
OPEN ACCESS

ll
Review

Toward human-level concept learning: Pattern
benchmarking for AI algorithms
Andreas Holzinger,1,3,* Anna Saranti,1,3 Alessa Angerschmid,1,3 Bettina Finzel,2 Ute Schmid,2 and Heimo Mueller3
1Human-Centered AI Lab, University of Natural Resources & Life Sciences Vienna, Vienna, Austria
2University of Bamberg, Bamberg, Germany
3Medical University Graz, Graz, Austria
*Correspondence: andreas.holzinger@human-centered.ai
https://doi.org/10.1016/j.patter.2023.100788
THE BIGGER PICTURE Due to great advances in statistical data-driven machine learning and the large
amounts of data available for this purpose today, artificial intelligence (AI) applications have been very suc-
cessful in standard pattern-recognition tasks. However, there is still a large gap between AI pattern recogni-
tion and human-level concept learning. Humans are surprisingly good at learning from just a few examples,
even under uncertainty, and are able to generalize these concepts to solve new previously unknown concep-
tual problems. For example, it is very easy for humans to recognize concepts such as right/left, up/down, and
big/small, which is a big challenge for machines. The international AI community is continuously developing
new experimental environments and diagnostic/benchmark datasets to support future developments in the
field of concept learning.
SUMMARY

Artificial intelligence (AI) today is very successful at standard pattern-recognition tasks due to the availability
of large amounts of data and advances in statistical data-driven machine learning. However, there is still a
large gap between AI pattern recognition and human-level concept learning. Humans can learn amazingly
well even under uncertainty from just a few examples and are capable of generalizing these concepts to solve
new conceptual problems. The growing interest in explainable machine intelligence requires experimental
environments and diagnostic/benchmark datasets to analyze existing approaches and drive progress in
pattern analysis and machine intelligence. In this paper, we provide an overview of current AI solutions for
benchmarking concept learning, reasoning, and generalization; discuss the state-of-the-art of existing diag-
nostic/benchmark datasets (such as CLEVR, CLEVRER, CLOSURE, CURI, Bongard-LOGO, V-PROM,
RAVEN, Kandinsky Patterns, CLEVR-Humans, CLEVRER-Humans, and their extension containing human
language); and provide an outlook of some future research directions in this exciting research domain.

INTRODUCTION them to perform tasks such as navigating through unknown en-
Artificial intelligence (AI) is making significant progress in a wide

range of applications due to the availability of large amounts of

data and the great success of data-driven statistical machine

learning. Examples of AI applications for patterns include the

following:

Computer vision: AI algorithms are being used to analyze and

recognize patterns in images and video, allowing them to

perform tasks such as image classification, object detection,

and facial recognition.2

Predictive analytics: AI algorithms are being used to analyze

patterns in data to make predictions about future events or out-

comes. This can be used in applications such as stock market

forecasting, fraud detection, and customer churn prediction.3

Robotics: AI algorithms are being used to enable robots to

recognize and respond to patterns in their environment, allowing
This is an open access article und
vironments, handling and manipulating objects, and interacting

with humans.4

Natural language processing (NLP): AI algorithms are being

used to understand and generate human language,5 allowing

them to perform tasks such as language translation, text sum-

marization, and sentiment analysis.6

Natural language understanding (NLU): is a key component of

NLP and includes the ability of AI to understand and interpret hu-

man language in a way that is similar to how a human would un-

derstand it, and is used, e.g., in chat-bots (e.g., ChatGPT7).

There is no debate that the trend toward using AI will continue

to increase in the future. AI technology has the potential to

improve efficiency, performance, and productivity in a wide

range of applications and there is increasing research and devel-

opment in this field. There are also increasing efforts to make AI

more transparent, accountable, interpretable, explainable, and
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Figure 1. Example image and question pair from the QLEVR dataset
One example image and question pair from the QLEVR dataset1 as well as the corresponding logical steps to answer it. The image contains objects of different
shapes, sizes, colors, and textures in different backgrounds. To answer the question correctly, an AI algorithm can use the presented logical steps, although it has
been shown that, in some cases, the correct answer is provided without the model following some expected reasoning sequence. For humans, such tasks are
easy; for computers, they are still difficult.
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robust. Robustness and explainability will likely lead to greater

trust8 in and adoption of trustworthy AI technology, particularly

in domains that affect human life, for example in medicine/

health9 or agriculture/forestry.10

Pattern recognition,as theprocessof identifyingpatterns indata

andusing thosepatterns tomakepredictionsand/ordecisions, isa

central part of machine learning, and therefore a key aspect of AI

becoming increasingly important in the future. Recent examples

have demonstrated that AI can reach human-level performance

and beyond,11 even in complex domains such as medicine.12–14

However, AI models are highly dependent on the quality of the

input data and especially on the training data. Thus, it is essential

that researchers understand the datasets and how they might

affect the system’s performance.15 Although the latter is of

eminent importance for learning, they are typically treated as

pre-defined, static information; i.e., the current best models

are passive and rely on human-curated training data but have
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no control over themselves. This is in contrast to how humans

learn, because humans interact with their environment to gain in-

formation.16 The role of interactivity, which is especially impor-

tant for learning new concepts, and the extent to which the

learner can take an active role in learning those concepts have

been considered extremely important by the AI research com-

munity for a very long time.17 Unlike AI, sometimes—of course,

not always—humans are very good at understanding and ex-

plaining concepts, even in novel situations with complex dy-

namics and even with little interaction.18

Human conceptual abilities are also very productive: humans

can understand and generate novel concepts through composi-

tions of existing concepts, unlike standard machine classi-

fiers, which are limited to a fixed set of classes. Moreover,

humans are able to induce ‘‘ad hoc’’ categories.19 Thus, unlike

AI systems, humans reason seamlessly in large, essentially ‘‘un-

bounded’’ concept spaces and are very good at dealing with
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uncertainty and under-determination.20 Overall, AI systems are

designed to perform specific tasks or functions more efficiently

or accurately than humans, but they do not have the same broad

range of abilities or characteristics as humans.

Human intelligence and AI are two forms of intelligence that

are different in many ways. Human intelligence refers to the

mental abilities of people, such as the ability to perceive, learn,

reason, adapt to new situations, and solve problems. Intelli-

gence is a complex andmultifaceted concept that encompasses

many different cognitive and emotional capabilities. AI, on the

other hand, refers to the ability of a machine or computer system

to perform tasks that would normally require human intelligence,

such as learning, problem solving, and decision making. AI can

be trained to perform a wide range of tasks using prior knowl-

edge, algorithms, and data, and it can adapt and improve its per-

formance over time through machine learning.

This paper is organized as follows. After the introduction, in

which we motivate the need for AI while highlighting the advan-

tages of humans, in section ’’background,’’ we explain some dif-

ferences between human intelligence and artificial intelligence,

human learning and machine learning in general, and human

concept learning and machine concept learning in particular,

and provide a very brief introduction to human visual information

processing. In section ‘‘synthetic datasets for benchmarking

concept learning, reasoning, and generalization,’’ we provide

an overview of synthetic datasets for benchmarking concept

learning, reasoning, and generalization. In section ‘‘AI solutions,’’

we present AI solutions that build on the datasets discussed

in section ‘‘synthetic datasets for benchmarking concept

learning, reasoning, and generalization.’’ Finally, section ‘‘future

challenges and research directions’’ presents some selected

future challenges and future research directions, and in section

‘‘conclusion’’ we have a short conclusion.

BACKGROUND

There are several key differences between human intelligence

and AI (there are many good references, e.g., Hernández-Orallo

and Chollet21,22).

Origin: human intelligence is a natural and inherent capability

of humans, while AI is an artificial construct created by humans.

Scope: human intelligence is broad and multifaceted, encom-

passing many different mental abilities and functions, while AI is

more specialized and focused on specific tasks or domains.

Learning: human intelligence is primarily developed through

experience and learning, while AI can be trained and fine-tuned

using algorithms and data.

Creativity: human intelligence is capable of creative thought

and expression, while AI is limited to the capabilities and knowl-

edge that it has been programmed or trained with.

Overall, human intelligence andAI are two different forms of in-

telligence that have their own unique capabilities and limitations.

Although still difficult, it is nevertheless easier to define human

and especially machine learning; the latter, especially statistical

data-driven machine learning, has a very clear textbook defini-

tion. Human learning and machine learning are two different pro-

cesses that are used to acquire knowledge and skills.

Human learning is the process by which humans acquire

knowledge and skills through experience, education, and
training. It is a complex and multifaceted process that involves

various cognitive and emotional capabilities, such as perception,

memory, problem-solving, and decision making.

Machine learning, on the other hand, is a clearly defined sub-

field of AI that involves the development of algorithms that can

learn from data and improve their performance over time. Ma-

chine learning algorithms are designed to recognize patterns in

data and use those patterns to make predictions or decisions.

There are several key differences between human learning and

machine learning:

Origin: human learning is a natural process that occurs in hu-

mans, while machine learning is an artificial construct created by

humans.

Learning process: human learning involves complex cognitive

and emotional processes, while machine learning involves the

use of algorithms and data to learn and adapt.

Scale: human learning is a relatively slow process compared

with machine learning, which can process and learn from large

amounts of data very quickly.

