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ABSTRACT
The human microbiome is increasingly subject to extensive re-
search, due to its relations to health, diet, exercise and illness. While
ever more microbiome data is gathered and stored, recent works
have demonstrated the threat of individual re-identification based
on matching samples taken at different points in time, by match-
ing metagenomic features extracted from microbiome readings.
The individual and temporal stability of the microbiome varies
for different body sites and is particularly pronounced for read-
ings from the gastrointestinal tract. To meet the resulting need for
privacy-protecting solutions, we adapt the well-known concept of
𝑘-anonymity and make it suitable for application to microbiome
datasets. In particular, our approach for establishing 𝑘-anonymity
is based on micro-aggregation.Our evaluation uses ten datasets
containing samples of gut microbiomes, and analyzes the decreased
privacy risk on the anonymised dataset as well as the incurred
information loss. The analysis demonstrates the suitability of our
approach for the protection of sensitive microbiome data.

CCS CONCEPTS
• Security and privacy→ Data anonymisation and sanitiza-
tion; Privacy protections.
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1 INTRODUCTION
Research on the humanmicrobiome has been flourishing for several
years, sparked by its high potential for analysis in clinical settings.
The human microbiome includes bacteria, archaea, viruses, fungi
and protists, living on different sites of the human body, i.e. on
or within human tissues and biofluids of various anatomical sites.
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Recent works suggest that the human microbiome has a great in-
fluence on our general well-being. Variations in the human micro-
biome indicate details about a person’s diet, exercise habits and
abode. Therefore, the human microbiome is increasingly utilised for
prediction, diagnosis and therapy of diseases, leading to frequent
publication of new results on certain correlations and interactions.
For example, changes in the microbiome of the gastrointestinal
tract may be related to gastrointestinal diseases [3], obesity [12],
diabetes [16], and depression [17]. Human microbiome data has
been used to detect e.g. colorectal cancer [25] or type-1 diabetes in
infants [5].

Besides its potential for analysis in clinical settings, previous
works have shown that it is vital to consider the human micro-
biome as personal and sensitive medical data. Franzosa et al. ([6])
demonstrated that the individual variations in metagenomic fea-
tures extracted from microbiome readings allow for the matching
of multiple samples of the same individuals among populations
of hundreds: for an initial microbiome sample, it was attempted
to match them to follow-up samples collected 30-300 days later,
with a correctness of approx. 30%. Especially the widely-considered
gastrointestinal microbiome was shown to be very stable, allowing
to match up to 80% of individuals. This personal microbiome iden-
tification (PMI) thus poses a privacy threat to those participating in
microbiome studies. These observations have been further aggra-
vated by a nearest-neighbour approach for the matching of micro-
biome samples ([10]), thus stressing the need for privacy-enhancing
technologies for microbiome data While there are emerging tech-
niques for genomic datasets ([2]), and specifically for human DNA
sequence data ([13], [14]), techniques for protecting microbiome
reports against personal microbiome identification are still lacking.
Such microbiome reports are tables containing individuals (i.e., sam-
ple vectors) described by hundreds to thousands of metagenomic
features. Previous work ([11]) studied the utility of synthetic mi-
crobiome data, and the experiments on several classification tasks
showed only small deviations of utility scores of models trained
on synthetic data compared to models trained on the original data.
Our contribution is an evaluation of another privacy-protecting
technique, 𝑘-anonymisation, obtained by the micro-aggregation
of microbiome samples. Our ultimate goal is to ensure that PMI
methods only find sets of samples of size at least 𝑘 that may or may
not contain the correct sample, but are no longer able to uniquely
identify the correct sample. In addition, we will analyse the utility
of the anonymised microbiome data on the same datasets as those
used in [11].
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The remainder of this paper is structured as follows: In Section 2,
we give a more detailed overview of PMI methods and on the con-
cepts used in our anonymisation method. Section 3 describes the
threat model and the goal of our technique. In Section 4, we use
four datasets containing samples of gut microbiomes and six addi-
tional datasets for the predictive machine learning task to evaluate
anonymised data utility. Finally, we provide concluding remarks
and a discussion on future work in Section 5.

