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Abstract. We explore the integration of domain knowledge graphs into
Deep Learning for improved interpretability and explainability using
Graph Neural Networks (GNNs). Specifically, a protein-protein inter-
action (PPI) network is masked over a deep neural network for classifi-
cation, with patient-specific multi-modal genomic features enriched into
the PPI graph’s nodes. Subnetworks that are relevant to the classifica-
tion (referred to as “disease subnetworks”) are detected using explainable
AI. Federated learning is enabled by dividing the knowledge graph into
relevant subnetworks, constructing an ensemble classifier, and allowing
domain experts to analyze and manipulate detected subnetworks using a
developed user interface. Furthermore, the human-in-the-loop principle
can be applied with the incorporation of experts, interacting through a
sophisticated User Interface (UI) driven by Explainable Artificial Intel-
ligence (xAI) methods, changing the datasets to create counterfactual
explanations. The adapted datasets could influence the local model’s
characteristics and thereby create a federated version that distils their
diverse knowledge in a centralized scenario. This work demonstrates the
feasibility of the presented strategies, which were originally envisaged in
2021 and most of it has now been materialized into actionable items. In
this paper, we report on some lessons learned during this project.
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List of Abbreviations

AI Artificial Intelligence
CLARUS interaCtive expLainable plAtform for gRaph neUral networkS
DNA Deoxyribo-Nucleic Acid
FC FeatureCloud (EU Project)
GDPR General Data Protection Regulation
GNN Graph Neural Network
GNN-LRP GNN Layer-wise Relevance Propagation
GPU Graphics Processing Unit
HITL Human-in-the-Loop
IG Integrated Gradients
i.i.d. Independent and identically distributed
LRP Layerwise Relevance Propagation
MI Mutual Information
ML Machine Learning
mRNA messenger Ribo-Nucleic Acid
OOD Out-Of-Distribution
PGM Probabilistic Graphical Model Explainer
UI User Interface
xAI explainable Artificial Intelligence

1 Introduction and Motivation

The European Project “FeatureCloud (FC)” (Grant Agreement 826078) created
a novel Artificial Intelligence (AI) platform which is based on the idea of fed-
erated, decentralised learning where only model parameters are communicated.
The FC AI App-store https://featurecloud.ai/ is the first platform worldwide to
enable federated learning of diverse AI models in a privacy-preserving way [41].
The types of AI models used are quite diverse, including linear regression, clus-
tering, random forests, deep learning, etc. The fundamental idea is that every
software developer or data scientist can federate their AI model provided that the
model fulfils some minimum requirements (see: https://featurecloud.eu). Dock-
erization [43] supports seamlessly the transferability of the federated solution
into different machines independent from hardware requirements as much as
possible.

Whilst federated decentralized learning enables communication of model
parameters, integration with more advanced machine learning concepts, such as
deep learning and domain-specific knowledge, can increase its performance and
efficiency. Using deep neural networks and enriching them with domain-specific
graphs such as protein-protein interaction (PPI) networks can also drastically
improve the feature extraction process. The next phase, of course, is then about
combining decentralization and the power of Deep Learning. The feature-rich,
detailed, and robust parameters, when communicated in a federated learning
framework, can lead to highly effective and reliable machine learning applica-
tions. The decentralized nature of such a framework not only increases learning

https://featurecloud.ai/
https://featurecloud.eu
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efficiency but also strengthens the trustworthiness of the results by combining
masked learning with domain knowledge.

In our work [48], we masked deep neural network learning with a protein-
protein interaction (PPI) network. In the context of this paper, “masking” refers
to incorporating a domain-knowledge graph (specifically, a PPI network) into a
deep neural network for classification. This means that the nodes and edges of
the PPI network are added to the input layer of the neural network and are
used to enrich the features of the data being processed by the neural network.
Features are key for learning, understanding and explaining and consolidated
features are more accurate and robust, which helps to make practical machine
learning applications more trustworthy [47]. It is a general problem that even
the most powerful learning methods suffer from the fact that it is difficult to
retrace, interpret and thus explain why a certain result was obtained, and that
they lack robustness. Even the smallest perturbations in the input data can
dramatically affect the output, leading to completely different results. This is
of great importance in virtually all critical domains where we suffer from poor
data quality, i.e., where we do not have available the i.i.d. data we would need
for ideal learning. However, in medicine, biology, and all life-critical domains, it
is about being able to trust the results and retrace them when needed [17,18].