Adaptability: human learning is highly adaptable and can learn

in a wide range of contexts and environments, while machine

learning is limited to the capabilities and knowledge that it has

been programmed or trained with.

Human concept learning and machine concept learning are

two different processes that are used to acquire and represent

knowledge about a concept.

Human concept learning is the process by which humans ac-

quire and represent knowledge about a concept.23 Such a

concept is a mental representation of a category or an idea

that allows the individual person to identify, classify, and under-

stand objects, events, experiences, etc. Consequently, concept

learning is a complex and multifaceted process that involves

various cognitive and emotional capabilities, such as perception,

memory, problem-solving, and decision making.24 Humans are

able to learn concepts in a wide range of contexts and environ-

ments, and they can adapt and modify their understanding of

concepts over time. Human concepts can be abstract or con-

crete, and they can be defined in a variety of ways, depending

on the context in which they are used.25 For example, the

concept of ‘‘dog’’ is an abstract concept that is used to represent

a category of certain animals, while the concept of ‘‘red’’ is a

concrete concept that is used to represent a specific color.

Such concepts are formed through experience and learning,

and they play a central role in the way that people think, commu-

nicate, and interact with the world. They allow individuals to

make sense of their environments and to understand and

communicate complex ideas within the social world.

Machine concept learning, on the other hand, is the process of

acquiring and representing knowledge about a concept using

machine learning algorithms and data. Machine concept

learning involves the use of algorithms to recognize patterns in

data and use those patterns to make predictions or decisions.

Machine concept learning is limited to the capabilities and

knowledge that have been programmed or trained into the algo-

rithms and is not as adaptable as human concept learning.26 In

contrast, human visual information processing involves several

phases, including the following:

Sensory input: when light enters the eye, it is focused onto the

retina, which is a layer of cells at the back of the eye that contains
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photoreceptors. These photoreceptors convert the light into

electrical signals that are transmitted to the brain.27

Early processing: the electrical signals from the retina are

transmitted to the primary visual cortex, which is a region of

the brain located in the occipital lobe. The primary visual cortex

performs the initial processing of visual information, including

simple tasks such as edge detection and basic object recog-

nition.28

Higher-level processing: the primary visual cortex sends the

processed visual information to other regions of the brain for

further processing. These regions include the inferior temporal

cortex, which is involved in more complex tasks such as object

recognition and face recognition, and the parietal lobe, which

is involved in spatial attention and eye movements.29

Integration with other senses: the processed visual informa-

tion is also integrated with information from other senses,

such as hearing, touch, and proprioception (the sense of

body position and movement). This integration allows us to

build a more complete and coherent representation of the

world around us.30

Overall, the human visual system is a sophisticated system

that allows us to interpret and make sense of the visual informa-

tion that humans receive from the world around. One of the most

important aspects is compositionality. The expressionist artist

Wassily Kandinsky promoted simple colors and simple shapes

and in 1926 published his book, Point and Line to Plain,’’ a contri-

bution to the analysis of painting elements.31 In 1959, Hubel and

Wiesel32 carried out their famous experiments where they

discovered that the visual system of the cat brain builds up an

image from very simple elements into more complex representa-

tions. Humans group segments into objects and use concepts of

object permanence and object continuity to explain what has

happened and infer what will happen, and also to imagine

what would happen in counterfactual situations. The problem

of complex visual understanding has long been studied in com-

puter vision.33 This later inspired the deep-learning pioneers to

use this compositionality in neural networks. A deep-learning ar-

chitecture can be viewed as a multilayer stack of simple mod-

ules, most of which are subject to learning and many of which

compute non-linear input-output mappings. Each module in

the stack transforms its input to increase both the selectivity

and invariance of a representation. With multiple such non-linear

layers, a system can implement complicated functions of its in-

puts that are simultaneously sensitive to detail and insensitive

to large irrelevant variations such as background, pose, lighting,

and surrounding objects. At first, edges and lines are learned,

then shapes, and then objects are formed, eventually leading

to concept representations.34

SYNTHETIC DATASETS FOR BENCHMARKING
CONCEPT LEARNING, REASONING, AND
GENERALIZATION

The path from visual question-answering systems to
corresponding benchmark datasets
One of the first datasets that were used for image classification

tasks was CommonObjects in Context (COCO).35,36 It contained

images of objects mostly in their natural surroundings. Machine

learning models were challenged with the tasks of object locali-
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zation as well as the prediction of semantic descriptions (cap-

tions) of the content. One of the earliest works that learn captions

from data does not use neural networks but conditional random

fields (CRFs).37 In the case where neural networks are used, the

general architecture to solve this task contains a convolutional

neural network (CNN) that processes the image and extracts

feature embeddings (usually corresponding to particular regions)

that will be used as input to a bidirectional long short-termmem-

ory (biLSTM) network that aligns those visual embeddings with

the embeddings of the caption.38,39 The prediction of the seman-

tic description is based on the correlation of the image and with a

set of possible captions, which are considered weak labels.

Further research demonstrated the role of the image context

(surroundings) in the performance of those methods,40 espe-

cially for the objects are relatively small compared with the

others as well as partially occluded by others. Explainable AI

(xAI) methods, such as layer-wise relevance propagation

(LRP)41 and first-order interpretability logic (FOIL)42 also showed

how artifacts in datasets can be misused by those models.43

One of the first visual question-answering datasets is called vi-

sual question answering (VQA and was created in 2015.33 The

dataset consisted of real images as well as questions that

were created based on human-generated captions. State-of-

the-art architectures of that time provided good performance,

but their generalization and compositionality were questioned

and tested with an extension of the original dataset called

Compositional VQA (C_VQA).44 This dataset was carefully

crafted so that the distribution of questions across splits

(compared with its first version33) remains the same across

splits, but the answer distributions for a particular question

type should be different. All architectures showed a drop in per-

formance on the new dataset, even the Neural Module Networks

(NMNs)45 (see section ‘‘NMNs’’), which have a built-in composi-

tional architecture. This is assumed to be because of the long

short-term memory (LSTM) that uses strong language priors,

which, in the case of the original dataset, are similar for training

and test sets, but in C_VQA this was no longer the case.

After the captioning tasks reached a desirable performance

with neural networks, one research direction proceeded into

question-answering (QA) systems, where corresponding data-

sets such as the Visual Genome46 also evolved. Instead of

hard or soft labeling, it was relevant to find out if neural networks

are capable of answering user-posed questions about some

properties of objects in the image. For an AI system to support

human dialogue is more natural and more informative, since

some information is encoded in the question,47 but for a neural

network to be able to answer correctly a set of questions,

following some pre-specified structure and usually increasing

complexity, means that it can handle concept learning as well

as having reasoning abilities, which go beyond embedding align-

ment. In general, questions and answers in future research will

depart from template-generated constrained versions, will be

longer, will contain more combinations of objects, concepts,

and ideally will be free text.44 The same applies to images that

depict more real-life elements than carefully constructed

rendered scenes as well as videos. Currently, video QA systems

(VideoQA) are evolving, with the laborious task of gathering

appropriate data.48 An overview of VQA systems, their proper-

ties, and abilities is provided by Kojima et al.49



Table 1. Overview of synthetic datasets for benchmarking concept learning, reasoning, and generalization, sorted by date and

characterized by size and dimension (2D, 3D rendered in 2D, 3D video)

Dataset Dimension Size Reference Date

CLEVR 3D to 2D 70,000; 15,000; 15,000 Johnson et al.50 2016.12.20

Shapeworld 2D customizable Kuhnle and Copestake51 2017.04.14

CLEVR-Humans 3D to 2D 17,817; 7,202; 7,145 Johnson et al.52 2017.05.10

Sort-of-CLEVR 3D to 2D 9,800; 200 Santoro et al.53 2017.06.05

SCOOP 2D variable Bahdanau et al.54 2018.12.30

RAVEN 2D 672,000; 224,000; 224,000 Zhang et al.55 2019.03.07

CLEVR-XAI 3D to 2D 20,000 Arras et al.56,57 2020.03.16

Kandinsky

Patterns

2D customizable M€uller et al.58 2019.06.03

V-PROM 3D to 2D different splits �100,000 Teney et al.59 2019.07.29

CLEVRER 3D 10,000; 5,000; 5,000 Yi et al.60 2019.10.03

CATER 3D 3,850; 1,150 Girdhar et al.61 2019.10.10

CLOSURE 3D to 2D sizes as CLEVR Bahdanau et al.62 2019.12.12

Bongard-LOGO 2D 9,300; 900; 1,800 2020.10.02

CURI 3D to 2D 500,000; 5,000; 20,000 Vedantam et al.63 2020.10.06

CLEVR_HYP 3D to 2D 5,000; 1,000; 1,000 Sampat et al.64 2021.04.13

Super-CLEVR 3D to 2D 20,000; 5,000; 5,000 Li et al.65 2022.12.01

CLEVR-X 3D to 2D 56,000; 14,000; 15,000 Salewski et al.66 2022.04.05

QLEVR 3D to 2D 70,000; 15,000; 15,000 Li and Søgaard1 2022.05.06

CLEVRER-Humans 3D 1,108 splits as CLEVRER Mao et al.67 2022.10.14

The size column, when it contains three separated numbers, contains the size of the training, validation, and test set. In cases where there are only two

numbers, it is the size of the training and test set. In some datasets, the user has the ability to generate an arbitrary amount of samples; the size is then

‘‘customizable.’’ In situations where the splits can have variable size, this is denoted with the value ‘‘variable.’’ In many cases, the size and splits are

equal or proportional to the primary dataset.
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Benchmarking the performance of complex VQA systems

led to the programmatical creation of the Compositional Lan-

guage and Elementary Visual Reasoning diagnostics dataset

(CLEVR)50 in 2017, which is analyzed in section ‘‘CLEVR.’’ This

was the first research work presenting a synthetic dataset that

stated clearly the necessity of quantifying some preliminary ca-

pabilities of compositionality and generalization of AI solutions.