2 PRELIMINARIES AND RELATEDWORK
We start by discussing relevant aspects on microbiome data. Sam-
ples of human microbiome may be taken from several body sites
– besides the microbiome of the gastrointestinal tract mentioned
above, this might be from saliva, throat, anterior nares (the external
portion of the nose) or buccal mucosa (the inside of the cheek).
While gut microbiome data is particularly useful for clinical re-
search, it is also most vulnerable to the mentioned PMI methods. We
will thus focus on the gastrointestinal datasets from Franzosa et al.’s
study ([6]). These were obtained from raw microbiome data that is
publicly available through the Human Microbiome Project’s (HMP)
repository1. From the initial metagenomic sequences, ([6]) applied
16S ribosomal gene sequencing as well as whole metagenome shot-
gun sequencing, to eventually derive structured tabular datasets
with different feature types. Samples from these datasets then serve
as input to the PMI methods by Franzosa et al. ([6]) and in the
improved approach ([10])2. In these two PMI approaches, the input
is tabular data: the samples (individuals) are represented in rows,
and the columns contain the features describing the samples. The
datasets come with four different feature types: (i) operational tax-
onomic unit abundance (‘OTU’), (ii) bacterial and archael species
abundance (‘Species’), (iii) species-specific marker genes (‘Mark-
ers’) and (iv) tiled kilobase windows (‘KBW’). The units for each
sample are either measured in (i) relative abundance, which means
that the values correspond to percentages, and that thus their sum
for each sample equals 1, or (ii) reads per kilobase per million sample
reads (RPKM); these values are scaled by a different factor and may
be much larger than 1.

In Franzosa et al.’s method for PMI in tabular data ([6]), a feature
is considered to be binary, i.e. either present or absent, determined
by feature detection limits that correspond to the general unit
size; thus, the original sample vectors with continuous values are
effectively transformed into binary 0, 1-vectors. The method then
tries to identify so-called metagenomic codes, which are unique for
each sample. The code comprises a small subset of features that are
present in the individual sample, but are, in this combination, not
present in any other sample. To obtain these codes, Franzosa et al.
use a greedy algorithm; they empirically demonstrated that these
codes are stable enough over time, and may thus be used to find
pairs of samples that belong to the same individual.

This PMI techniquewas improved by [10]with a nearest-neighbour
extension, consisting of three phases. In the first phase, the relative
abundance and RPKM values in the sample vectors are discretised,

1https://www.hmpdacc.org
2There are several other methods for microbiome-based identification, e.g. GePMI
by Wang et al. ([23]). However, GePMI is not based on tabular microbiome data, but
extracts its features from the raw microbiome sequence data. Since it does not operate
on datasets with metagenomic features, it is not in the scope of this paper.

i.e. they are transformed to integer values, by using feature abun-
dance limits. This phase is similar to the encoding via the feature
detection limits used in the metagenomic-code approach, but is
more fine-granular than the binary discretisation. The second phase
identifies possible matches: to match a specific sample 𝑠 against a
dataset 𝐷 , one computes the most similar (the “nearest-neighbour”)
sample 𝑠 of 𝑠 in 𝐷3. Thus, one obtains (𝑠, 𝑠) as candidate for a
pair of samples belonging to the same individual. A problem of
this nearest-neighbour approach is that every sample 𝑠 has some
nearest-neighbour in 𝐷 ; thus, this method generally leads to a large
number of false positive matches. This problem is solved, in the
third phase of the algorithm, by introducing a criterion for deciding
on whether to accept or reject a pair (𝑠, 𝑠). Intuitively, this criterion
contrasts the similarity between the potential matching pair 𝑠 and
𝑠 to the similarity between 𝑠 and all other samples in 𝐷 . It has been
shown empirically in a large number of experiments in [10] that
this acceptance criterion, a form of thresholding, is able to filter
most false positives from true positives. This thresholded nearest-
neighbour method [10] overall shows an increased success over the
earlier method [6] on most considered body sites. Especially, we
can note an increased percentage of true positive matches (by up
to 30%) of the widely studied gut microbiome, averaged over the
four different feature types described earlier.

Privacy-preserving data publishing (PPDP) [7] deals with provid-
ing data that can be shared with other parties, without infringing
the privacy of contained individuals. A wealth of different meth-
ods have been proposed, including e.g. synthetic data generation
(SDG), where new, artificial data is generated from a learned repre-
sentation of the original data, e.g. the distribution of the features
and the correlations between them [8]. As a result, a new dataset
is obtained with no 1-1 correspondence to real individuals, while
still being useful for analysis. While synthetic data is used for a
variety of machine learning tasks, e.g. classification [9], regression,
or anomaly detection [15], current SDG methods often need to
be adapted to deal with the idiosyncrasies of data from specific
domains. Such an adaption was performed in [11] for microbiome
tabular data for machine learning tasks. To put the results from that
work into perspective and further investigate the PMI methods’
effectiveness, in this paper, we adopt an anonymisation technique
for privacy-preserving data publishing.

