.930.930.930.930.93

0.930.670.930.670.93

0.930.930.730.930.93

0.930.930.930.930.93

0.670.930.920.890.93

0.670.930.930.930.93

0.930.930.930.930.93

0.730.730.730.730.73

0.730.730.930.730.73

0.730.730.730.730.73

0.730.730.730.730.73

0.730.730.670.730.73

0.730.730.730.730.73

0.730.730.730.730.73

0.730.730.730.730.73

0.730.730.930.730.73

0.730.730.730.730.73

0.730.730.730.730.73

0.730.730.930.730.73

0.840.840.840.840.84

0.820.840.840.690.64

0.830.680.680.830.82

0.840.840.830.840.84

0.660.840.780.780.8

0.840.840.80.780.84

0.840.840.840.840.84

0.710.710.710.710.71

0.280.280.280.280.28

0.710.710.710.710.71

0.710.710.710.710.71

0.280.280.280.280.28

0.710.710.710.710.71

0.710.710.710.710.71

0.490.490.490.490.28

0.710.710.710.710.71

0.710.710.710.710.71

0.490.470.490.490.28

0.710.710.710.710.71

11111

11111

11111

11111

11110.69

11111

11111

1110.931

0.730.730.730.730.73

11111

1110.951

0.730.730.730.730.73

11111

11111

110.940.941

11110.73

11111

110.960.941

11110.73

0.930.930.930.930.93

0.930.930.670.930.93

0.930.930.70.930.93

0.930.930.930.930.93

0.930.930.930.910.71

0.930.930.930.930.93

0.930.930.930.930.93

0.730.730.730.730.73

0.730.730.730.930.93

0.730.930.730.730.73

0.730.730.730.730.73

0.730.730.730.930.93

0.730.930.730.730.73

0.730.730.730.730.73

0.730.730.930.730.73

0.730.730.730.730.07

0.730.730.730.730.73

0.730.730.930.730.73

0.730.730.730.730.07

0.840.840.840.840.84

0.840.650.820.840.65

0.830.820.70.680.68

0.840.820.840.820.84

0.640.630.640.670.58

0.650.650.640.780.79

0.840.840.840.840.84

0.710.80.710.710.71

0.280.840.490.280.28

0.710.710.710.710.71

0.710.80.710.710.71

0.280.840.490.280.28

0.710.710.710.710.71

0.710.710.710.710.71

0.490.490.490.710.49

0.710.280.280.070.71

0.710.710.710.710.71

0.490.490.490.710.49

0.710.280.280.070.71

0.3

0.4

0.5

0.5 1.5 2.5

baseline

FFI−FKM

LCLU−CCLU

LCLU−CCLU−LU

LCLU−FFA

LCLU−FFA−LU

LCLU−FKM

LCLU−GCLU−FKM−GM

LCLU−GCLU−FKM−S

LCLU−GCLU−FKM−T

LCLU−GCLU−LU−GM

LCLU−GCLU−LU−S

LCLU−GCLU−LU−T

LCLU−SAMCLU−FKM−GM

LCLU−SAMCLU−FKM−S

LCLU−SAMCLU−FKM−T

LCLU−SAMCLU−LU−GM

LCLU−SAMCLU−LU−S

LCLU−SAMCLU−LU−T

baseline

FFI−FKM

LCLU−CCLU

LCLU−CCLU−LU

LCLU−FFA

LCLU−FFA−LU

LCLU−FKM

LCLU−GCLU−FKM−GM

LCLU−GCLU−FKM−S

LCLU−GCLU−FKM−T

LCLU−GCLU−LU−GM

LCLU−GCLU−LU−S

LCLU−GCLU−LU−T

LCLU−SAMCLU−FKM−GM

LCLU−SAMCLU−FKM−S

LCLU−SAMCLU−FKM−T

LCLU−SAMCLU−LU−GM

LCLU−SAMCLU−LU−S

LCLU−SAMCLU−LU−T

baseline

FFI−FKM

LCLU−CCLU

LCLU−CCLU−LU

LCLU−FFA

LCLU−FFA−LU

LCLU−FKM

LCLU−GCLU−FKM−GM

LCLU−GCLU−FKM−S

LCLU−GCLU−FKM−T

LCLU−GCLU−LU−GM

LCLU−GCLU−LU−S

LCLU−GCLU−LU−T

LCLU−SAMCLU−FKM−GM

LCLU−SAMCLU−FKM−S

LCLU−SAMCLU−FKM−T

LCLU−SAMCLU−LU−GM

LCLU−SAMCLU−LU−S

LCLU−SAMCLU−LU−T

12345 12345 12345
#Number of sites

Figure C.2 – (Previous page) Evaluation of the clustering using the Stair
evaluation strategy on data without outliers. The figure is stuctured
similarly as above, the difference is that the panel-rows now contain the
fraction of points which is attributed to the large site. For example in the
first row the largest site for each non-iid cluster obtains 50% of the points.
We observe the same global trend as previously: the worse the cluster
separation, the worse the performance. The silhouette selection strategy
does not perform well on this kind of data, most likely because there are
sites which receive very few data points so that the silhouette coefficient
cannot be accurately determined. Not all schemes with known k obtain
scores as good as the baseline.