The inventors did not just create the dataset and the correspond-

ing reasoning challenges, and provided an AI algorithm that

managed to tackle them to a certain degree.

After the publication of CLEVR, there was a plethora of ex-

tensions of this dataset (CLEVR_HYP, Sort-of-CLEVR, Quantifi-

cational Language and Elementary Visual Reasoning [QLEVR],

CLEVR-XAI, Super-CLEVR) that dealt with similar but different

concept learning and reasoning challenges. What each

research group considered as sufficient generalization indica-

tion was generally different; some of them were more concen-

trated on numerical generalization, whereas others associated

it with the ability for disentanglement of features and user-

defined compositionality. In 2019, a new dataset called

Collision Events for Video Representation and Reasoning

(CLEVRER)60 dealt with benchmarking videos instead of im-

ages. It is mostly concentrated on the recognition of causal re-

lationships and is closely related to physical reasoning and ac-

tion prediction benchmarks that were published around that

time. Both CLEVR and CLEVRER evolved in a direction that in-

cludes questions not synthetically generated but in human

language.52,67
One far-reaching goal is that the AI algorithm after it is trained

on a benchmark dataset will contain the reasoning abilities

necessary to be able to use them in a real-world dataset.65

Particularly in CLEVER_HYP,64 it is clearly stated that it is

created to test the reasoning skills that a robot (following

ideally natural language instructions) must possess to know

the effects of its actions and by that having an important skill

of human-level cognition. This has also been obvious by

several AI solutions that test the learned skills mostly in com-

puter games47,68.

Table 1 contains an overview of all diagnostic/benchmark da-

tasets that are analyzed in this work sorted by date of publica-

tion. It is crucial to differentiate between benchmarking 2D im-

ages, and 3D images rendered in 2D or 3D video sequences

since this affects the set of real-world tasks the AI solutions

(for example, robots) will be able to solve, as mentioned previ-

ously. The size of the dataset is also characteristic, although it

might be decisive for the skill comparison of the AI algorithms

to manage to acquire them with the least amount of training

data and human-expert priors as well as the reporting of the bal-

ance between those two.

Design directions for concept learning and reasoning
benchmark datasets
In the design phase of those benchmark datasets, the following

eight directions must be carefully thought of: concept distribu-

tion, generalization, complexity, bias, ground truth conformity,

ambiguity, causality, and domain transfer/extension. For the
Patterns 4, August 11, 2023 5



Figure 2. Pie chart of the distribution of
question types in Super-CLEVR
Apie chart of the distribution of question types in the
Super-CLEVR dataset.65
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vast majority of those dimensions, there is either an explicit or

implicit metric that is used to quantify the extent towhich it is pre-

sent in the benchmark dataset by construction. This is not to be

confused with the characterization of the AI algorithms’ abilities

in recognizing those features properly.

Concept distribution

This dimension is strongly related to the one capturing biases

(see section ‘‘bias’’) and is basically addressing the following

questions: how many samples will contain a particular concept?

Are all concepts uniformly distributed along the dataset, or are

some of them more prevalent? One example of the presentation

of the distribution of question types in the Super-CLEVR dataset

is presented in Figure 2 and the concept distribution in Figure 5.

The distribution of characteristics of objects is also something

that influences indirectly the concept learning procedure; there-

fore, a depiction as in Figure 3 is helpful.

Generalization

The out-of-distribution (OOD) abilities and problems of AI solu-

tions are topics that are mentioned in a plethora of research

works. Thisdesigndirectiondealswithuncovering the limitsof un-

seen data constellations that are solvable. Generalization has

different subdivisions that are important, such as numerical, inter-

polation, and extrapolation of the grasped concepts, extension to

conceptually similar problems, and most importantly the degree

of disentanglement as a necessary prerequisite for the emer-

gence of novel, more complex combinations, also called compo-

sitionality. One tries to capture it by differing the distribution of

dataacross splits—either thecharacteristics of imagedata, ques-

tions, and/or answers—and noticing if the performance will drop

and, if so, by how much. The CLOSURE dataset (see Figure 4)

was created under those principles to improve some deficiencies

of the CLEVR dataset in this topic. The ultimate goal is the gener-
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alization to a real-world dataset that would

demonstrate both domain robustness and

domain shift abilities.

The degree of generalization is typically

measured by the performance of the test

set or in specially designed splits; its rela-

tive drop compared with the one of the

training set is the major indication of its

lack.69,70 The synthesis abilities are put

into question explicitly,68 and, in some

cases, a heatmap of concepts co-occur-

rence matrix and conditional concept dis-

tribution (a concept in the context of other

concepts)65 is presented (see Figure 5). In

the Super-CLEVR dataset, the authors

define the relative degrade (RD) metric as

the percentage of accuracy decrease un-

der domain shift.65

The design direction of compositionality

is so fundamental that independent

research works tackling its issues was
created.70 It is quite clear that particularly the compositional an-

alyses are created with a human reference in mind71 (and some-

times even anti-correlated with them) and that the learnedmodel

embeddings synthesis characteristics have to be expressedwith

a mathematical framework. The evaluation metric tree recon-

struction error (TRE) is created to determine if a compositional

structure is present by checking the degree of correlations be-

tween learned representations. The mutual information (MI) is

between the TRE of the whole dataset and the learned represen-

tations. Newer research works deal with assessment methods

that create adversarial agents, trying to stress the limits of

compositional generalization with the use of zero-sum games.71

Complexity

How does the AI solution performwhen increasing the number of

elements that comprise the image, when there are more occlu-

sions in the scene and the longer text of questions and answers?

Tendentiously, the complexity is considered to increase when

more objects, relations, and concepts are represented by the

sample.72 The use of natural language instead of a domain-spe-

cific language (DSL) for the question-answer pairs is one of the

most noteworthy complexity-increasing decisions. Correspond-

ingly, the AI solution needs to undertake more logical steps and

also more actions. An example of increasing complexity is pre-

sented in Figure 5.

Bias

Historically, in the earlier benchmark datasets, the researchers

made a great effort to eliminate representative bias, particularly

in dealing with occlusion and overlap of scene objects and

events, trying to counteract them. Even since 2011,73 ideas

about how to make datasets as rich as possible through

augmentation or data gathering from the Internet showed not

only that there are different types of bias but also that several



Figure 3. Objects in the Super-CLEVR dataset
Distribution of characteristics of objects in the Super-CLEVR dataset.65
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counter-measures to make the data gathering as random and

careful as possible fail since whole datasets have unique charac-

teristics that can be discriminated from each other with a good

performance with the use of AI algorithms. This might have led

to the phenomenon that is observed in later datasets; since

real-world data contain biases, an ideal situation with an unbi-

ased dataset is considered to be unrealistic. Therefore, some

biases are meanwhile per design quite ‘‘tolerable,’’ and only

the ones that are important for real-world generalization and

application (such as the rotation and scale invariances) are

kept; see also the section ‘‘generalization.’’

Visualization of distributions and the results of balancing pro-

cesses are discussed elsewhere74,65 (balanced, unbalanced,

long tail), and pie charts for the distribution of question types

are also available,65 along with details with pie charts for ques-

tion length and frequency distribution of quantifiers distribution.1

Ground truth conformity

All benchmarks are built to have a well-defined ground truth by

construction. In most cases, the program that created the syn-

thetic data is used as a reference for the logical steps and actions

that need to be followed to reach a solution, but researchers

discovered that, in some cases, the AI algorithm learned the

necessary concepts and relations differently. The extent towhich

this canbeanacceptable solution (andnot the result of a spurious
correlation) is something that needs to be pre-specified and co-

decided under the guidance of explainable AI (xAI) methods.

The metric that can be used for this characteristic is the

grounding scores for all models using attention as in Hudson

et al.,74 or implicitly through xAI methods.56 The main idea in

both research works is to check whether the model attends

the parts of the image that are important for the concept, or

that an adequate xAI method discovers that they have high (pos-

itive) relevance.

Ambiguity

A design direction closely related to ground truth conformity (see

section ‘‘ground truth conformity’’) is will each data sample

belong to only one concept or can it be generated by many,

each of themwith a particular probability? To find amapping be-

tween each element in a data sample and its corresponding

symbolic description is commonly called grounding; ambiguity

acceptance and grounding alternatives are also seamlessly

increased the less detailed the specification of the questioned el-

ements has.