Within a dataset, we can generally distinguish different types of
attributes (features). Identifying attributes, such as an e-mail address
or a social security number, directly reveal the identity of a record.
Quasi-identifiers (QIs) do not directly identify a record, but may
do so when used in combination with other quasi-identifiers. As
an example, in a dataset containing demographic information on
individuals, the date of birth in combination with the sex and the
residence of a person can uniquely identify a certain number of
records. While the attributes in the microbiome datasets used in our
evaluation are more abstract and carry less semantic meaning, they
can in combination still become identifying. The privacy model
k-anonymity [18] is a well-explored approach that can be used
to obfuscate sensitive datasets and prevent (re-)identification of
individual samples. A k-anonymous dataset means that there are

3In principle, this computation may be performed with respect to any distance metric.
In [10], the Pearson correlation coefficient has been used.

https://www.hmpdacc.org
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always at least k records that are indistinguishable with regards to
the quasi-identifiers. Records that share the same quasi-identifier
values are called Q-blocks or equivalence groups (or classes).

k-anonymity can be achieved by suppression and generalisa-
tion of the values that are unique within a Q-block. Suppression
means simple deletion of values, whereas generalisation decreases
a value’s granularity. Global generalisation (also called full domain
generalisation) means that an attribute is put to the same generali-
sation level for each data record. Local generalisation on the other
hand optimises the generalisation by finding a minimal required
loss of precision for each Q-block.

Micro-aggregation ([4], [20], [1]) is related to 𝑘-anonymity and
well-suited for numerical data. In micro-aggregation, Q-blocks (clus-
ters) containing at least k similar records are created in a similar
fashion to local generalisation, but the samples are made indistin-
guishable by replacing attribute values by Q-block (cluster) aver-
ages. This means that (i) the granularity of the input data is not
decreased, (ii) continuous numerical attributes are not discretised
and (iii) outliers cause less distortion (whereas in data generalisa-
tion, they may force very coarse values) [21].

As we will discuss in Section 3, the structural similarities of the
two PMI methods imply that a solution for mitigating the risks re-
sulting from the nearest-neighbour approach also protects against
the metagenomic-code method. Our main idea is to establish 𝑘-
anonymity on the dataset by applying an approach based on micro-
aggregation, with the aim of preventing both methods from finding
unambiguous matches. To obtain 𝑘-anonymity, we selected the
`-Ant tool as a stand-alone open source Java software [21]. The
implementation scales well for high-dimensional data and is eas-
ily configurable. `-Ant requires as input a CSV file with the data
to be anonymised, and an XML configuration file describing the
attributes of the dataset, along with their types, sensitivity, and
desired anonymisation parameters to be obtained. The output is
another CSV file with an anonymised version of the dataset.

3 THREAT MODEL AND MAIN GOAL
In this work, we consider a threat model similar to [11].

Victim: an individual who provided their microbiome samples,
e.g. in the course of medical studies, diagnosis, therapy, or personal
health and fitness advise. Their microbiome data, and possible anal-
ysis results or additional metadata, are electronically available.

Adversary: a party in possession of unidentified microbiome
samples, wanting to link them to other samples. Their goal is to
accumulate information about the underlying individuals and pos-
sibly identify them. The adversary may obtain microbiome samples
via various ways, e.g. from public microbiome databases, cyberat-
tacks against healthcare or research facilities, data exfiltration via
insiders, or even directly from the human victim (e.g., saliva).

Threat: we assume that an adversary possesses a sample of a
certain individual. We discuss four reasons for the adversary to
match the sample against another database.

(i) To find out if a person participated in a certain study, i.e.
membership disclosure. This might allow them to infer sen-
sitive information, e.g. if the study is conducted in the con-
text of a disease. Even if the microbiome samples connected

to the disease study do not include identifying metadata, a
match with a known sample will identify the person.

(ii) The attacker may be able to obtain (previously unknown)
metadata that is associated with the sample identified as
match in the new database (e.g., medical and personal data
provided in the course of a study or treatment).

(iii) The attacker may be able to get hold of new microbiome
samples from the same individual, and even in the absence
of metadata could thereby learn about changes over time in
the individual’s human microbiome. These changes could be
caused, e.g., by diseases, depression, or changes in diet.

(iv) Ongoing research increasingly associate microbiome sam-
ples with other individual traits, such as the age or geo-
graphical background [26]. Therefore, collecting and linking
multiple samples from the same individual could also aid an
adversary in identifying the person behind a sample.