In our next step the classification has been made explainable, i.e. those sub-
networks are detected that were relevant for the classification (“disease sub-
networks”) - subgraphs are called “local spheres” in [20] and [40]. In order to
guarantee a representative baseline comparison to the above methodology, the
subnetwork detection was realised by means of a random forest [45]. Here, too,
the learning process is masked by a knowledge graph. Random forests are partic-
ularly relevant in medicine due to their good interpretability. In the work [46] we
enabled federated learning with the methods mentioned above. Here, the knowl-
edge graph is divided into relevant subnetworks using explainable AI, based on
which an ensemble classifier is constructed. This ensemble classifier can be effi-
ciently learned in a federated way. In addition, a user interface was developed
[2] that allows a domain expert to analyse and manipulate the detected sub-
networks, delete and add nodes, and finally reintegrate them into the federated
ensemble classifier. This paper is organized as follows: In Sect. 2 we provide some
background and related work, in Sect. 3 we provide an overview of our imple-
mentations, and in Sect. 4 we give a frank description of what we have learned,
and in Sect. 5 we conclude and provide some future outlook.

2 Background and Related Work

There is nothing more practical than a good theory (Kurt Lewin, (1890–1947)).
In our work we pursued four central topics from the paper [20]: (i) Explainable AI
on GNNs, (ii) Federated Learning, (iii) Knowledge Graphs, and (iv) Human-AI
interaction. Consequently, we have aligned all of these topics on the application
of precision medicine.
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2.1 Explainable AI on Graph Neural Networks

Graph Neural Networks (GNNs) extend neural network architectures to oper-
ate on graph-based data by defining learnable functions that extract features
and patterns from the graph structure to perform tasks such as node classifi-
cation, graph classification, link prediction, etc. [58]. GNNs are very success-
ful and enable efficient integration of domain-knowledge graphs to make Deep
Learning interpretable and explainable [20]. Federated solutions thereof seem
to occur naturally in several applications such as distributed sensors for traffic
surveillance, a collaboration of hospitals for efficient solutions of complex medi-
cal tasks, distributed social media applications and so on. In the era of big data
both the size of the graph datasets as well as the GNN architectures grows,
making efficient and privacy-preserving information exchange and computation
a challenge. What is more, since the communicating parties, whether they are
servers or clients can be represented by a graph themselves, it is shown that
GNN architectures can support federation in turn [33].

As is generally the case with neural networks, also GNN results are not easy
to retrace and interpret. To address this shortcoming, intensive work is currently
being done worldwide on GNN methods that can be explained. Examples include
GNNexplainer, PGExplainer, and GNN-LRP. GNNExplainer [59], for example,
provides local explanations for predictions of any graph-based model. This can
be used for both node classification and graph classification. PGExplainer [35]
is a parameterized modification of GNNexplainer. Unlike GNNexplainer, it pro-
vides model-level explanations that we find useful for graph classification tasks.
GNN-LRP [51] is derived from higher-order Taylor expansions based on layer-
wise relevance propagation (LRP) [30]. It explains the prediction by extracting
paths from the input to the output of the GNN model that makes the largest
contribution to the prediction. These paths correspond to walks on the input
graph. GNN-LRP was developed for node-level explanations and has been mod-
ified to work for graph classification in a special arrangement [5]. The presented
work with a method called CF-Explainer [34] is particularly interesting. Here,
explanatory factors can be revealed using counterfactuals.

GCExplainer [38] stands in the forefront as the first GNN explainer that
detects the learned concepts of a GNN. The main idea is to perform cluster-
ing after the last aggregation layer and to assume that each of the clusters
corresponds to a human-recognizable concept. Users have the opportunity to
parameterize the explanation process through the number of clusters and the
neighbourhood size of the explained component. This approach incorporates the
human-in-the-loop [16,23] and at the same time has been shown to achieve good
concept purity and completeness. Furthermore, it is the basis of current work
that makes GNNs explainable per design by first learning the concepts, then
on that basis doing a concept-based prediction [37]. Such explainable AI meth-
ods can facilitate the discovery of disease-causing regions in networks, helping
to uncover a subset of candidate features organized in disease-relevant network
modules.
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This is exactly where the human-in-the-loop concept helps, as interaction
with explanations and the incorporation of conceptual knowledge can further
improve the learning algorithm.