One of the most prevalent examples of datasets containing

built-in ambiguity is concept learning under uncertainty (CURI),

as seen in Figure 6. Each sample of this dataset could have

been generated by several different concepts with some pre-

defined probability.
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Figure 4. Example from the CLOSURE dataset
Example from the CLOSURE dataset that extends the checks for generaliza-
tion compared with CLEVR.62
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Causality

The benchmark datasets are tendentially evolving from static

scene images with the corresponding descriptions and/or ques-

tion-answers to sequences of images (i.e., videos). The under-

standing of change detection, long-term effects, and the exhibi-

tion of spurious correlations over a sequence of samples is vital

for temporal and physical reasoning, which in turn is a concep-

tual predecessor for causality benchmarking.

Figure 7 contains a representative example of four frames con-

taining two collisions, along with the corresponding questions

and answers. The metric for measuring the acquisition of causal

abilities is on the one hand the performance on the test set, but,

especially in this case, the answering of dedicated counterfac-

tual questions (along with descriptive, predictive, and explana-

tory ones). Answering ‘‘what-if’’ questions and ‘‘imagining’’

counterfactual scenarios are the basic indicators for causal

reasoning to some degree.

Domain transfer/extension

Each of the datasets is inspired by a real-world domain that has a

concept learning and relation uncovering problem that is unsolv-

able by current state-of-the-art AI models. Some of them contain

conceptual challenges that should generalize for game-playing,

medicine, and robot applications. Others come from the

perspective of evaluating the logical and cognitive abilities of

AI algorithms compared with those of humans. One representa-

tive dataset is the Kandinsky Patterns, which was created with

the inspiration and the goal of transfer in the medical domain,

as seen in Figure 8.

In other works that use the CLEVR dataset, the extension to a

newly created DSL, or even natural language,47 is an indication

of acceptable domain transfer as long as the performance of
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the model in the new language is acceptable. The extension to

images of the Minecraft game68 or Lego game constellations

are also evidence for the applicability of the solution to similar vi-

sual domains. Furthermore, meta-concept learning of a

completely new concept in the embedding space of concept-

objects77 is shown in Figure 9.

CLEVR
CLEVR50 is one of the most used diagnostic/benchmark data-

sets that were used for visual question-answering systems and

was also challenged and improved by diverse research

groups.78 The scene in all images of the dataset contains prelim-

inary simple three-dimensional geometrical objects (cubes, cyl-

inders, spheres) of various colors, sizes, and textures, each time

in a different constellation. For each image, there is a set of

possible questions that were synthetically generatedwith a func-

tional program; each of them is created by a chain or tree of

reasoning functions encompassing mainly relations, logic, exis-

tence, uniqueness, counting, and comparison concepts. By that

means, the ground truth is available on demand and can be used

to verify the performance of neural networks that learn the corre-

sponding concepts, which are presupposed for resolving the

reasoning tasks and correct answering of questions. Surpris-

ingly, there were technical solutions such as NMNs (described

in section ‘‘NMNs’’) that provided the expected answer, without

necessarily following the ground-truth-defined reasoning

sequence.

The generalization aspect was considered thoroughly in

CLEVR; rejection sampling was incorporated to make sure that

the answer distribution is uniform. Furthermore, the question’s

textual content can impose biases, since long and complex

questions contain more concepts and will need longer reasoning

paths by trend. The neural network architectures of that time

relied on image and textual alignment of embeddings and there-

fore showed poor generalization results. Even in cases where the

test image was only differing by one attribute value from an im-

age that was encountered in the training set, the performance

was not satisfactory. This indicated the fact that deep-learning

models do not learn and contain disentangled representations

of attributes and objects, which explained the drop in perfor-

mance of those models on unseen images and questions that

were composed by the same distributions as the ones in the

training set.

CLEVR’s successors

An expansion of CLEVR called CLOSURE was invented in 2020

by Bahdanau et al.,62 together with a proposed architecture that

is inspired by NMNs,50 analyzed in section ‘‘NMNs),’’ as well as

symbolic approaches, described in section ‘‘neuro-symbolic

methods.’’ They observed that CLEVR does not have uniformity

in the label of the training and test set, comparison questions

only use spatial referring expressions, and other related artifacts

that made the path for the creation of an enhanced synthetic da-

taset. The researchers argue that the questions in the test set

must have a different distribution—even if the image distribution

is the same—and it should contain new combinations of already-

learned semantic and syntactic components.

Another variation of the CLEVR dataset concentrating on rela-

tional reasoning is Sort-of-CLEVR.53 This is a distilled 2D version

of CLEVR containing images that always have a fixed number of



Figure 5. Features of the Super-CLEVR dataset
The visual complexity, question redundancy, concept distribution, and concept compositionality of the Super-CLEVR dataset.65
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objects, the only attributes are colors, and the questions have

fixed lengths and consist of relational and non-relational

questions.

Another variant, called CLEVR-Humans,52 contains the same

images but uses questions that are posed by humans, have

much more diversity, and are linguistically more complex than

the synthetically generated ones.

Newer benchmark datasets are created with the goal of exer-

cising machine learning models on CURI.63 Concepts can be

ambiguous and are no longer rigid labels; for example, one im-

age can belong to many different concepts. Each concept is ex-

pressed by a probabilistic context-free grammar containing

(among others) logical operators and comparisons. The number

of samples in the dataset is pre-defined so the acquisition of a

concept has to be made with limited data. Furthermore, new

challenges arise from the comparison of different data modal-

ities, such as images, sounds, and symbolic schemes in textual

form. The comparison of the different performances, representa-

tions, and appropriate models sheds light on the commonalities

and differences between the input data and the task itself.

The data are according to pre-defined hypotheses and either

satisfy a concept (positives) or not (negatives) with a particular

probability. Current representation learning methods79 that are

used to embed the states of reinforcement learning (RL) environ-

ments are also based on this scheme of positive and negative

examples created by corruption of the positives. The composi-

tionality gap is measured by the comparison between an ideal

Bayesian learner that has access to all the hypotheses. Further-

more, stronger and weaker generalization tasks are defined by

the targeted choice of negatives that have partial overlaps with

the concept of the positives. Generalization is tested by strategi-

cally designed splits between the data that are used for training

and the ones that comprise the test set. For example, to evaluate

how well the generalization is accomplished, easier concepts

(with smaller prefix sequence length) are present only in the
training set, whereas the test set contains only complex

concepts.

Super-CLEVR65 is a benchmark dataset extending CLEVR

that specializes in exercising AI solutions with respect to (w.r.t.)

domain robustness and generalization. Instead of focusing

solely on the correct creation of balanced dataset splits or coun-

terfactual samples generation of other datasets,80 this dataset is

focused on first dividing domain shift into four components, the

first being visual complexity by extending CLEVR’s 3D objects

with more textures and parts. Second, questions are created

with more redundancy in the provided information as humans

do, and that increases the number of correctly identified logical

steps and the probability of error in the AI solution. The third

component targets the concept distribution as far as the number

of samples that contain (or do not) a particular attribute;

balancing those is dealt with by varying the distribution from uni-

form to long tailed andmeasuring concept distribution shifts. The

fourth aspect is concept compositionality, which deals with the

ability of an AI solution to disentangle attributes and objects

from each other and being able to correctly identify a combina-

tion thereof that does not occur as in the training set. For each

of the four components, the dataset contains three parts charac-

terized by the controlled and increasing complexity of those. The

differences in model prediction performance (also called RD) are

the indicators of domain robustness; this was effectively made

with the implementation of a Probabilistic Neural-Symbolic

VQA (P-NSVQA) algorithm (see section ‘‘neurosymbolic

methods’’; Figure 10), which performed better than other base-

lines and older neuro-symbolic models.

Another benchmark dataset, namely QLEVR1 (Figure 1), that

extends CLEVR concentrates on increasing the complexity of

quantifiers and contains questions composed of several combi-

nations thereof. This is made in an attempt to approach human

natural language questions even better and prerequisites even

more complex image constellations than CLEVR. The
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Figure 6. Some example images from the CURI dataset
The grammar rules that created those examples are presented along with the images.63 Nonetheless, these rules are not unique, and the probabilistic context-
free grammar can create the same images from different rules.
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synthetically generated images can contain in this case more

than one background with different textures, and the objects

lie in groupings. The inventors have created dedicated checks

to ensure that questions are not ill-posed or trivial; this is even

more necessary in this dataset where the complexity is much

higher and therefore the questions are more prone to being al-

ways true or ‘‘arithmetically impossible’’ in the sense that no

reasonable grounding is possible. Furthermore, to ensure that

the answer distribution is balanced, thereweremuchmore ques-

tions than images. The AI solutions that were used include text-

onlymodels as base cases and further checks to detect spurious

correlations in the question’s text and also to uncover the neces-

sity of the image information for the correct answering of the

posed question. As also observed in other benchmark datasets,

the more detailed the specification of the questioned elements,

the more prone the AI solutions are to an erroneous answer;

whenever an exact match is required, the problem is more diffi-

cult than the recognition of, e.g., ‘‘larger than,’’ ‘‘lower than,’’

‘‘all,’’ or ‘‘some’’ solution sets. It is apparent that, where less

reasoning is required, as, e.g., in cases where less attribute or

relation recognition is necessary, the performance is generally

higher. The most effective AI solution includes the memory,

attention, and composition (MAC),69 which is described in sec-

tion ‘‘AI solutions.’’