In Section 2, we discussed currently known techniques for per-
sonal microbiome identification on datasets containing metage-
nomic features. While these techniques show that personal mi-
crobiome identification is possible, this paper aims at mitigating
the threats discussed above. The ultimate goal of our anonymisa-
tion approach is to prevent PMI methods from achieving unique
re-identifications on the anonymised dataset. Considering the func-
tionality of the metagenomic-code approach and the thresholded
nearest-neighbour technique, we specify the following two objec-
tives. After applying feature abundance limits on the anonymised
dataset, it should be impossible to

(1) construct a unique metagenomic code for any individual
(2) distinguish any individual sample from all others

The first objective refers to the metagenomic-code approach [6],
the second to the nearest-neighbour technique [10]. From a privacy-
preserving perspective, it is clear that a solution for achieving the
second objective may also serve as a solution for the first objective.
Hence, our anonymisation approach should produce an output
dataset such that, after applying feature limits, it satisfies (at least) 𝑘-
anonymity in the sense of the second goal. In addition, our strategy
presented and evaluated in Section 4 will also consider the utility
of the anonymised datasets, e.g. by computing measures for the
information loss and comparing performance on machine learning
classification tasks.

4 EVALUATION
We evaluate the proposed 𝑘-anonymity approach in three steps.
First, we demonstrate the infeasibility of personal microbiome
identification on the anonymised datasets, i.e. we demonstrate the
privacy-preserving power of the method. Subsequently, we mea-
sure the effects of anonymisation on the data quality and utility, by
two different means: we measure (i) the statistical information loss
compared to the original data, and (ii) the utility of the anonymised
dataset for selected downstream task, namely supervised classi-
fication tasks from knights-lab’s microbiome machine learning
repository4.

For the first part on PMI, we apply our approach to four datasets
containing samples from the microbiome of the gastrointestinal

4https://knights-lab.github.io/MLRepo
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tract. Originally, they have been published in Franzosa et al.’s study
[6]55, which is based on raw microbiome sequence data available
through the Human Microbiome Project. As indicated in Section 2,
the four datasets correspond to four different metagenomic feature
types: (i) operational taxonomic unit abundance (‘OTU’), (ii) bacte-
rial and archael species abundance (‘Species’), (iii) species-specific
marker genes (‘Markers’) and (iv) tiled kilobase windows (‘KBW’).
Species and OTUs are on the taxon-level and measured in relative
abundance, i.e. the sum of all components in each sample vector
equals 1. Markers and KBW, on the other hand, are on the gene-
level and measured in reads per kilobase per million sample reads
(‘RPKM’), and are not normalised values.

Table 1: Characteristics of the four gut microbiome datasets
used in the first part of our experiment

Dataset # Features # Individuals

Species 317 50
OTUs 2663 87
Markers 349,779 50
KBW 263,847 45

Table 2: Feature abundance limits used in nearest-neighbour
PMI ([10])

Limits 𝑡0 𝑡1 𝑡2 𝑡3 𝑡4

Taxon-Level 0.00005 0.0005 0.005 0.05 0.5
Gene-Level 0.005 0.05 0.5 5 50

Table 1 provides an overview on the size of the four datasets.
We in fact have two datasets 𝐷 and 𝐹 for each of the feature-types:
𝐷 and 𝐹 contain exactly the same individuals represented by the
same features, but 𝐷 contains initial microbiome samples, while
𝐹 contains follow-up samples from the same individuals at a later
point in time (30-300 days later). Interpreting this along our threat
model (see Section 3), 𝐷 is the dataset under attack, and 𝐹 contains
samples available to an adversary that they want to check against
𝐷 . Furthermore, we will make use of the feature abundance limits
given in Table 2, encoding the dataset by applying following rule:

𝑥 ←


0 if 𝑥 < 𝑡0,
𝑖 if 𝑡𝑖−1 ≤ 𝑥 < 𝑡𝑖 for some 1 ≤ 𝑖 ≤ 4,
5 if 𝑥 ≥ 𝑡4 .

To summarise, we employ the following experimental setup:
(1) Apply the anonymisationwith the `-Ant tool to𝐷 , specifying

all features as quasi-identifiers, and obtain �̄� .
(2) Perform personal microbiome identification to match the

samples of 𝐹 with those in �̄� . Compare the results to those ob-
tained on the original dataset 𝐷 . This measures the achieved
privacy.

(3) Let �̄� 𝑓 and𝐷 𝑓 be the datasets after application of the feature
abundance limits in Table 2. Compare �̄� 𝑓 to 𝐷 𝑓 and analyse
the information loss. This measures the reduction in data
utility (see Section 4.2).

5Code and data is available at: https://huttenhower.sph.harvard.edu/idability/

The second step demonstrates that the anonymisation algorithm
holds its promise of greatly inhibiting the capabilities of the cur-
rently best techniques for PMI. The purpose of the third step is the
investigation of the preserved utility of the anonymised dataset.