2.2 Federated Learning

Federated learning (FL) is an ML approach in which the training data is decen-
tralized and distributed across multiple devices or locations, and the model train-
ing process is performed locally on each device or location [40]. The updates to
the model are then aggregated centrally, resulting in a global model that incor-
porates the knowledge learned from each device or location. FL is of course
useful in scenarios where the data is sensitive, private, or subject to regulatory
constraints, such as medical records or financial transactions. Instead of central-
izing the data and running the model training process on a single server or cloud
platform, federated learning allows the data to remain on individual devices or
locations, and only the model updates are transmitted for aggregation. This pre-
serves the privacy and security of the data and reduces the risk of data breaches
or leaks. FL should not be mixed up with purely decentralized learning, where
local models do not automatically contribute to each other apart from manually
sampling the models and updating the hyperparameters [3]; and also not with
collaborative learning in various forms, where the goal is to share information
about internal model building between the involved parties in a peer-to-peer
manner but keep the local training data confidential. A variant could also train
on decentralized features that purportedly model the same underlying instances
[24]. It has been known for some time that features for one modality are learned
better when multiple modalities are present at the time of feature learning. In
multimodal learning, information is from multiple sources. Often, several differ-
ent modalities contribute to a result. We are motivated by [1,9,19]. This brings
us directly to graphs and particularly knowledge graphs.

Federation itself has evolved to be a broad topic; although the main principles
are firm, different implementations realize the same goals. What is similar in all
instantiations is that there is data isolation to some degree and that the informa-
tion being exchanged should be minimal and privacy-preserved (i.e. encrypted).
Furthermore, the i.i.d. scenario is rather the exception than the norm; several
frameworks need to simulate it before the actual deployment [44]. Nonetheless,
collaboration has proven to be fruitful in most cases, since no one dataset con-
tains all representative information about a task and ML solutions lack the abil-
ity of systematic generalization and out-of-distribution (OOD) prediction even
when trained with rich and diverse datasets.

In the more concrete case of Federated GNN, there are mainly three possi-
bilities [14], as also shown in Fig. 1. In the graph-level FL, each client has its
graph dataset and potentially also a GNN. In the subgraph-level FL, each of the
clients has one part of the graph and in the node-level FL nodes of one graph
are distributed among clients.
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Fig. 1. Three settings of GNN federation [14].

This is following the principles of Horizontal FL (HFL) and Vertical FL
(VFL). In the first case, the features of the graphs of all clients are quite simi-
lar, but their sample characteristics (data distribution) differ substantially. The
opposite occurs in the second case. Both of them are viable scenarios of FL
and need to be addressed either with centralized or decentralized FL. In the
federated centralized strategy, it is typical that there are several synchronous or
asynchronous events containing parts of the dataset, and one server is responsible
for the federation (which is also called aggregation). In the federated decentral-
ized case, many clients exchange information with each other; this is more robust
as far as privacy attacks are concerned but has substantial communication and
organizational overhead.

2.3 Knowledge Graphs

Knowledge graphs (KG) are a type of database that represents knowledge in a
structured, interconnected format, using a graph-based data model. It typically
consists of a set of nodes (also called entities) that represent concepts or things,
and a set of edges (also called relationships or properties) that connect the nodes
and represent the connections or interactions between them. Many phenomena
from nature can be represented in graph structures, whether at the molecular
level (e.g. protein-protein interaction) or at the macroscopic level (e.g. social net-
works) and various methods from network science [7] and computational topol-
ogy [15] can be applied. Some of the most successful application areas of machine
learning and knowledge extraction in recent years can be seen as learning with
graph representations [57].