CATER61 is one of the first benchmark datasets that deals with

video and spatiotemporal understanding accordingly. It is

referred to by the inventors themselves as a diagnostic/bench-

mark tool, and they suggest that it can be used for other tasks

apart from benchmarking long-term reasoning. The models are

exercised in their abilities in solving four classes of tasks, the first

being primitive action recognition without the explicit use of an

operator or hand (notmeant for action recognition of an imaginary

robot arm). The second task is more difficult and deals with the

correct recognition of compositional actions; this dealswith pairs

of actions whose duration interval overlaps at a particular time

point or interval. Recognition of completely hidden or partially

occluded objects is also an interesting problem and it inspired

the last two tasks, one dealing with adversarial target tracking
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and the last one with the containment of one dedicated object

called ‘‘snitch.’’ The performance of the AI models used on this

benchmark was not in accordance with the one they had in real

video sequencesmost of the time; nonetheless, all of them strug-

gle with the effective discovery of hidden elements, particularly if

their movement was active until the last video frames since they

did not have the opportunity for long-term inference. Models

that used just aggregation functionality could not effectively pro-

cess temporal information, whereas ones that contained LSTM81

components were more capable of reason about it.

Although one of the stated goals is the discovery of causal rela-

tion, the researchers donot see this dataset as comparablewith or

in the same category as CLEVRER,60 described in section

‘‘CLEVRER,’’ but as an extension of CLEVR for frame-by-frame

classification dedicated to action recognition. In some sense,

it has similarities with CLEVR_HYP and CLEVRER, which is

described below, since action recognition and understanding the

effects thereof are issues also tackled by those benchmark data-

sets. As far as the elimination of biases is concerned, the inventors

have the opinion that, since videos of the real visual world contain

them, the benchmark datasets should reflect that. Benchmarking

is there to shed light on what models misunderstand by creating a

challenging dataset where occlusion, duration of events and their

overlap, and degree of camera motion are parameterized so that

humans can understand those limitations.

CLEVR_HYP64 is a benchmark dataset that, although not de-

signed to exercise reasoning skills for video sequences, can be

considered a forefront to CLEVRER,60 described in section

‘‘CLEVRER,’’ in the sense that it deals with actions that change

the image’s scene. The dataset’s image’s objects do not have

substantially different characteristics compared with CLEVR,

apart from five pre-defined spatial relations. The main difference

lies in the questions; for an AI solution to be able to answer them

correctly, it has to imagine the correct sequence of actions by

sequencing events that happen before and after the current im-

age’s scene. There are four types of actions that are considered

executable by a robot and can influence either one particular ob-

ject or the whole scene. Some sort of counterfactual ‘‘what-if’’



Figure 7. Four frames of a video containing two collisions in the CLEVRER datasets
The corresponding descriptive, predictive, explanatory, and counterfactual questions are shown.60
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hypothetical scenario conceptualization is necessary as well as

‘‘physical intelligence’’ that one also encounters in the solutions

of Bakhtin et al.82 without it yet being a benchmark that

tests causal sequence events as CLEVRER60 (see section

‘‘CLEVRER’’). Nevertheless, all scenesuntil the last one thatman-

ifests the correct question’s answer have to be physically plau-

sible. The posed questions are more complex than the ones in

CLEVR by the use of synonyms and paraphrasing, which also

contributed to the prevention of over-fitting. As in CLEVR, the

longer the question, the higher the number of actions that need

tomentally beperformed toanswer thequestionproperly. The re-

searchers took care of dataset balance by making all answer

choices uniform and cleaning up ill-posed or ‘‘degenerate’’ ques-

tions that do not have any corresponding grounded objects or

contain ambiguity in this manner. The NS-VQA68 described in

section ‘‘neuro-symbolic methods’’was used here among other

baselines and provided acceptably good performance.

CLEVR-X66 is a dataset that provides explanations for a visual

question-answering task. The novelty of CLEVR-X is that it ex-

tends the CLEVR dataset with natural language explanations.

The authors state that natural language explanations allow for a

better understanding of the reasoning process and thus enhance

the transparency of the system. Further, the CLEVR-X explana-

tions do not simply describe all image elements but only those

relevant to the input question. This is done by first tracing the

functional program, relevance filtering, and finally generating

the explanation. CLEVR-X explains all relevant elements, thus

all objects that are needed to answer the question are filtered

and explained. To keep the explanations as short as possible,

only the object properties asked for are deemed relevant, and

thus are included in the explanations. Explanation templates

with placeholders are used for the explanation generation. Since

they should be kept short and simple, repetitive expressions are

aggregated using numerals. Thus,multiple different explanations

are generated by using different templates, random sampling of

synonyms, and object order randomization. A subsequent user

study showed that the explanations of CLEVR-X are complete

and they match the questions and images of the CLEVR dataset.

It was shown that the generated explanations for easier question-
and-answer categories exhibit a higher quality than for other

categories, whereas the explanations for counting problems

showed the worst performance.

CLEVR-XAI56,57 is a benchmark dataset for the ground-truth

evaluation of neural network explanations, based on CLEVR.50

CLEVR-XAI proposesmethods to generate a visual ground truth,

based on the CLEVR generator, as well as quantitative metrics

for evaluating explanations. The CLEVR-XAI evaluation set is

split into two types, namely simple and complex questions. Sim-

ple questions (CLEVR-XAI-simple) focus only on one single

target object and pose queries about the object’s attributes

without any inter-object relations. Complex questions (CLEVR-

XAI-complex) on the other hand contain all question types that

can also be found in the original CLEVR dataset. Thus, multiple

objects within the image can be relevant to a question. Ground

truths are generated for both of these types. Since the simple

questions do only focus on one single target, two ground-truth

masks are generated: one that only identifies the target and

another that identifies all objects. These masks are created by

setting the corresponding object’s pixels to true and the remain-

ing pixels to false. The complex questions make use of four indi-

vidual ground-truth masks. One mask identifies a unique object,

related to the posted question. The ground-truth unique first-

non-empty mask returns all unique objects from the first-non-

empty set, while the functional program is iterated in reversed

order. The ground-truth union mask is a superset of unique

first-non-empty and is still related to the question. It includes a

union of all sets of objects returned by every function of the pro-

gram. Similar to the simple questions, there is one ground-truth

mask that contains all objects of the scene. Most xAI methods

generate a heatmap with three channels, which is then pooled

by the authors into a single-channel heatmap. This resulting

heatmap is then used to evaluate the accuracy of an explanation

by assuming the most important parts of the relevance lie within

the ground-truth mask.

CLEVRER
CLEVRER60 is a dataset that extends CLEVR (described in sec-

tion ‘‘CLEVR’’) with the goal of exercising temporal and causal
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Figure 8. Kandinsky Patterns
Inspired from the work of pathologists75,76 and
named after the famous painter Wassily Kan-
dinsky.58
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reasoning abilities of neural networks. The dataset is not

composed of static images but of videos that depict collisions

between the pre-defined objects, which, as in CLEVR, have a

pre-defined set of attributes and appear in different constella-

tions. To answer the questions provided in the dataset correctly,

the neural networks have to be able to reason counterfactually, in

terms of ‘‘what-if’’ and ‘‘what-if not’’ a collision event would

happen (or not) and explain which dependencies between posi-

tions and occurring events exist. Recognizing the motion of the

moving objects in the videos helps the models maintain non-

static but constant information about the involved objects.

Causal relation recognition requires separate object representa-

tions, whereas causal reasoning could be overtaken by symbolic

logic (see section ‘‘neuro-symbolic methods’’), resembling

roughly the system 1 and system 2 division of cognitive abili-

ties.83,84 As in CLEVR, counteracting bias was supported by

ensuring that each possible answer to each question is valid in

the same number of images.

As for the purpose of CLEVRER, the ultimate goal is to evolve

toward real data scenarios that will be of more practical use to

the corresponding scientific communities and industry. It has

substantial similarities with physical reasoning benchmarks

such as Physical Reasoning (PHYRE)82 and CLEVR-Change for

change detection85; nonetheless, those benchmarks concen-

trate substantially on the understanding of physical laws and

not causality specifically.
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CLEVRER’s successors

The CLEVRER-Humans67 is a human-

annotated dataset of physical event de-

scriptions and their causal relations.

It extends the CLEVRER dataset by incor-

porating human knowledge and the way

humans tend to describe physical events

and the corresponding causes. Instead of

basing the causal relationships on con-

servation laws, heuristics and counterfac-

tuals, human annotation, and judgement

about potential causal dependencies are

collected through a user study, in the

form of a question-answer survey. Each

participant indicates whether the events,

as stated by the CLEVRER dataset, are

correct and, if so, indicates the level of

causation (1–5) between those events.

The dataset introduces the challenge

of NLU, combined physical scene under-

standing, and causal reasoning. The

goal of CLEVRER-Humans is to show

the difficulty of human reasoning due to

different linguistic usage and graded

judgements of causation. It accomplishes

that by taking into account natural lan-

guage descriptions such as ‘‘because’’
or ‘‘responsible for’’ and using them for the physical grounding

of chains of events. The internal generation of a causal

event graph (CEG) helps the dataset generation system to the

model human annotation of events and their degree of causa-

tion, while at the same time being time saving because this

only has to be constructed for a limited number of cases; the

rest can use a neural network that outputs human-like anno-

tations.