173

11111

11111

11111

11111

11111

11111

11111

11111

0.730.730.730.730.73

11110.94

11111

0.730.730.730.730.73

11110.98

11111

110.880.951

10.730.730.280.87

11111

110.880.951

10.730.730.280.87

0.930.930.930.930.93

0.930.930.930.670.67

0.930.930.930.920.91

0.930.930.930.930.93

0.930.690.920.670.92

0.930.660.930.670.93

0.930.930.930.930.93

0.730.730.730.730.73

0.730.730.730.730.73

0.880.730.730.730.73

0.730.730.730.730.73

0.730.730.730.730.73

0.890.730.730.730.73

0.730.730.930.730.73

0.730.930.730.280.73

0.730.280.070.930.28

0.730.730.930.730.73

0.730.930.730.280.73

0.730.280.070.920.28

0.840.840.840.840.84

0.650.650.820.650.65

0.680.840.830.70.67

0.820.840.840.830.84

0.640.780.830.670.77

0.640.780.840.780.78

0.840.840.830.840.78

0.710.710.710.710.71

0.280.490.280.280.28

0.710.710.710.710.71

0.710.710.710.710.71

0.280.490.280.280.28

0.710.710.710.710.71

0.710.710.710.710.71

0.710.490.280.490.49

0.070.280.710.280.28

0.710.710.710.710.71

0.710.470.280.490.49

0.070.280.710.280.28

11111

11111

11111

11111

11110.68

11111

11111

110.9510.94

0.730.730.730.730.73

110.9511

110.9410.94

0.730.730.730.730.73

110.9411

11110.93

1110.911

10.280.730.730.93

11110.95

1110.921

10.280.730.730.95

0.930.930.930.930.93

0.670.670.930.930.93

0.930.720.930.690.93

0.930.930.930.690.93

0.920.920.920.660.92

0.930.930.930.670.93

0.930.930.930.930.93

0.730.890.730.730.73

0.280.730.730.730.73

0.890.730.730.730.93

0.730.890.730.730.73

0.280.730.730.730.73

0.890.730.730.730.93

0.730.730.930.730.73

0.730.730.730.730.73

0.730.280.730.730.73

0.730.730.930.730.73

0.730.730.730.730.73

0.730.280.730.730.73

0.840.840.840.840.84

0.650.820.650.820.84

0.680.830.650.820.83

0.840.840.650.820.83

0.650.840.830.650.65

0.650.840.840.640.79

0.840.840.830.840.84

0.710.710.710.710.71

0.280.280.280.280.28

0.710.710.710.710.71

0.710.710.710.710.71

0.280.280.280.280.28

0.710.710.710.710.71

0.710.710.710.710.71

0.490.490.490.490.49

0.710.490.490.280.71

0.710.710.710.710.71

0.460.460.480.470.49

0.710.460.460.280.71

11111

11111

11111

11111

11111

11111

11111

11111

0.940.730.730.730.94

1110.731

11111

0.950.730.730.730.98

1110.731

11111

110.840.880.95

10.73111

11111

110.840.910.97

10.73111

0.930.930.930.930.93