In a knowledge graph, each node and edge can have additional attributes or
metadata associated with it, providing additional information or context about
the node or edge. This metadata can include labels, descriptions, categories, or
other semantic information. Knowledge graphs are often used to represent infor-
mation from diverse sources and domains in a multi-modal manner. They can
be used to represent both factual knowledge (such as the properties of objects
or events) and conceptual knowledge (such as the relationships between abstract
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concepts). Knowledge graphs are also used as a foundation for various applica-
tions, such as natural language processing, semantic search, recommendation sys-
tems, and data integration. They enable efficient querying and reasoning about
complex, heterogeneous data, as well as support the development of intelligent
agents that can reason and learn from the knowledge represented in the graph
[12]. KG’s are very useful for explainability and explainable AI methods based
on counterfactual queries to the trained GNN models are very promising [39,53].

2.4 Human-in-the-Loop

Human-in-the-Loop [16] refers to the process of involving a human expert inter-
actively in the machine learning (ML) process to provide feedback, guidance,
or even corrections to the model. The human is an integral part of the ML
pipeline, interacting with the model/algorithm to improve its performance and
ensuring that it aligns with the desired goals and values. This approach is useful
in scenarios where the data is complex, ambiguous, or subject to change, and
where the model’s performance can benefit from human expertise or even from
the experts’ subjective judgment. This is because sometimes - of course not
always - the human expert has domain knowledge, experience and contextual
understanding, in German “Hausverstand” - what the best AI algorithms are
lacking today. An additional benefit is that the human-in-the-loop approach can
also improve the transparency, interpretability, and fairness of machine learning
models, as it allows for human oversight and intervention in cases where the
model produces biased or undesirable results. However, the human-in-the-loop
approach, on the other hand, has drawbacks as it can be time-consuming, expen-
sive, and potentially introduce bias or subjectivity into the modelling process,
so it is important to carefully design and evaluate the interaction between the
human and the model.

3 Methods, Solutions and Implementations

3.1 Disease Subnetwork Detection

In a publication about GNNSubNet [48], we presented a novel method for
disease subnetwork detection using protein-protein interaction (PPI) networks
and explainable graph neural networks (GNN). Our method leveraged the PPI
knowledge to enable more reliable and biologically meaningful learning trajec-
tories compared to classical deep learning approaches. The nodes of the induced
PPI network are enriched by biological features from various modalities, such
as gene expression and DNA methylation (see Fig. 2). We applied our pro-
posed method to patients with kidney cancer and demonstrated its ability to
detect disease subnetworks. The developed methodology is implemented within
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our GNN-SubNet Python package, freely available on GitHub (https://github.
com/pievos101/GNN-SubNet). In addition, we enhance ensemble learning based
on the detected networks. This makes the classifier more robust, but also
more interpretable [46]. Ensemble-learning with GNNs is implemented within
our Ensemble-GNN Python package (https://github.com/pievos101/Ensemble-
GNN). In further updates of the package additional GNN-based explainers such
as GNN-LRP and PGM-Explainer to further increase the interpretability of the
detected subnetworks will be implemented.

Moreover, as a reliable baseline, in terms of classification performance
and overlay interpretability, we have developed the software package DFNET
(https://github.com/pievos101/DFNET) [45], which implements a network-
guided random forest to derive an ensemble classifier based on any induced
knowledge-graph. However, in a federated case, a local random forest would
need to share the exact split values of its nodes [13]. This is of much concern
and was one of the reasons why we further developed federated solutions based
on deep GNNs. The shared parameter among clients in that deep learning setting
is more secure with regard to privacy concerns.

3.2 Explainability

The classification of Part 1 has been made explainable, i.e. those subnetworks
detected that were relevant for the classification (“disease subnetworks”) - sub-
graphs aka “local spheres”. For this purpose we have developed a modified ver-
sion of the GNNexplainer [59] to compute global explanations. This is realized
by sampling patient-specific input graphs while optimizing a single-node mask
(see Fig. 2). From these values, edge weights are calculated and assigned to the
edges of the PPI network. Finally, a weighted community detection algorithm
infers the relevant subnetworks.

