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Machine-Learning-as-a-Service (MLaaS) has become a widespread paradigm, making even the most complex

Machine Learning models available for clients via, e.g., a pay-per-query principle. This allows users to avoid

time-consuming processes of data collection, hyperparameter tuning, and model training. However, by giving

their customers access to the (predictions of their) models, MLaaS providers endanger their intellectual

property such as sensitive training data, optimised hyperparameters, or learned model parameters. In some

cases, adversaries can create a copy of the model with (almost) identical behaviour using the the prediction

labels only. While many variants of this attack have been described, only scattered defence strategies that

address isolated threats have been proposed. To arrive at a comprehensive understanding why these attacks

are successful and how they could be holistically defended against, a thorough systematisation of the field of

model stealing is necessary. We address this by categorising and comparing model stealing attacks, assessing

their performance, and exploring corresponding defence techniques in different settings. We propose a

taxonomy for attack and defence approaches and provide guidelines on how to select the right attack or

defence strategy based on the goal and available resources. Finally, we analyse which defences are rendered

less effective by current attack strategies.
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1 INTRODUCTION

Training a Machine Learning model can be very complex and time-consuming as well as
resource-consuming. To safeguard their intellectual property, owners may opt to keep their models
secret, allowing external users to access them only by input-output queries over a predefined API.
However, black-box access to a model does not imply a protected model. Recent work has shown
how an adversary can steal (extract) such models [1–3]. The technique of model stealing (also
called “model extraction”) aims at obtaining, e.g., training hyperparameters, the model architecture,
learned parameters, or an approximation of the behaviour of a model, all of which are to the
detriment of the lawful model owner.

The number of domains where model stealing attacks are successful has dramatically risen over
the past few years. Dozens of attacks were executed regarding attack image classification [3], text
classification [4], natural language processing [5], and reinforcement learning [6]. Jagielski et al.
provide a preliminary taxonomy based on the attackers’ goals, thus classifying different types
of attacks [7]. However, the authors focus on a specific subset of attack patterns that address
behaviour stealing and target only neural networks. Therefore, a comprehensive analysis of the
potential and abilities of model stealing remains an important open task.

There are two main approaches for protecting a Machine Learning model against a model
stealing attack: attack detection [8] and attack prevention [9]. The first approach cannot protect
the model on its own but informs the owner that somebody tries to steal the model or that it
has already been stolen. The second approach should prevent the attack or at least make it less
effective. Unfortunately, a lot of the defences can either be fooled [10–12] or work only under
specific conditions [13]. Hence, studying existing approaches and investigating new ones is of
the utmost importance. To the best of our knowledge, there is no work that comprehensively
compares defences against model stealing. A systematisation of defence approaches will lead to
a better understanding of success criteria and, subsequently, to new, more effective defences—for
instance, by combining defences to cover multiple attack models at once.

Our contributions in this article are the following:

• We collect and describe approaches to model stealing attacks as well as defence techniques.
We explore how, when, and for which goals they were created and unify reported
performance measures of known attacks.
• We provide novel a taxonomy of model stealing attacks and defences based on goal,

methodology, and target model type. Following this taxonomy, we classify attacks and
defences.
• We compare query-based attacks by their effectiveness and efficiency; based on this

comparison, we develop recommendations for how to design and evaluate model stealing
attacks.
• We provide two guidelines for model stealing attacks and defences, illustrated with diagrams.

Following those guidelines, one can decide which attack or defence strategy suits best in a
given setting.

The rest of the article is structured as follows: Section 2 describes related work. Section 3
details the methodology used in our survey and systematisation. Section 4 provides the reader
with the background knowledge required to understand this article, while Section 6 introduces
important concepts of model stealing. Section 5 introduces our novel taxonomy on model stealing
attacks, followed by Sections 7 and 8, which describe known attack approaches and provide the
corresponding classification of the attacks as well as an overview of the performance of individual
attacks. Section 9 describes proposed defence strategies and provides a respective taxonomy.
Section 10 presents two guidelines for choosing the best attack or defence strategy under certain
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conditions and compares the effectiveness of defences against known attacks. Section 11 provides
conclusions and an outlook for future work.