0.670.930.670.930.93

0.910.930.920.910.91

0.930.920.930.930.93

0.930.90.920.680.66

0.930.920.930.670.67

0.930.930.930.930.93

0.730.730.730.730.73

0.730.50.280.730.73

0.730.730.930.730.73

0.730.730.730.730.73

0.730.50.280.730.73

0.730.730.920.730.73

0.730.730.730.930.73

0.730.730.730.730.93

0.730.280.730.730.73

0.730.730.730.930.73

0.730.730.730.730.93

0.730.280.730.730.73

0.840.840.840.840.84

0.650.650.840.840.83

0.70.660.820.660.84

0.820.810.70.650.84

0.790.690.590.660.56

0.790.810.70.780.82

0.840.840.840.830.84

0.710.710.710.490.71

0.280.840.490.280.28

0.710.710.490.280.84

0.710.710.70.490.71

0.280.840.490.280.28

0.710.710.490.280.77

0.710.710.710.710.71

0.280.710.710.280.71

0.710.280.280.070.71

0.710.710.710.710.71

0.280.710.710.280.71

0.710.280.280.070.71

0.6

0.7

0.8

0.5 1.5 2.5

baseline

FFI−FKM

LCLU−CCLU

LCLU−CCLU−LU

LCLU−FFA

LCLU−FFA−LU

LCLU−FKM

LCLU−GCLU−FKM−GM

LCLU−GCLU−FKM−S

LCLU−GCLU−FKM−T

LCLU−GCLU−LU−GM

LCLU−GCLU−LU−S

LCLU−GCLU−LU−T

LCLU−SAMCLU−FKM−GM

LCLU−SAMCLU−FKM−S

LCLU−SAMCLU−FKM−T

LCLU−SAMCLU−LU−GM

LCLU−SAMCLU−LU−S

LCLU−SAMCLU−LU−T

baseline

FFI−FKM

LCLU−CCLU

LCLU−CCLU−LU

LCLU−FFA

LCLU−FFA−LU

LCLU−FKM

LCLU−GCLU−FKM−GM

LCLU−GCLU−FKM−S

LCLU−GCLU−FKM−T

LCLU−GCLU−LU−GM

LCLU−GCLU−LU−S

LCLU−GCLU−LU−T

LCLU−SAMCLU−FKM−GM

LCLU−SAMCLU−FKM−S

LCLU−SAMCLU−FKM−T

LCLU−SAMCLU−LU−GM

LCLU−SAMCLU−LU−S

LCLU−SAMCLU−LU−T

baseline

FFI−FKM

LCLU−CCLU

LCLU−CCLU−LU

LCLU−FFA

LCLU−FFA−LU

LCLU−FKM

LCLU−GCLU−FKM−GM

LCLU−GCLU−FKM−S

LCLU−GCLU−FKM−T

LCLU−GCLU−LU−GM

LCLU−GCLU−LU−S

LCLU−GCLU−LU−T

LCLU−SAMCLU−FKM−GM

LCLU−SAMCLU−FKM−S

LCLU−SAMCLU−FKM−T

LCLU−SAMCLU−LU−GM

LCLU−SAMCLU−LU−S

LCLU−SAMCLU−LU−T

12345 12345 12345
#Number of sites

Figure C.3 – (Previous page)Evaluation of the clustering using the
High-low evaluation strategy on data without outliers. In this figure the
panel rows contains the fraction of points that go to the larges sites, e.g.
with 0.8 and 2 large sites, each large site obtains 40% of the points and
the rest is distributed to the small sites. Again, the silhouette coeffcient
performs badly. We observe the same global trend as previously: the
worse the cluster separation, the worse the performance. Not all schemes
with known k obtain scores as good as the baseline.