PPI networks generally provide crucial insights into cellular functions and
processes, and alterations in these interactions often lead to diseases. Conse-
quently, such networks are important in understanding complex diseases like
cancer, which typically involve changes in the interaction patterns of proteins.
Explainability can here help to understand disease mechanisms, e.g. to reveal
the underlying mechanisms of diseases. By understanding which interactions
contribute to the prediction and how, researchers can potentially uncover new
biological insights. For example, a model might predict a certain protein as being
critical to a disease because of its numerous interactions with other proteins.
This could lead to further biological investigations into the role of that protein
in the disease. This can help in creating personalized treatment strategies. For
instance, if certain protein interactions are critical in the disease progression of
a particular patient, treatments can be tailored to target these specific interac-
tions. Identifying which features (e.g., specific proteins or interactions) are most
important in the model’s predictions. For example, a model might reveal that a
specific protein or a set of proteins plays a significant role in a particular disease,
informing further biological research.

https://github.com/pievos101/GNN-SubNet
https://github.com/pievos101/GNN-SubNet
https://github.com/pievos101/Ensemble-GNN
https://github.com/pievos101/Ensemble-GNN
https://github.com/pievos101/DFNET
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Fig. 2. Illustration of patient classification into a cancer-specific and randomized cancer
group using explainable Graph Neural Networks (taken from [48]). Each patient is
represented by the topology of a protein-protein interaction network (PPI). Nodes are
enriched by multi-omic features from gene expression and DNA Methylation (coloured
circles). The topology of each graph is the same for all patients, but the node feature
values vary, reflecting the cancer-specific molecular patterns of each patient. (Color
figure online)

Furthermore, model-agnostic counterfactual explanations and their associ-
ated counterfactual paths can be generated using our cpath software library
(https://github.com/pievos101/cpath). The implemented methodology provides
counterfactual explanations by identifying alternative paths that could have led
to different predictions. The proposed method is particularly suited to generate
explanations based on counterfactual paths on knowledge graphs. By exploring
hypothetical changes to the input data on the knowledge graph, we can sys-
tematically validate the behaviour of the model and investigate the features, or
combination of features, that are most important for the model’s predictions.
Our approach provides a more intuitive and interpretable explanation of the
model’s behaviour than traditional feature importance methods and can help to
identify and mitigate biases in the model. A scientific paper about cpath is in
progress.

3.3 Knowledge Graph

GNNs provide a crucial benefit of enabling the integration of knowledge graphs
[27]. This implies that both ontologies and Protein-Protein Interaction (PPI)

https://github.com/pievos101/cpath
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networks can be effectively incorporated into the algorithmic pipeline, as high-
lighted in much previous research [26,29,32,54]. This also enables to integrate
of human experience, conceptual knowledge, and contextual understanding into
machine learning architectures, which is a notable advantage. This “human-in-
the-loop” or “expert-in-the-loop” approach can, in some cases, lead to more
robust, reliable, and interpretable results [22,23,25].

PPIs reflect the physical or functional connections between proteins in a cell
or organism. These networks can be represented as graphs, where proteins are
nodes and their interactions are edges. PPIs can be retrieved from the STRING
database [56]. STRING provides a comprehensive collection of known and pre-
dicted protein interactions, allowing users to explore and analyze protein net-
works to gain insights into cellular processes and functional relationships.

It is worth noting that the inclusion of domain knowledge does not guaran-
tee success in every instance. However, the incorporation of such expertise can
contribute to the attainment of the most critical goals of the AI community,
namely, the development of robust, explainable and trustworthy solutions [18].
These objectives are essential in ensuring the practical and ethical applications
of AI in various fields and are meanwhile mandatory e.g. in the European Union.

3.4 Federated Ensemble Learning with GNNs

In recent work [46] we enabled federated learning with the methods mentioned
above. Here, the knowledge graph is divided into relevant subnetworks using
explainable AI, based on which an ensemble classifier is constructed. This ensem-
ble classifier can be efficiently learned in a federated way.