4.1 Empirical verification of 𝑘-anonymity
We perform this step by applying the personal microbiome iden-
tification (PMI) techniques; serving as a baseline, we first discuss
the results on the original datasets. Figure 1a presents these re-
sults for the two PMI methods discussed in Section 2. The left
bars show the nearest-neighbour technique ([10]), and the right
bars the metagenomic-codes approach ([6]). For every sample in
𝐹 , the methods construct a set of matches of samples from 𝐷 . In
our case, these sets contain either the nearest-neighbour ([10]) or
the samples that match the metagenomic code ([6]). We count the
number of sets of matches containing (i) only the correct individual
(true positives, TP), (ii) only wrong individuals (false positives, FP),
(iii) correct and also wrong individuals (TP+FP), as well as (iv) the
number of individuals that incorrectly have not been matched (FN),
and (v) the number of individuals for which the technique of [6]
was not able to construct a unique metagenomic code (NA). Com-
paring the left to the right bars in Figure 1a, we can see that the
nearest-neighbour approach outperforms the metagenomic-codes
technique on each of the datasets and achieves a high number of
true-positive identifications.

Let us now consider the results of anonymisation on the perfor-
mance of the PMI methods. After the anonymisation of the dataset
𝐷 with the procedure described in the beginning of this section,
we obtain �̄� . We now match the samples of 𝐹 with those in �̄� by
applying the PMI techniques to these datasets. Our observation
is that the approach based on metagenomic codes is not able to
construct a unique code for any of the samples in �̄� , hence the
result for every sample in 𝐹 is ‘NA’. Similarly, the thresholded
nearest-neighbour approach yields ‘FN’ as result for each sample,
since it rejects every initial match. These outcomes were to be ex-
pected, as the anonymisation algorithm is designed to lead to this
exact behaviour of the PMI methods with standard settings. We
can further consider a variation where an attacker might try to by-
pass the mentioned obstacles and obtain some other output besides
‘NA’ or ‘FN’: the attacker might decide to turn off the threshold
in the nearest-neighbour approach. This will certainly allow them
to obtain some coincidental matches (TP + FP). However, since
we have 𝑘-anonymity in the sense that always 𝑘 samples in the
anonymised datasets are indistinguishable, the chance to obtain
the correct sample by guessing is (at most) 1/𝑘 . With increasing
levels of anonymity, the number of neighbouring samples returned
by the PMI method is also increasing, but only one among them
can be an actual match.

Applying our nearest-neighbour approach with the number of
neighbours equal to anonymisation level 𝑘 (looking for the 𝑘 closest
neighbours) and without a threshold for the acceptance of matches
yields the results shown in Figure 1b. Bars in the presented plot
correspond to consecutive anonymity levels, starting from the left
with 𝑘 = 2, increasing up to 𝑘 = 7. The blue markers indicate the
percentage of samples for which the attacker on average guesses
correctly for the different levels of 𝑘-anonymity – an attacker will

https://huttenhower.sph.harvard.edu/idability/
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(a) PMI on original datasets (b) PMI on the anonymised datasets

Figure 1: PMI before and after anonymisation (results in percent). In (a), the left bar shows the results from the nearest-
neighbour (NN) method ([10]), and the right bar shows the results from the metagenomic-codes method ([6]). In (b), we applied
the nearest-neighbour approach without thresholding, setting the number 𝑘 of nearest neighbours equal to the anonymity level.
Bars correspond to respective anonymity levels, starting from the left with 𝑘 = 2, 3, 5, 7. Blue triangles indicate the percentage of
average correct guesses by the attacker, assuming a chance of 1/k in the TP+FP and a chance of 0 in the FP matches.

always guess wrong for the FP outcomes, while for TP+FP matches,
the correct guess is on average (TP+FP)/𝑘 , as described above. The
ratio of correct guesses on average is naturally decreasing with an
increase in 𝑘 , the anonymity level. The number of TP+FP matches
varies between datasets and is similar or even lower for higher
levels of 𝑘 . As the Q-blocks’ size of nearest neighbours increases
with 𝑘 , one would expect an increase in TP+FP matches for higher
levels of 𝑘 . However, that does not appear to be the case, as can be
seen in Figure 1b.

Our assumption is that the closeness of original samples in each
dataset varies and hence, while performing PMI, some Q-blocks
of k-nearest neighbours are overlapping within particularly close
samples. Since the PMI method only gets k samples as an outcome
and determines if any sample within that subset is a match, there
is a higher chance of getting only false positives if the samples are
similar. This appears to be the case for the OTUs dataset, where
the FP ratio increases with a higher anonymity level.

In comparison with the left bars in Figure 1a (the thresholded
nearest-neighbour approach with𝑘 = 1), we can see that an attacker
can still find a large number of correct Q-blocks on the anonymised
datasets. This behaviour may be considered as a consequence of
the fact that the anonymisation algorithm is designed to provide 𝑘-
anonymity by simultaneously losing as little information as possible.
However, an attacker now has to guess the correct individuals from
the obtained TP+FP Q-blocks, and also has no means to distinguish
them from the FP Q-blocks, in which all samples are incorrect. We
hence conclude that the goal stated in Section 3 is achieved.