2 RELATED WORK

To the best of our knowledge, there is no systematisation that provides a comprehensive research
of model stealing attacks and defence techniques. Jagielski et al. [7] were the first to categorise
model stealing attacks in terms of two objectives: accuracy and fidelity. The authors compared the
goals of different attacks and argued about the importance of fidelity, which is a valuable basis
for this work. However, they focus only on a specific subset of attacks, i.e., behaviour stealing of
neural networks, and do not include defence strategies. In our work, we propose a comprehensive
taxonomy and systematisation of both attacks and defences. Given the dynamics of the field, we
are also able to consider a significantly larger number of papers (more than 100 on attacks and on
defences, as opposed to 9 on attacks).

Gong et al. [14] provide an overview of six model stealing attacks as well as six defences.
The authors categorised them based on specific characteristics, e.g., an ability to steal/protect a
deep neural network (DNN). However, the paper covers only a fraction of relevant works, and
consequently the taxonomy and categorisation comprises only a subset of the field. In contrast,
a significant number of surveys regarding privacy and security in Machine Learning have been
published [15–18]. In these works, model extraction attacks are usually only briefly mentioned as
one sub-field of adversarial Machine Learning, while the main focus is on, e.g., evasion (adversarial
examples) and data poisoning attacks. Furthermore, there are publications that explore attacks
and defences, including model stealing, in specific settings such as reinforcement learning [19] or
edge-deployed neural networks [20]. We go beyond these studies and focus on model stealing as
a crucial issue of Machine Learning security, presenting a comprehensive, structural view on the
broad range of attacks as well as defences.

3 METHODOLOGY

Our article is based on an extensive literature research, including formal, peer-reviewed literature
such as conference papers or journal articles as well as grey literature, i.e., works that did not
undergo a peer-review process; the latter primarily includes pre-prints published on the arXiv
repository.

We defined the following criteria to identify the most relevant literature regarding model
stealing. Our inclusion criteria are: (1) Literature that proposes a method to perform model stealing
attacks. (2) Literature that proposes a defence against model stealing attacks. (3) Literature that
evaluates or compares earlier schemes.

Our exclusion criteria are: (1) (Near) Duplicates; if the titles are different, but the content
is very similar, then we consider the most comprehensive or peer-reviewed version and cite
only that version. (2) Literature that only applies earlier model stealing attacks as vehicle,
without introducing novel attacks or defences. This includes, e.g., using model stealing to
transform black-box access to a model into white-box access to a substitute model for an evasion
attack.

This resulted in a total of more than 100 papers on model stealing attacks and defences for our
in-depth investigation. Figure 1(a) provides an overview on how the field evolved over the years.
There is very early work from 2005 [21] that covers model stealing, but the main body of literature
has been published since 2016. First, more work was published on attacks; however, the volume of
literature on defence strategies has caught up since 2018. It has to be noted that some publications
cover an attack and the respective defence as well as propose a new defence immune to that attack.
Regarding the different types of attacks depicted in Figure 1(b), we can see that the vast majority of
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Fig. 1. Literature statistics.

works focuses on substitute model training attacks. Since there are many attacks utilising hardware
(HW) or software (SW) side channels (SC), it must be noted that these attacks often exploit multiple,
different types of side-channels, thus forming a rather inhomogeneous group of attacks. From
Figure 1(c), we can see that output perturbation and monitors are the most prominent defence
techniques. It should also be noted that some approaches such as monitoring and watermarking
are reactive and thus aimed at detecting an attack, while others are proactively trying to prevent

an attack.

4 BACKGROUND

In this section, we briefly summarise important concepts, terminology, and notation required for
the rest of this article.

4.1 Machine Learning

So far, model stealing literature primarily targets supervised and reinforcement learning. In
supervised learning, each sample xi from the input data set X has a corresponding label y, and
the goal is to learn a model that approximates the real mapping function f (x ) = y for a given
problem P to eventually predict labels ŷ for unlabelled data. If the labels are discrete values, then
this is a classification problem; if they are continuous values, then the problem is called regression.
In reinforcement learning, agents are learning to make the best decision in a given situation so
the reward of a performed action is maximal. They act in a particular environment to achieve a
predetermined goal.

Successfully learning a Machine Learning model requires different resources and domain
knowledge. First, the quality of the model depends on the quality of the training dataset. This
includes sample gathering and data labelling, often requiring human experts’ knowledge, which
can be very resource-consuming. Before learning the model, training hyperparameters, such as the
learning rate for a Neural Network or the architecture of the model (e.g., the number of layers in a
Neural Network), have to be set. Selecting fitting values requires expert knowledge and experience.
Finally, model training itself can be very compute- and time-consuming and may require many
refinement cycles of hyperparameter setting and training to arrive at the most representative
model. The need for large datasets, expert knowledge, and compute resources are the main reasons
for the emergence of the MLaaS paradigm.