The main idea of the ensemble federation is depicted in Fig. 3. Each client
contains several graphs and each of those graphs represents a patient. The values
of the nodes and edges are different in general (as depicted by the different colours
of the nodes in the upper part of Fig. 3), but the structure of the graphs is the
same. Those graphs can be classified by a GNN and the GNN-SubNet method
[48] can compute a set of relevant subgraphs for this classification. GNN-SubNet
concentrates on providing the relevant structure or topology only; therefore the
subgraphs are depicted with white in the middle of Fig. 3. The concrete values
of the nodes and edges are transferred in a third step though from the original
graphs (upper part of Fig. 3) to the concrete subgraphs that have the topology
of the relevant subgraphs and values overtaken from the original graph (lower
part of Fig. 3). By creating a new dataset for each discovered relevant subgraph
where its structure is repeated and the values are taken from the original graph
of all the patients in the client, a separate GNN is trained. The predictions of all
those GNNs are input to a majority vote procedure that - in its non-federated
version - has an acceptable local performance.

The federation is depicted in Fig. 4 and follows a decentralized strategy. The
clients use local GNNs of their peers in the inter-client network, that were created
with similar logic but were trained with graphs having different topologies -
since the relevant subgraphs for each client are expected to vary in general.
There is no exchange of the discovered relevant topologies of each client, only
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Fig. 3. The use of GNN-SubNet in one client, containing a set of graphs for classifica-
tion. This method extracts a list of relevant subgraph structures (topologies) and uses
them by filling the corresponding values of nodes and edges from the original graphs.
The newly created datasets are used to train local GNNs and make predictions which
are aggregated by majority voting.

the GNN parameters are transferred - which is as far as privacy is concerned less
revealing. The majority vote over all those GNNs provided a better performance
over each client’s test set, but not over a test set that was isolated from all
clients, as shown in [46]. The described methodology is implemented within
our Python package Ensemble-GNN, freely available on GitHub (https://github.
com/pievos101/Ensemble-GNN). A Feature Cloud app implementation is also
available (https://github.com/pievos101/fc-ensemble-gnn).

https://github.com/pievos101/Ensemble-GNN
https://github.com/pievos101/Ensemble-GNN
https://github.com/pievos101/fc-ensemble-gnn
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Fig. 4. Depiction of the federated learning of Ensemble-GNN. The late fusion of
exchanged GNN’s predictions through voting is the way the federation is driven by
the result of the employed xAI method in [48].

The scenario of non-i.i.d. data has to be simulated in future work, by includ-
ing imbalanced distribution of data and potentially explicitly defining different
feature distributions in the clients [44]. Lastly, the discovered relevant topologies
can also be subject to changes driven by human users through a UI, changing
the local GNNs, and by that the whole federation process.

3.5 interaCtive expLainable plAtform for gRaph neUral networkS
(CLARUS)

The CLARUS UI platform [2] is accessible under http://rshiny.gwdg.de/apps/
clarus/. The goal of the UI platform is to provide any human user interactive
access to prepared datasets, GNNs and several xAI methods. All necessary infor-
mation about the platform usage, datasets, features and performance metrics are
provided through the platform. An overview of the typical sequence of steps that
a user takes is presented in Fig. 5.

For the user to be able to make informed actions [49] with the use of diverse
xAI methods (GNNExplainer [59], GCExplainer [38]), all nodes and edges are
presented by sorted relevance values. The colouring scheme depends on the prop-
erties of the xAI method itself; the saliency method [55], Integrated Gradients

http://rshiny.gwdg.de/apps/clarus/
http://rshiny.gwdg.de/apps/clarus/
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Fig. 5. The sequence of user action steps in the CLARUS platform. First, the user
selects one of the prepared datasets and immediately after he/she has the opportunity
to explore any graph visually by zooming and by inspecting the nodes and edges
feature values. The backend has already trained a GNN with the training dataset after
a stratified split of the data and presents performance results (individual and global),
xAI relevance values as well as additional information that can be useful such as the
degree of each node. With the help of this information, and additional acquired domain
knowledge, the human user decides to take action(s) and either add or delete nodes,
edges and features thereof. To see how those actions affected the task prediction of
the current GNN a new prediction can be triggered. In cases where the changes are
substantial a retrain from scratch can be also made, deleting by that all old information
in the current GNN. This process can be repeated as many times as desired until
the user conceives the decision-making process to an acceptable extent through the
generated counterfactual explanations. A download of all data and model details at a
particular time point, together with a unique timestamp is possible on demand.