4.2 Statistical utility analysis
We proceed with a statistical analysis of the differences between
original and anonymised datasets. As mentioned in the experimen-
tal setup, we compare the datasets after the application of the feature
abundance limits in Table 2. Due to the large number of features
in the datasets, a direct and complete comparison of the distribu-
tion of attributes and the correlations between them is less feasible.
We thus first consider a general measure of information loss that
computes a scalar, namely the distance measure IL1s, introduced in
[24], and for continuous attributes as

IL1s =
1
𝑑𝑛

𝑑∑︁
𝑗=1

𝑛∑︁
𝑖=1

|𝑥𝑖 𝑗 − 𝑦𝑖 𝑗 |√
2𝑆 𝑗

,

where 𝑑 is the number of the features, 𝑛 is the number of samples in
the datasets, 𝑥𝑖 𝑗 and 𝑦𝑖 𝑗 are the values for feature 𝑗 and individual 𝑖
before and after anonymisation (respectively), and 𝑆 𝑗 is the standard
deviation of the feature 𝑗 in the original dataset. Note that this
measure uses 𝑆 𝑗 as a common scale for all values of the same feature.
IL1s returns values in the range [0,∞). Smaller values indicate a
greater similarity between the compared datasets, and 0 is returned
for identical datasets.

It is evident that with a greater anonymity level, the IL1 mea-
sure increases. The lowest information loss is reported for the
Markers-type dataset, preserving the most statistical utility after
anonymisation. However, the value of IL1s is generally low on all
anonymised datasets.
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Table 3: IL1s-measure on the anonymised datasets

k Species OTUs Markers KBW

2 0.126 0.074 0.022 0.155
3 0.165 0.096 0.030 0.169
5 0.191 0.114 0.034 0.224
7 0.201 0.121 0.036 0.240

4.3 Predictive machine learning tasks
The utility of anonymised data was tested with the predictive ma-
chine learning tasks defined for the datasets from the Knights lab
microbiome machine learning repository [22]. We measure and
compare the effectiveness of the machine learning models trained
on the original data to those trained on the anonymised data, similar
as in e.g. [27].

Table 4: Characteristics of the six datasets used from the
Knights lab microbiome machine learning repository

Dataset Task # Samples # Features

Gevers control vs cd (crohn’s disease), rectum 160 943
Gevers control vs cd (crohn’s disease), ileum 140 943
Morgan healthy vs cd (crohn’s disease) 128 829
Morgan healthy vs uc (ulcerative colitis) 128 829
Turnbaugh lean vs obese 142 557
Kostic healthy vs tumor biopsy 172 908

In total, the repository contains data for 33 curated machine-
learning tasks, mainly for binary classification. We utilised six
medium-sized datasets: two for distinguishing healthy microbiome
samples from those where the hosts suffer from Morbus Crohn
(the “Gevers” datasets in the repository), two datasets with tasks on
Inflammatory Bowel Disease (the “Morgan” datasets), one for dis-
tinguishing lean from obese individuals (the “Turnbaugh” dataset),
and one for detecting tumours (the “Kostic” dataset). The details
of each dataset can be found in Table 4. In each case, we will use
data containing RefSeq-based OTU abundance counts to compare
our results directly to the baselines shown in [22]. Furthermore, we
applied the same preprocessing steps as in the original publication.
Hence, our experimental setup is as follows:

(1) The OTU counts are converted to relative abundances, fil-
tered at a minimum of 10% prevalence, and collapsed at a
complete-linkage correlation of 95%.

(2) 5-fold cross-validation is applied in a stratified fashion and
with regard to the control variable, if it is specified6.

(3) Within each fold, the training samples are anonymised with
`-Ant for four levels of k-anonymity, namely 𝑘 = 2, 3, 5, 7.
All features are configured as quasi-identifiers.

(4) The relative abundances in the original and anonymised data
are transformed by using the same feature abundance limits
as in [10] and shown in Table 2.

(5) Finally, we train machine learning models on both original
and anonymised datasets and compare their performances
on the test data. We applied Random Forest (RF) with 500

6In the case when the dataset contains a control variable, folds are selected such that
samples with the same control variable value are contained within the same fold.

estimators, Support Vector Machines (SVM) with radial basis
and linear kernel, and Extreme Gradient Boosting. All other
model parameters use the default values. A random state of
123 was set to make the results more reproducible.