In the following, we introduce Machine Learning concepts relevant for this article.
In an Active Learning learning [22] process, an oracle receives data samples and returns the

corresponding labels. Since data is labelled dynamically, one can choose the samples most useful to
building the model, thus reducing the required amount of labelled data. Thus, active learning is a
strategy often employed to reduce the number of queries required during model stealing. Generally,
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the “oracle” is considered to be a human (domain) expert who is asked to provide an ad hoc ground
truth; however, it can be any other information source. In model stealing, the target model, which
can label samples, is thus considered to be the oracle. This connection between active learning and
model stealing has been explored by Chandrasekaran et al. [23]; other works [24–27] use active
learning to improve attack efficiency.

Knowledge Distillation [28] is a model compression [29] method that allows to train a smaller
version (student network) of an already trained larger (teacher) network without decreasing
accuracy. The main idea is that the student network is learning to duplicate the outputs of the
teacher network on each and not only the final layer. In model stealing, these ideas form the basis
for some attacks (e.g., Kariyappa et al. [30]) as well as defences (e.g., Xu et al. [31]).

Machine Learning as a Service (MLaaS) refers to cloud-based computing platforms that offer
Machine Learning tools. These services allow users to remotely train their models, evaluate them,
or use pre-trained models via a pay-per-query principle. Providers such as Amazon,1 Microsoft
(Azure),2 or Google3 offer these services. Models supplied by MLaaS are usually only available
for input-output interaction without revealing the model architecture and parameters. If a model
is trained on a cloud-based server by a user, then its parameters and training hyperparameters
may be revealed afterwards; however, some MLaaSs keep also the user’s models secret, making it
impossible to transfer the models to the user’s device. Amazon and Microsoft Azure, e.g., provide
two modes for model training: (1) A user does not specify training hyperparameters, but the
server spends time searching optimal values for them. The MLaaS does not disclose these after
the training. (2) Specified hyperparameters are required; therefore, it takes less time for running
and costs less. Wang et al. [32] have shown how to exploit the first mode for stealing the training
hyperparameters.

We now briefly describe the methods most frequently targeted in model stealing attacks.
Naive Bayes (NB) applies Bayes’ theorem with the naive assumption of conditional independence
between every pair of features. It uses the maximum a posteriori estimation to obtain the likelihood
of a class for a given input. A Decision Tree (DT) is a tree-structured model in which internal
(decision) nodes represent conditions on the values of input features, branches represent the
decision rules, and leaf nodes represent the outcome. If used for regression, then the trees are
called Regression Trees (RT). Logistic Regression (LogReg) computes the odds of a class as a linear
combination of the features and uses the logistic function to model a binary target variable; it
can be extended to multi-class settings (MLogReg). A Support Vector Machine (SVM) constructs a
hyperplane that maximises the distance to the nearest training data point. For problems that are not
linear separable, a kernel function maps the input samples into a higher-dimensional space, hoping
that separation is possible there. Kernels include the linear (SVM-lin), quadratic (SVM-quad), or the
radial basis function (SVN-RBF). Some works subsume all linearly separating, binary-class models
as linear binary model (LBM).

4.2 (Deep) Neural Networks and Deep Learning

Many works in model stealing specifically address (Artificial) Neural Networks ((A)NN), which
consist of neurons that are organised in layers. The first is called the input layer, the last the
output layer, and all in between are hidden layers. The parameters of NNs usually are called weights.
Architectures frequently considered in model stealing research include:

1https://aws.amazon.com/machine-learning.
2https://azure.microsoft.com/en-in/services/machine-learning.
3https://cloud.google.com/products/ai.
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Table 1. Attacks against Machine Learning, Adapted from Reference [37]

Attacker’s Attacker’s goal

capability Integrity Availability Privacy/Confidentiality

Test data
Evasion (e.g., adversarial

examples)
-

Model extraction/stealing, model

inversion, membership inference, . . .