(IG) method, and the GNNExplainer return only positive relevance values, but
methods like GNN-LRP (Layer-wise Relevance Propagation) return both posi-
tive and negative values. Those two groups of relevance value ranges have discrete
colourings for a better understanding of the concept of negative relevance as one
denoting element in the data sample that “speak against” a class and even in
a correct classification is responsible for making the confidence value smaller.
Beyond that, for each sample it has to be clear if it is correctly classified or
misclassified; even the exact prediction performance is present. This is because
the reliability of explanations in the misclassification case is questionable and it
is a subfield of xAI research itself. Therefore, several classification metrics are
accessible: the confusion matrix, sensitivity, specificity and in the future Mutual
Information (MI) [4,11,36]. After each retrain and prediction, those metrics are
re-computed and in general they have changed values. A detailed description of
the pre-selected datasets, their preprocessing, various interaction scenarios and
abilities of the platform can be found in [2].
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With the use of adequately designed UI tests on this platform it is possible
to show the effect of counterfactual questions and corresponding user actions on
user understanding of the model. The completeness of the already used xAI
methods is enhanced by the actions triggered by users in combination with
the already present domain knowledge, but also from the juxtaposition of their
results since they all differ to a certain extent. The user is motivated and inspired
to make informed actions, imagine what their effect would be and compare the
actual result with his/her preconceived notions about why the model solves the
task sufficiently well (or not) in a dialectical manner. The path to increasing
causability [42] with the use of specially designed interfaces [21] is at the fore-
front for the causal understanding of AI models in the future. The described
user interface CLARUS [2] allows a domain expert to analyse and manipulate
the detected subnetworks, which to this end could be reintegrated into the fed-
erated ensemble classifier.

4 Lessons Learned

What was not done and why?
The implementation of other xAI methods than GNNExplainer for the detection
of disease subnetworks. This is particularly relevant for ensemble-based GNN
architectures. Each GNN xAI method might create different ensemble members,
which to this end could be studied in terms of performance and interpretability
(e.g. GO enrichment of the detected PPI subnetworks).

What problems occurred?
Other xAI methods were more difficult to integrate. Some explainers only com-
pute relevances for edges or nodes, others like GNN-LRP [50] assign relevance
values only on walks; that means that a node or edge belonging to more than one
walk (which is usually the case) has not one clearly defined relevance value. Data
scientists may be tempted to average all edge relevances to infer the relevance
of the node or the opposite, but this is not representative of the xAI method.
Furthermore, GNN-LRP provides both negative and positive relevances, which
means that not only the colour map has to be distinct from the methods that
provide only positive relevance, but that the relevance of the paths needs an indi-
vidual visualization strategy that allows overlapping and user selection. Other
methods like the GCExplainer [38] compute a representative set of subgraphs
that is relevant for each relevant concept w.r.t. the accomplished task. Although
this is a valuable approach which has some similarities with the detection of rel-
evant disease subnetworks, since it does not directly return numerical relevance
values for the individual components of the graphs, cannot be straightforwardly
integrated into the UI framework.

What was difficult?
What was particularly difficult for both data scientists and users is the discovery
of differences between the xAI methods results; this consists of the so-called
“disagreement problem” [28]. Data scientists provide several xAI methods to
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shed light on different aspects of the design-making process of the model, but if
the results of those methods deviate from each other, this disagreement is not
easy to interpret and understand. Furthermore, counter-intuitive phenomena
were observed; it is assumed for example, that if a user deletes components of a
graph according to decreasing (positive) relevance order, then the performance of
the model will not only decrease monotonically but also that the newly computed
relevance order after a new triggered prediction will remain the same. In many
cases this was not experienced, making the users question the reliability of the
xAI methods. Related to that, the value range of the colour map was an issue,
since the minimum and maximum value of relevance change in general after a
prediction is initiated.

What did we learn?
The fact that each graph has the same topology (PPI network) hinders stable
and robust graph classification, especially in cases where the input graph is large.
We could observe that GNNs on smaller graphs perform generally better [46].
Further, we have learned that in the herein-studied cases of the same topology
graphs, using Laplacian layers might be more efficient in terms of performance.
Therefore, we also included the ChebNet approach [6] as an option for GNN-
SubNet and Ensemble-GNN. However, GNNs are generic models and applicable
to many other related tasks. Also, we might model each patient with different
graph topologies. In that case, the ChebNet approach is not applicable.