(6) This entire process is repeated ten times, and the mean class
probabilities are used to calculate the ROC-AUC score for
Random Forest and XGBoost. For ROC-AUC calculations of
SVMs, the decision function was used.7. The models’ predic-
tions are used to calculate the F1 score.

This experimental setup is as close as possible to the one first
implemented by [22]. In addition, a similar setup has been used in
the recent evaluation of synthetic microbiome data [11].

The application of feature abundance limits appears to improve
the overall classification performance in [11]. Therefore, we also
apply them in Step four inside the cross-validation loop. This is
a slight adjustment to [11], where the feature abundance limits
were used before the split. As a difference to both papers, Extreme
Gradient Boosting8 was added to the list of tested models. The
experiment of this paper was implemented in Python, and we did
not use the R implementations of in [22] and [11]. Because of this,
some of the models’ details and parameters differ from the original
experiment. For example, the default value of sigma parameter for
radial SVM in R is 0.1, whereas we observed extremely poor results
with this value in the scikit-learn SVM implementation. For this
reason, we used the default sigma9 parameter for this library. Our
code is available online10

To compare the performance of models trained on original and
anonymised data, ROC curves were plotted with respective AUC
scores, and colour-coded by the model type. Additionally, F1 score
plots are presented in Figure 6.

We can observe only a small drop in effectiveness for anonymised
data from the results on the first Gevers dataset “control vs cd,
rectum” in Figure 2a. Especially Random Forest seems to be, across
the experiments, quite robust to anonymisation strength, with a
difference of 9 percentage points (pp) between the original AUC
score and the score on 𝑘 = 7 anonymised data. It is also the model
with the best performance on anonymised data for 𝑘 = 7. For
SVM with linear kernel, the AUC score fluctuates, even obtaining a
higher value for 𝑘 = 2 than for the non-anonymised data. It suffers
the smallest drop of 3 pp in performance for the highest level of
anonymisation compared to the original. The biggest drop can be
observed for SVM with radial kernel (16 pp), which is the model
with the highest AUC on original data.

For the second Gevers dataset “control vs cd, ileum" (cf. Fig-
ure 2b), the observations are similar. The drop in performance is
usually only a few percentage points for increasing anonymisation
levels. RF is again the best model for the highest level of anonymi-
sation, while XGBoost scores the lowest; it is also the most stable

7The approach of using the decision function rather than probability scores to obtain
confidence scores for SVM’s ROC curve comes from the fact that SVMs do not output
probabilities natively, but rather use Platt scaling to obtain them, which is known
to have some inconsistency issues, see: https://scikit-learn.org/stable/modules/svm.
html#scores-probabilities
8Implementation of the xgboost library for Python: https://github.com/dmlc/xgboost
9The sigma parameter of Support Vector Machines in sci-kit learn implementation is
called gamma, see: https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.
html?highlight=svc#sklearn.svm.SVC
10https://github.com/sbaresearch/microbiome-k-ano

https://scikit-learn.org/stable/modules/svm.html#scores-probabilities
https://scikit-learn.org/stable/modules/svm.html#scores-probabilities
 https://github.com/dmlc/xgboost
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html?highlight=svc#sklearn.svm.SVC
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html?highlight=svc#sklearn.svm.SVC
https://github.com/sbaresearch/microbiome-k-ano
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(a) "control vs cd, rectum"

(b) "control vs cd, ileum"

Figure 2: Results on Gevers: Final ROC curves and AUC scores.

model, dropping only 12 pp in score for 𝑘 = 7. The relative differ-
ence in AUC scores is the most striking for XGBoost (19 pp).

On the Morgan dataset ("healthy vs cd, stool" in Figure 3a), all of
the models drop significantly in performance for higher levels of
anonymisation. Both SVM flavours suffer the biggest falls, reaching
around 50% of AUC for 𝑘 = 7, meaning that the model is no better
than randomly guessing the class. Even though the difference is
bigger than for the previously described Gevers datasets, the models
still obtain AUC scores of 74-80% for 𝑘 = 2, which proves their
usefulness for classification. In fact, SVM with radial kernel does
not suffer any drop in score between level 2 and 3 of anonymisation.
The second dataset fromMorgan ("healthy vs uc, stool" in Figure 3b)
results in overall similar findings as for the first Morgan dataset.
Despite obtaining low AUCs on 𝑘 = 5, 7 anonymised data, models
perform reasonably well for lower levels. Both of the SVM models
obtain a higher score for 𝑘 = 3 than for 𝑘 = 2 anonymised data.