The CLEVRER-Humans benchmark dataset achieves two

design goals: first is the diversity between physical event de-

scriptions (nodes of the CEG) with natural language (NL) and,

second, density over the edge labels, which are also annotated

by different users. Like other datasets, there are also built-in

sanity checks of the annotations for grammar consistency,

referred to object(s) existence (viable grounding) and re-

balancing of verb usage since verbs are indicative of events.

Particularly for re-balancing, human users are adamant in their

contribution of ensuring uniformity since most of the events

involving two objects do not have a causal relationship between

them. Separate gated recurrent unit (GRU) networks with atten-

tion86 used single- and pairwise-event description generation

where the input is the trajectory of one object or both in cases

of approaching, collision, and moving together in a pair corre-

spondingly. The challenges posed by the high diversity of this

dataset w.r.t. CLEVRER’s vocabulary size or the limited training

set size that leads eventually to over-fitting are not overcome by



Figure 9. Concept and object vectors
Concept and object vectors embedding space of concept objects; the model learned the embedding of an unseen concept in Han et al.77
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state-of-the-art neuro-symbolic AI solutions, even if they are

trained or pre-trained on the CLEVRER dataset.

Other diagnostic/benchmark datasets
KANDINSKY Patterns58 are named after the Russian painter

Wassily Kandinsky and their building blocks are three simple

shapes (circle, triangle, square), which can vary in color (blue,

red, yellow), size, and position, similar to an abstract painting

by Kandinsky.31 With these basic visual elements and optional

restrictions, e.g., Kandinsky Figures contain exactly four geo-

metric objects, a set of all possible Kandinsky Figures is defined,

which is divided into two subsets, by either a mathematical or a

NL statement; e.g., ‘‘All elements in a Kandinsky Figure are red.’’

The two subsets, one for the true and one for the false statement,

are then called Kandinsky Patterns. A Kandinsky Pattern thus

represents a specific concept, which can range from very simple

ones, e.g., the color red, to relationships between quantities, po-

sitions in space, and Gestalt principles.

Tasks to be challenged by a specific Kandinsky Pattern are

how to explain a Kandinsky Pattern, if only a limited number of

Kandinsky Figures are known, and how to generate an NL state-

ment, which is easily understandable and equivalent to the ma-

chine explanation (classification algorithm). Furthermore, Kan-

dinsky Patterns can be used to investigate the generation and

refinement of a hypothesis when a series of false and true Kan-

dinsky Figures are received alternately. Since Kandinsky Pat-

terns can be described both in a mathematical formalism and

by humans, Kandinsky Patterns lend themselves to comparing

the process of learning (hypothesis refinement) between humans

and machines80,87,88

The SAR Altimetry Coastal & Open Ocean Performance

(SCOOP) dataset54 is one that is not tailored particularly to

concept learning but concentrates on exercising the generaliza-

tion capabilities of NMNs45 (see section ‘‘NMNs’’) with different

layouts that do not need prior knowledge about the task. The

proposed dataset contains images with letters and digits, and

the reasoning tasks encompass only spatial relations. The ex-

periments showed that the architecture of NMNs played a sub-

stantial role in their generalization capabilities; modules that

are organized and connected in a tree structure have an excel-

lent generalization performance, comparable with models that

use prior knowledge, whereas a set of modules structured as a

chain fail just because of that reason. It is a key insight that, to
achieve compositionality, apart from parameterization there

has to be successful specialization between the modules and

the layout must be inducted adequately.

The Raven progressive matrices (RPM) test89,90 is a non-ver-

bal test, invented by psychologists mainly to test the recognition

of relations between objects and attributes. Each test is

composed of a 333 matrix; each row of this matrix contains im-

ages having the same relationship with each other. The relations

consist of logical operators, comparisons, and counting objects,

which is still a challenging task for current state-of-the-art neural

networks. The questioned entity must choose the adequate

answer from a set of candidate images; this constitutes a major

difference from the rest of the datasets and cognitive tasks ex-

plained in this section. The images consist of simple abstract

shapes, selected from a closed set.

A smaller but more diverse dataset following the main princi-

ples of RPM, called Relational and Analogical Visual Reasoning

(RAVEN),55 was used to exercise the reasoning capabilities of

relation networks (see section ‘‘relation networks’’). The creation

of each image is made with the use of more structures and in-

stantiations, as well as following more diverse types of rules,

although they are hierarchical. Furthermore, researchers did

not only compare the performance of the models w.r.t. ground

truth but also with human performance.

A new benchmark for visual reasoning for real images that

goes beyond testing the generalization capabilities of non-ab-

stract scenes is visual progressive matrices (V-PROMs).59

Although the style of the posed problem follows the structure

of the RPMs, meaning that the input is still a 333 matrix of im-

ages connected by a particular relation at each row, the set of

possibilities is open and the data are sampled from the Visual

Genome (https://visualgenome.org/). Teney et al.59 created a

detailed list of data splits with interpolation/extrapolation, held-

out objects, attributes, and relationships, since the neural net-

works that they used struggled with OOD data. An important

requirement for the machine learning solutions that will solve

those tasks efficiently is also the computation of a simple ab-

stract description that will be used as a generative explanation

for the discovery of the correct image.

The Bongard-LOGO benchmark dataset91 has as starting

point the Bongard problems (BPs).92,93 The Bongard problems

are composed of a set of visual concept learning tasks, each of

them defined by two sets of image examples that need to be
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Figure 10. Accuracy of the NSVQA system
Accuracy of the NSVQA system on Minecraft images.68
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differentiated. The first one is called positive and the second

one is negative. All images of the second set do not obey the

concept of the first. A textual description of the concept that

generated the image sets is desirable; nevertheless, the au-

thors state that there are concepts that are not easy to be ex-

pressed even by humans. Therefore, it is not a central point of

this dataset, since a human or an algorithm could just state if an

unseen image belongs to the same concept that generated a

fixed number of others, even without explicitly stating what

concept that is.

The two sets of image examples have a small number of im-

ages created by programs written in the action-oriented LOGO

language.94 There are fundamental differences between these

datasets and CLEVR, CLEVRER, and CURI. First, although the

generated images are composed of basic elements, such as

strokes, have different attributes, and belong to different cate-

gories, they should not be differentiated by them. There is only

one object in the image, but the perception must be rotation

invariant and scale invariant. Second, the fact that different im-

ages can be generated by different concepts is not perceived

as ambiguity as in CURI but as a contextual hierarchical differ-

ence. The context is defined by the rest of the positive and nega-

tive images in the dataset, and one of themain hypotheses is that

current pattern-recognition machine learning models have a

context-free implementation policy.

There is one notable similarity between the Bongard-LOGO

problems and the third challenge of the Kandinsky Patterns. A

set of (typically smaller) objects are not perceived individually

but as a whole, provided that they have a recognizable arrange-

ment. In this case, there is a trade-off of concepts that are made

by analogy making; the image description is not made by the

listing of those objects but by the description of the form that

is created by all of them.

A 2D dataset that has several similarities with the Kandinsky

Patterns is ShapeWorld.51 The images do contain abstract

shapes and the captions are synthetically generated by following

the rules of a pre-defined grammar. This grammar defines a one-

to-one mapping of entities to nouns, attributes to adjectives, and

relations. The researchers did not proceed to evaluate the per-
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formance of state-of-the-art neural networks and comparison

with human performance. Furthermore, the dataset bAbi for

text comprehension95 also follows several principles like the

aforementioned ones but targets only textual data. Parallel

research for the generation of synthetic datasets for physical82

and mathematical reasoning96 is currently evolving.
Requirements and characteristics of the synthetic
datasets for benchmarking concept learning, reasoning,
and generalization
All aforementioned datasets have some commonalities that

emerge from the principles that help the quantification of

reasoning abilities and extension of skills. The generalization po-

wer of visual question-answering and concept learning systems

is the main characteristic that needs to be quantified by well-de-

signed splits of the dataset.44 Adding noise as well as variability

in the images is a first step toward improving cross-dataset

generalization, even if the learned models do not have increased

performance73,97. Appearance variability is ensured by gathering

data from independent resources,35,38 and captions must be re-

viewed by several people35,36.

Recent research by Keysers et al.71 provides directives on

how to systematically construct splits of synthetic datasets

that have a primary goal to measure compositional generaliza-

tion and not some domain adaptation. According to their

research, each different training-test split consists of a different

compositionality experiment; they exercised different encoder-

decoder architectures and showed that cases with overall very

high accuracy have a significant drop in performance (reaching

even values as low as 20% accuracy) for carefully designed

splits. They adapted an already-created textual dataset

composed of very few atoms and rules, thereby enforcing that

complexity will only emerge as a result of rule composition.

Desired properties of benchmark datasets should be that atoms

and their distribution are similar in both training and test sets, but

the distribution of the compositions is at the same time as

different as possible (as measured by the Chernoff coefficient98).

The designed dataset, as well as the splits, do exercise

generalization abilities of previously invented ones, such as
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extrapolation and number of patterns. Nevertheless, the images

in each split are not generated by fulfilling only one criterion but

several at the same time.