We have further learned that the quality and validity of the knowledge graph
are crucial. Knowledge graphs must be further improved in order to obtain reli-
able and domain-specific meaningful results. Also, it has been shown that most
methods for disease module discovery learn from the PPI node degrees and
mostly fail to exploit the biological knowledge encoded in the edges of the PPI
networks [31]. Although we believe that our proposed methodology is not biased
to that described case, further investigations are needed to understand and quan-
tify the bias induced by the network structure.

What open work remains for the future?
Heterogeneous Graphs (including text and images or different types of nodes and
edges) were not included. After preliminary tests, we know that they need more
resources and xAI methods need to be thoroughly tested before deployment.
So far we have multi-model genomic data in tabular form, structured by a PPI
network.

Until now the GNN architecture is pre-defined for every dataset and it is
somehow intertwined with the characteristics of this dataset - and most of all
its size. In the case where the user changes increases or decreases the size of
the dataset and/or changes its characteristics substantially, the platform can-
not guarantee similar performance since the GNN’s architecture is not adapted.
To automatically find the adequate GNN architecture is a topic of Automated
Machine Learning (Auto-ML), and its incorporation in this platform will come
with additional time costs which will, in turn, influence the waiting time of the
users in favour of performance and better xAI results.
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The existence of the aforementioned “disagreement problem” [28] drives
future work in the direction of not only integrating more xAI methods but also
considering the computation and presentation of several xAI quality metrics
thereof to the users. Fidelity, sensitivity, clusterability, robustness and others
[8,52] provide additional guidelines for the reliability of each method in cases
where the top relevant features or their ordering is inconsistent. In the end,
upon deployment, several UI evaluation tests have to be made to explore the
extent of biased preference of xAI relevance results. In the end, the plurality of
xAI methods does not necessarily consist of a problem but might be the means
for a sophisticated, holistic and dialectic approach for shedding light on different
aspects of the decision-making process of GNNs.

The main reason federation is used, is for the central model to
learn something from the different local models, trained with their
datasets. Comparing the performance of the local models with the
central model: what are the differences there?

It does make a considerable difference whether we test the federated global
model on an independent global test data set, or on multiple client-specific test
data sets (see [46]). It still needs to be investigated which scenario is most rel-
evant and why these differ so much in terms of the performance of the global
model.

5 Conclusion and Future Outlook

In this work, we have demonstrated how to make federated deep learning more
interpretable and accessible to the domain expert. First, we have incorporated
domain knowledge into the deep learning process using Graph Neural Networks
and Protein-Protein Interaction (PPI) networks. Second, we have decomposed
the PPI knowledge graph into more interpretable smaller subnetworks using
explainable AI. Based on these subnetworks an ensemble classifier is constructed
which can be learned in a federated manner. The shared parameters of this
deep learning ensemble are more secure compared to e.g. the shared split values
of decision trees in a federated random forest. Finally, the ensemble member
(subnetworks) can be analysed by a domain expert through an interactive UI.

Future work can be done from various directions. Until now, xAI methods
that were used (GNNExplainer, PGExplainer, GCexplainer) return relevant val-
ues of nodes, edges and features thereof. Apart from the fact that some fun-
damental principles of them need to be explained to the users (f.e. that the
GNN-LRP assigns relevance to walks and not directly to nodes and edges), the
interpretation of those numerical values is a task that the user’s mental model
needs to undertake. In contrast to that, explanations in the form of rules, provide
a completely different user experience and understanding. It would be interesting
to research how Logical Rules (e.g. with Prolog) guide the selection of subnet-
works [10], similarly or differently with the numerical relevance values.

Furthermore, a framework that asks the domain expert about their precon-
ceived notions as far as what parts of the input data should be important, before
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seeing xAI results is worthwhile studying. The comparison of users’ reactions
after confronting relevant values vs. uninfluenced opinions derived from their
knowledge before any interaction could uncover interesting effects of human-AI
interaction.
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