175

C. Supplement Chapter 6

15
1
8
1
8
4
3
3
4

11
4
6
4
4
4
7
5
4

20
1

100
1

100
16
6
5
6

10
8

12
6
6
5
7
8
5

20
1

25
1

28
20
9

10
9

10
10
9
8

10
6
8
9
6

7
1

44
1

58
4
3
4
3

100
21

100
3
4
3
7
6
6

17
1

100
1

68
4
3
3
3

11
6
7
4
4
4
7
7
8

20
1

100
1

100
16
4
4
4

16
14
16
6
5
6

24
18
20

6
1

14
1

13
5
3
4
3

100
100
100

3
3
3
6
7
6

16
1

24
1

32
4
4
3
3

14
8
9
4
4
4
7
8
6

17
1

100
1

66
6
3
3
3
7

11
8
4
4
4
7
7
7

2

5

10

0.5 1.5 2.5

FFI−FKM

LCLU−CCLU

LCLU−CCLU−LU

LCLU−FFA

LCLU−FFA−LU

LCLU−FKM

LCLU−GCLU−FKM−GM

LCLU−GCLU−FKM−S

LCLU−GCLU−FKM−T

LCLU−GCLU−LU−GM

LCLU−GCLU−LU−S

LCLU−GCLU−LU−T

LCLU−SAMCLU−FKM−GM

LCLU−SAMCLU−FKM−S

LCLU−SAMCLU−FKM−T

LCLU−SAMCLU−LU−GM

LCLU−SAMCLU−LU−S

LCLU−SAMCLU−LU−T

FFI−FKM

LCLU−CCLU

LCLU−CCLU−LU

LCLU−FFA

LCLU−FFA−LU

LCLU−FKM

LCLU−GCLU−FKM−GM

LCLU−GCLU−FKM−S

LCLU−GCLU−FKM−T

LCLU−GCLU−LU−GM

LCLU−GCLU−LU−S

LCLU−GCLU−LU−T

LCLU−SAMCLU−FKM−GM

LCLU−SAMCLU−FKM−S

LCLU−SAMCLU−FKM−T

LCLU−SAMCLU−LU−GM

LCLU−SAMCLU−LU−S

LCLU−SAMCLU−LU−T

FFI−FKM

LCLU−CCLU

LCLU−CCLU−LU

LCLU−FFA

LCLU−FFA−LU

LCLU−FKM

LCLU−GCLU−FKM−GM

LCLU−GCLU−FKM−S

LCLU−GCLU−FKM−T

LCLU−GCLU−LU−GM

LCLU−GCLU−LU−S

LCLU−GCLU−LU−T

LCLU−SAMCLU−FKM−GM

LCLU−SAMCLU−FKM−S

LCLU−SAMCLU−FKM−T

LCLU−SAMCLU−LU−GM

LCLU−SAMCLU−LU−S

LCLU−SAMCLU−LU−T

gr
id

gr
id

gr
id

Data partitioning

110100Median
iterations

Figure C.4 – Iterations until convergence using the grid evaluation
strategy with 1% outliers in the data
176

List of Figures

1.1 Federated learning . 5
1.2 Architectures in federated learning 7
1.3 Data partitioning . 9
1.4 PCA & SVD . 22

List of Tables

A.1 List of publications for federated PCA 142
A.2 Examples of applications of PCA in bioinformatics 145
A.3 Publications related to other unsupervised learning 147
A.4 Publications related to clustered FL 147

177

	Abstract
	Danish summary
	Acknowledgments
	List of publications
	Overview
	Contents
	Federated Learning
	Motivation
	Federated learning
	Challenges and opportunities in federated learning
	Private Federated Learning
	The FeatureCloud Platform
	Unsupervised Machine Learning
	Summary & Aims of this thesis
	References

	Manuscript 1: Federated Horizontally Partitioned Principal Component Analysis for Biomedical Applications
	Manuscript 2: Federated Principal Component Analysis for Genome-Wide Association Studies
	Manuscript 3: Federated Singular Value Decomposition for High Dimensional Data
	Manuscript 4: Federated QR decomposition – algorithms, privacy, and applications
	Federated K-Means
	Summary
	Introduction
	Preliminaries
	Related work
	Systematization of evaluation of federated clustering
	Practical federated clustering using federated k-means
	Practical evaluation of federated K-Means clustering
	Test metrics
	Conclusion & Outlook
	References

	Discussion & Conclusion
	Summary
	Communication and resource efficiency
	Accuracy
	Privacy
	Future directions
	Conclusion
	References

	Supplementary information
	Web repositories
	Additional Literature
	References

	Supplement Chapter 2
	Supplement Chapter 6
	List of Figures
	List of Tables