On the Turnbaugh dataset (Figure 4a), Random Forest obtains
79% AUC on the original dataset, maintains this score for 𝑘 = 2, and
only drops by 5 pp for the highest level of anonymisation, proving
that it is still a usable model. XGBoost, although still effective for
lower levels of anonymisation (2 pp drop for 𝑘 = 2), drops by 12
pp on 𝑘 = 7, more than twice as much as RF. However, the most
substantial drop for this anonymity level is observed for SVM radial
basis, where 23 pp are lost compared to the original.

Results from the Kostic dataset are presented in Figure 4b. The
SVM models maintain the highest AUC for 𝑘 = 7 level of 74%. For
SVM linear, this only amounts to a 5 pp drop. Random Forest is

similarly robust, without substantial losses in performance, how-
ever having slightly larger, increasing pp drops than SVMs for this
dataset. The AUC of XGBoost fluctuates, reaching rather low scores
for anonymised data in general.

Overall, these results indicate that we can still obtain satisfying
performances with the Random Forest model, even for a higher
level of anonymisation. XGBoost, being the second decision tree-
based algorithm, did not perform as well as Random Forest. Its
effectiveness is highly dependent on tuning a large number of
hyperparameters. However, since we focused on comparability and
not on achieving a high baseline performance, we did not tune the
parameters of any model. SVM models maintain their utility for
lower levels of anonymisation, but their performance is generally
less robust than the Random Forest model.

While the discussed patterns recurred through the experiments,
the final effectiveness of all models certainly depends on the partic-
ular dataset and scenario. This is also reflected in the F1 scores (cf.
Figure 6). For the Gevers datasets, there is a substantial decrease
with higher levels of anonymisation, especially in the “control vs
cd, ileum” dataset for 𝑘 = 7. However, the bar plots show that all
of the models had a particular problem on the Morgan “healthy
vs cd, stool” dataset, resulting in an extremely low F1 score even
on the original data. A closer look indicates that this behaviour
might be caused by imbalanced data. Figure 5 shows the first two
confusion matrices for Random Forest, which prove that the mod-
els predict mainly the majority class due to a heavy imbalance in
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(a) "healthy vs cd, stool"

(b) "healthy vs uc, stool"

Figure 3: Results on Morgan: Final ROC curves and AUC scores.

the number of samples between classes for this dataset. For other
datasets, there is only a small drop or no difference in the F1 score
with anonymisation, which proves the data’s utility remains high
for particular tasks.

5 CONCLUSION AND FUTUREWORK
In this paper, we have discussed and evaluated 𝑘-anonymity as a
privacy-preserving method for microbiome data with metagenomic
features. Our experiments investigated the protection against per-
sonal microbiome identification and analysed the utility of the data
after anonymisation. We have shown that most of the information
is preserved from the original data while protecting individuals
from direct identification via PMI methods, which is known to be a
threat to paired datasets. We further evaluated the utility for pre-
dictive classification tasks. While the individual effectiveness of the
models depends on the dataset and the task, we have shown that
Random Forest is particularly well suited and able to maintain its
performance when trained on anonymised data, even for higher
levels of anonymisation.

It is certainly difficult to directly compare the utility results of
the synthetization applied in [11] and our 𝑘-anonymity approach,
in particular considering the varying values of 𝑘 . Synthetization
focuses on preserving only the global information of the original
dataset and achieves privacy risk reductions by getting rid of the
1-to-1 correspondence of real individuals and synthetic samples. By
contrast, anonymisation achieves privacy risk reductions by small
changes to the values in the cells of the original dataset, thereby

preserves more of the local information and, in principle, retains
the link between individuals and samples. We therefore conclude
that anonymisation is a suitable addition to the toolkit of privacy-
preserving measures for microbiome data and may be particularly
useful in specific practical scenarios.

Our future work will focus on the application, evaluation and
comparison of both anonymisation and synthetization techniques
on larger microbiome datasets, though datasets that allow for both
PMI evaluation and utility evaluation are currently not available.
We will study the scalability of the approaches and possible adapta-
tions to other data formats, such as raw microbiome data in form
of genetic sequences. We will further investigate how other meth-
ods commonly used in data sharing, such as watermarking and
fingerprinting [19], need to be adapted to the specificities of tabular
microbiome data.
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(a) "lean vs obese"

(b) "healthy vs tumor biopsy"

Figure 4: Results on Turnbaugh (first row) and Kostic (second row): Final ROC curves and AUC scores.
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Figure 5: Confusion matrices for Morgan "healthy vs cd, stool" from Random Forest trained on original and anonymised data
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(a) Gevers "control vs cd, rectum" (b) Gevers "control vs cd, ileum"

(c) Morgan "healthy vs cd, stool" (d) Morgan "healthy vs uc, stool"

(e) Kostic "lean vs obese" (f) Turnbaugh "healthy vs tumor biopsy"

Figure 6: Results on all datasets: F1 scores.
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