The researchers did experiments with current state-of-the-art

machine learning models that tackle few-shot problems, and use

meta-learning principles and symbolicmethods to solve the afore-

mentioned tasks. Furthermore, they conducted studies with hu-

mans of two levels of expertise to compare the performance of

classification. Thereby, they showed that even the most pro-

gressed machine learning solutions did not perform as well as

humans; this is an indication of the lack of concept learning capa-

bilities compared with humans. For this type of research, it is

important not to find a solution to a particular subset of prob-

lems—since some Bongard problems are already solved—but

an effective solution that will encompass all posed problems.

AI SOLUTIONS

Requirements and characteristics of the AI solutions
that effectively solve the benchmark datasets
All AI algorithms that will be presented in this section have to fulfill

some requirements to be successful in achieving the reasoning

capabilities necessary to have acceptable performance on

the aforementioned benchmark datasets. Ideally, the invented

model architectures learn disentangled representations of the

concepts at training time and then they are able to compose

those concepts at test time, even if those are extremely rare or

even physically impossible in real-world settings. Furthermore,

they should be able to interpolate, extrapolate, and obtain

some abilities of zero-shot learning (for example, being able to

count more objects than the ones encountered in all images of

the training set or to recognize anever seenbefore color). Aneural

network is considered to be even more capable if the training set

contains only a few of the possible combinations.54

This section lists and describes themain directions of research

that are used currently in concept and representation learning.

The list is by no means exhaustive but it is represented as far

as categorization is concerned; variations and improvements

of (what is considered to be) the central idea, architecture, and

overall solution strategy can be. Although distinct, they are

sometimes entwined since, in several cases, components from

one technical solution are used in another, usually with an

adequate adaptation and improvement.

NMNs
NMNs45,99,100 were the first attempt to solve visual question-

answering tasks in a modular way. The researchers understood

that the questions can be decomposed into concepts that reoc-

cur and thought of specially designed neural network architec-

tures that specialize to each of them separately. The modules

themselves contain fully connected convolution and attention

components as well as non-linear activations that are composed

in a different sequence, depending on the sub-task they need to

solve. For example, to combine two already-learned concepts,

the corresponding module merges the two attentions from the

already-computed visual groundings by stacking first, then

applying convolution, and lastly passing the result from a non-

linearity. The possible inputs and outputs of the modules are

also constrained to be either images, attention, or labels in a
way that resembles software application programming inter-

faces (APIs).101

To answer a question, the right modulesmust be chosen and a

combined, modular architecture needs to be created. At training

time, a separate neural network learns how to select the set of

necessary modules and how to connect them with each other

so that they jointly learn the necessary representations to answer

the question. This can be a recurrent neural network (RNN) that

outputs the textual symbolic expression of the optimal module

structure. The search over the space of all possible layouts

was made even more efficient with the use of RL102 and the

incorporation of expert policies that were used for pre-training.

The neural modules did not learn disentangled representations

of concepts, needed one dedicated module for each concept

and at test time did not show robustness to unseen questions.

Nevertheless, they are considered interpretable, have modular

structure meaning that they can be ‘‘pluggable’’ in several archi-

tectures and were an important starting point for later architec-

tures and research directions such as the relation networks

(RNs) (see section ‘‘relation networks’’) and the neuro-symbolic

hybrid models described in section ‘‘neuro-symbolic methods.’’

The communication between modules in an interface-like way,

by the same means, that programs for the composition of

higher-order concepts from simpler ones are a recent improve-

ment that makes them more extendable.101

Neuro-symbolic methods
Neuro-symbolic methods divide their architecture into two parts;

one is processing the data and learning the appropriate embed-

dings, whereas the other learn symbolic representations of the

input data. The representation of the image is thereby disen-

tangled from the symbolic execution engine that processes its

symbolic representation, thereby enabling different types of im-

ages to be executed by it as long as they can conform to the

learned representation scheme.

One of the first works, the Neural-Symbolic VQA (NSVQA),68

parses the scene with a state-of-the-art image-processing

CNN to extract objects as well as their features (color, shape,

size, material, and coordinates). The input question is used as

input to an LSTM that outputs programming code to process

the structural representation extracted from the image by the

CNN. Each logical operation and relation ability required by the

model has its corresponding programming language module;

the set of all those modules is pre-defined by human domain

knowledge and is therefore also interpretable. To test general-

ization, researchers applied the learned model on a dataset con-

taining Minecraft (https://www.minecraft.net/en-us/) scenes

where the resulting structural representations were, as ex-

pected, longer than the ones that were generated for the

CLEVR dataset (see section ‘‘CLEVR’’). Generalization to images

containing natural scenes that were not encountered at training

time is not possible with this method.

To make the representation trainable and less rigid, one has to

make it learnable by optimization; this is implemented by the

Neuro-Symbolic Concept Learner (NSCL).47 Themain difference

is that, after the image is processed by the CNN, neural opera-

tors implemented by simple linear layers of neurons learn the

concept embeddings. With the use of curriculum learning, the

easiest concepts involving shape and color are learned and
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separated first, and then the neural operators can learn more

difficult ones. The optimization is guided by the REINFORCE al-

gorithm103 to produce a program that obeys a specially designed

DSL and is therefore interpretable. This helped the overall archi-

tecture to have greater generalization capabilities that are tested

on scenes containing more objects, and non-encountered attri-

bute combinations as well as learning a completely new color

(zero-shot learning). An extended version77 that performs classi-

fication by discriminating if two concepts have a particular meta-

concept relation, which, although it needed an enhanced input

dataset considering meta-concepts, produced disentangled

representations of concepts and was more data-efficient.

The Probabilistic Neuro-Symbolic VQA (P-NSVQA)65 is an

extension of the NSVQA described above that incorporates the

probability of the prediction instead of only the prediction label

(after application of a threshold) itself. The logical reasoning pro-

gram is executedwith a joint probability composed of the predic-

tion probability and the detection probability of objects, their at-

tributes, and their relation ns. In a later work,104 the principles of

NSCL have been applied to 3D scenes composed of point

clouds of objects as well as their relations. Multiple-view—and

therefore also disentangled—representations are being fused

for the generation of the 3D-grounded language that even

achieves zero-shot learning in unseen tasks. Note that each ob-

ject’s point cloud needs its ownPointNet++ network105 and each

pair of objects its own encoder. By not allowing weight sharing,

the researchers achieved a separate encoding of the object’s

and relation’s features.

Bahdanau et al.62 showed that, for the extension dataset

CLOSURE of CLEVR (see section ‘‘CLEVR’’), neuro-symbolic so-

lutions do not generalize well. The user’s domain knowledge is a

requirement for the design of this system and, for any new data-

set, the adaptation overhead is bigger and non-systematic

compared with other technical solutions.

Visual grounding of images and sampled constituency tree

representations are learned in alternation with a loss that encour-

ages their alignment. The REINFORCE algorithm103 is used as in

Mao et al.47 for gradient estimation of the parameters; the reward

uses the concreteness of the representation of each text constit-

uent and discourages abstract ones that do not have the corre-

sponding grounding. Furthermore, data from other modalities,

such as different languages, do help the performance of the al-

gorithm.

RNs
RNs106 consist of a specially designed architecture that has high

performance on the Sort-of-CLEVR dataset (see section

‘‘CLEVR’’) and that focuses on exercising specifically the rela-

tional reasoning capabilities. The parameters of the neural

network learn relations between the objects in a way that draws

parallels with the way CNNs learn weights to capture the trans-

lation invariances in the input images or the dependencies be-

tween the input sequence in the case of RNNs. Each pair of ob-

jects is linearly weighted, consisting of the input to an individual

non-linear function; the sum of all of them is, in turn, parameter-

izable, making the model considerably complex (quadratically)

w.r.t. the number of objects in the image. The authors draw par-

allels on their solution with graph theory since their model oper-

ates on a complete graph; in later solutions (see section ‘‘GNNs’’)
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of concept learning, RNs are also seen as graph neural networks

(GNNs).107 The model uses an image-processing part and the

CNN feature maps are used as input to the relational network;

at the same time, the question is processed by an LSTM that

conditions the RN with question embeddings; the relations are

learned independently from object recognition. The results indi-

cate that the successful architectures for the solution of those

tasks must contain separated components for input structure

processing and dedicated modules for relational reasoning.

The performance and robustness of RNs were improved

recently by ‘‘pluggable’’ modules called set refiner networks

(SRNs). The main idea is based on the acknowledgment that

the effectiveness of a neural network depends on the vector rep-

resentations of the input elements computed at the perceptual

stage (which, in the case of images, is usually learned by a

CNN). SRN modules consist of a stage between the input

embedding and the reasoning component, but, instead of map-

ping the embedding to a set, they encode the set representation

to an input embedding that can be passed onto the RN. Those

representations are shown to be decomposed properly and

thereby support the relationship learning task, even in cases

where an input entity belongs to many set elements. Iterative

inference refines an initial output of a set generator to search

for its mapping to an appropriate embedding in an unsupervised

fashion. Experiments in the image-processing domain,

comparing the number of derived set elements and the number

of objects, aswell as tasks considering translations, measure the

effectiveness of this representation. The Sort-of-CLEVR53 exten-

sion of CLEVR (see section ‘‘CLEVR’’) is shown to be solvable

with higher performancewith the use of the SRNmodule, without

any other quantitative changes in the RN architecture. Further-

more, SRNs have shown their value in representation learning

through RL of the environment’s state and in textual relations

detection where the set encoder uses a GNN to create an itera-

tively refinable graph vector representation.

GNNs
Graphs and GNNs are currently used extensively in image seg-

mentation,108 text processing,109 biological network analysis,110

and xAI methods.111 More specifically, concept graphs111

consist of an attempt to compute a graph from the concepts

that are learned by trained neural network models and relations

thereof. They draw inspiration from Bayesian models (which are

also graphical models112,113) that have interpretable random var-

iables but lack performance and abilities to generalize to group

the weights of trained deep neural networks with hierarchical

clustering. The ultimate goal is to find active inference trails in

the created graphical model based on assumptions about the

network weights and create visual trail descriptions that will be

validated by biomedical professionals114,115.

Compositional generalization in both CLEVR and CLOSURE

datasets (see section ‘‘CLEVR’’) has also been achieved with

high performance using multimodal GNNs.107 The caption or

question text, as well as the image scene, consist of the two mo-

dalities that are represented as graphs; the commonGNN (which

is a graph isomorphism network [GIN]) calculates the correspon-

dence between them. Joint learning of the representations by

fusion is beneficial over the symbolic approaches discussed in

section ‘‘neuro-symbolic methods’’ for scaling to more natural
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images, with more complex objects and longer text as well as

joint compositional reasoning. The learned GNN embedding is

used for downstream tasks, such as caption truth prediction

tasks and generalization tests, not only with the good overall per-

formance but specific to all different concept learning subtasks.

An effective solution for the RPMmatrices, as well as the Euler

diagram syllogism,116 is given by wang et al.117 The performance

of this solution is better than the previously developed RNs106

(described in section ‘‘relation networks’’), although the ultimate

goal of this work is also to capture the relations between the ob-

jects of different images. The loss that is minimized is identical to

Barrett et al.,106 but the methodology uses multiplex graph net-

works that process relations embeddings. One of the key ideas is

that the graph does not have the objects as nodes like a scene

graph but uses the summarization of graphs. The overall archi-

tecture contains a pipeline of object representation, graph pro-

cessing, and reasoning; each of them passes the embeddings

to the next one. To enable the algorithm to succeed in several

different concept learning tasks, different aggregation types

are used; concepts that compare size use maximum and mini-

mum feature aggregations, whereas sum is going to be neces-

sary for the counting of objects. It is argued that symbolic

methods such as the ones described in section ‘‘neuro-symbolic

methods’’ would not be effective in the RAVEN dataset, since

this dataset does not provide a question to trigger the creation

of a grammar or program. Nevertheless, the need for logical

rule extraction from the learned entangled representation is

explicitly stated as a requirement for interpretability. Arenas

et al.42 further argue that more symbolic interpretability tools

are needed in order to allow humans to naturally understand

and interpret machine learning models and their decisions since

humans reason similarly.

Overall, GNNs are a promising direction for further research

for concept and representation learning as well as visual question

answering, since they provide new desirable properties that

previous neural network architectures did not have. For

example, neuro-symbolic methods (see section ‘‘neuro-symbolic

methods’’) can be improvedwith the application ofGNNs118,119 by

processing the probabilistic scene graph extracted from the im-

age in a different way than the causal models described in section

‘‘causal models.’’ Furthermore, multimodal GNNs can express

counterfactuals120 that have been shown to beprofitable for visual

QA solutions,121 enhancing particularly the generalization capabil-

ities of the models.122

FUTURE CHALLENGES AND RESEARCH DIRECTIONS

Causal models
Causal generative models are also used to infer the scene-gen-

eration process of benchmark datasets per se.123 Prior knowl-

edge in the form of assumptions and inductive biases about their

dependencies and form is encoded by the pre-defined structure

of a probabilistic graphical model (PGM) that uses variational

inference as a means to learn its parameters from data. After

this unsupervised model is fixed, a competition between the

mixture elements is performed and the most likely composition

of objects emerges as the result. The use of attention124 helps

select the image regions containing objects and can deal with

occlusion as well as scene depth. Thereby, all possible compo-
sitions of objects as well as their attributes and relations are

sequentially ‘‘explained away’’ and all recombinations of their

representations are supported in the generative phase. The

use of such models for explainability—which is considered

built-in per design—and concept, as well as representation

learning, is a promising research direction.

The work of Hudson and Manning69,125 over the years is also

concentrated on solving the concept learning and reasoning

challengeswith the use of causal models. Their research focuses

on the computation of a neural state machine that extracts a

probabilistic scene graph from each input image and expresses

thereby the objects, attributes, and relations. The probabilistic

model will be able to answer questions by applying inference

to the causal model in a sequential fashion. Each question is de-

composed into reasoning parts; an inference procedure needs

to be applied by traversing the causal variables involved to pro-

vide the answer. This model also uses domain knowledge, since

the semantic concepts are pre-defined and can be used for the

factorization of the model. This is exactly what provides the

desired disentanglement properties and the requiredmodularity.

The embeddings of objects, attributes, and relations are defined

in an initial state, and the goal of the training procedure is to align

the degree of belief for each detected component of the image

with the corresponding embedding. Since each entity in the im-

age is represented by a set of vectors, the created representa-

tions are disentangled and can be recombined at test time on da-

tasets with different distributions, contexts, and text conforming

to different grammatical rules with good generalization proper-

ties. On the other hand, rarely encountered entities cannot

have a good representation, thereby hindering generalization

performance. The random variables do provide greater interpret-

ability, since they express known components, but do not sup-

port completely unseen configurations that do not have a corre-

sponding random variable properly.

RL-inspired solutions
Thework of Misra et al.16 is inspired by design principles of RL102

to tackle the concept learning problem of CLEVR dataset (see

section ‘‘CLEVR’’) not by means of a specially designed neural

network architecture but by learning to adjust the dataset pre-

sented to the model during training. The architecture consists

of a typical image-processing neural network and a text-pro-

cessing one that is conditioned on the extracted image features

of the first. Nevertheless, the training procedure does not rely on

a passive dataset; the model even learns the language model

that the questions should follow through a process called visual

question generation (VQG). The overall architecture consists of a

question generator that is trained to compute questions that are

relevant so that the answering module can learn a policy that is

driven by rewarding positively the expected accuracy improve-

ment; this expresses the informativeness value of the question

that was selected.

The researchers showed that the concepts occurring during

the learning phase proceed from the easiest ones to the most

difficult ones, which resembles curriculum learning, which was

explicitly used in neuro-symbolic solutions, as described in sec-

tion ‘‘neuro-symbolic methods,’’ and in this work, it is emerging.

Furthermore, this method is more sample efficient, learns auton-

omously which questions are more profitable to ask long term,
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and has an actionable behavior on discovering which questions

are invalid, redundant, or more difficult than appropriate. The

results showed the model, although trained on a dataset that

does not have the same distribution in the training and validation

set as CLEVR does, has comparable performance with explicitly

designed models trained on CLEVR. In the case of CLEVR-

Humans, where the distribution is not the same, it has better

performance, thereby indicating increased generalization

capabilities.

Cognitive xAI
Cognitive xAI deals with the generation of rule-based explana-

tions.126 It can be combined with already-established xAI

methods and enhances them by bringing the human in the

loop.114 Domain experts could, for example, define their own

dictionary with content related to cognitive concepts that is inde-

pendent of the xAI method. Currently, there is a lack of datasets

to benchmark trained models for cognitive XAI. If any, there exist

benchmarks that are still in creation and not yet sophisticated

enough for comprehensive evaluations. One benchmark simu-

lates explanations for decisions of GNNs with the help of validat-

able rules.88 The approach presented there allows for learning

human-understandable rules on sub-graphs that have been

considered relevant by a GNN. Depending on the learning task

and the type of data, the dictionary (concepts and relations be-

tween them) has to be tailored to the model or explainers used

in combination with rules, Nevertheless, rules that are produced

by an interpretable machine learning method, or used as validat-

able post hoc explanations for black box models, enhance the

comprehensibility of automated decision making.127 This said,

there is still a need for relational benchmarks to test the match

between human dictionaries and model encoded concepts

and the expressiveness and faithfulness of generated rule-based

explanations, respectively.

Conclusions
Benchmarking reasoning abilities, efficient skill acquisition, and

learning adaptivity to newly presented data and concepts is an

ongoing research direction that draws ideas and knowledge

from human and intelligence tests.22 The creation of a fair, repro-

ducible, transparent, and compelling intelligence estimation set

of tasks requires the balance of prior knowledge, continuous skill

acquisition, appropriate difficulty, and clear but not rigid goals.

The aim of human developers and data scientists is to accom-

pany newly developed AI solutions toward a path of gradual

expansion of their problem-solving horizon by making the steps

from local to broad generalization learnable and interactive. New

abilities emerge from AI solutions that are exercised to meet the

reasoning and generalization abilities of new concept learning

benchmark datasets and at the same time their deficiencies,

shortcomings, as well as their effectiveness will initiate the

search for new cognitive frontiers that need to be reached.
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