Train data
Poisoning for subsequent

intrusions (e.g., backdoors)

Poisoning to

maximise error
-

• Deep Neural Networks (DNNs), i.e., neural networks with at least two hidden layers; often,
these are fully connected feed-forward networks: neurons from one layer can be connected
only to neurons on the next layer.
• Convolutional Neural Networks (CNNs) are a special case of DNNs often applied to

image data. They do not require feature extraction as a data preprocessing step but can
extract local spatial features in an end-to-end learning fashion [33]; computationally,
this feature extraction is relatively cheap. CNNs usually contain three types of layers:
(1) Convolutional layers apply filters to the layer’s input and perform spatial feature
extraction. (2) Pooling layers are used for dimensionality reduction. (3) Fully connected

layers are performing the classification.
• Recurrent Neural Networks (RNNs) allow cyclic connections and support sequential data

(of variable length), e.g., handwriting and speech recognition tasks. RNNs have an internal
memory considering previous states.
• Generative Adversarial Networks (GANs) [34] can be used to generate data; they consist

of two networks competing with each other: the generator learns to generate samples
indistinguishable from the training samples, whereas the discriminator learns to distinguish
between original and generated data samples.
• Graph Neural Networks (GNN) process graph structures [35], e.g., for social network

analysis. GNNs can perform node classification, link prediction, or complete graph
classification.

4.3 Adversarial Machine Learning

Barreno et al. [36] are among the first to explore security issues of Machine Learning and
distinguish, e.g., between attacks in the the model’s training stage versus attacks on a trained
model. Biggio and Roli categorised adversarial attacks based on the attacker’s goal and capabilities
[37] (see Table 1). The goal of an attack can be the model’s confidentiality, integrity, or availability
(the so-called “CIA triangle”). Confidentiality attacks are aimed at training data (e.g., model
inversion) or the model as intellectual property (architecture and hyper(parameters)). Integrity
attacks raise the number of false negatives. The goal of availability attacks is to make the model
irrelevant by increasing prediction errors.

• Poisoning attacks [38] poison the training data, for instance, by flipping the labels or adding
some malicious data into the training set. As a consequence, the trained model’s accuracy is
lower or it can be fooled by samples modified in the same manner as the training data.
• Evasion attacks target the prediction phase. By, e.g., applying small perturbations to

original data [39], an adversary can obtain an adversarial example that is most of the time
indistinguishable for humans but misclassified by the model. These attacks have become
prominent for images, but were first executed on email (i.e., text data) [40].
• Membership inference attacks [41] determine if a given sample belongs to the training data or

not. To do this, an adversary tries to distinguish the differences in the predictions of inputs
in the training set and outside of it.
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Table 2. Disambiguation of Model Stealing Terminology

Terminology used

in this article
Other designations with the same meaning

Model stealing

(extraction) attack [1]

Reverse-engineering attack [21], copy attack [10], exploratory attack [4],

inference attack [42], duplication attack [43], mimicking attack [12], model

approximation attack [44]

Target model [1]

(Target) oracle [1, 26], classifier (model) under attack [4], secret model [25],

victim model [3], original model [45], proprietary model [23], mentor model

[12], source model [46]

Substitute model [2]

Adversarial classifier (model) [4], copycat network [10], knockoff model [3],

surrogate model [11], extracted model [45], inferred classifier (model) [42],

model approximation [23], student model [12], stolen model [47], replicated

model [48], clone model [49]

Attacker’s data
Fake dataset [10], thief dataset [25], attacker set [8], transfer set [3], proxy data

[50], surrogate dataset [51]

Fidelity [7]
Extraction accuracy [1], label prediction match [2], similarity [26], agreement

[25], approximation accuracy [45]

The first column gives the term primarily used in the literature and, thus, also in this article. The second column lists

other, equivalent terms used across the literature.

• Model stealing (model extraction) reveals a model’s hyperparameters, respectively, learned
parameters, or steals model behaviour and, thereby, the intellectual property a model
constitutes. Model stealing is the focus of this work.

5 TAXONOMY OF MODEL STEALING ATTACKS

In this section, we first provide a unified terminology (Section 5.1), followed by a comprehensive
taxonomy of model stealing attacks (Section 5.2).

5.1 Terminology and Notation

We present a unified terminology in Table 2. We identify the most widely used terms in the
literature in the first column and adhere to them in our article. The second column indicates
alternative terms along with a list of works that utilise them. A model that an adversary aims
to steal is called the target model and is denoted as f . The adversary can use this model as an
oracle to collect the attacker’s data that consists of pairs (x ,y). The input x is a data sample that
the attacker sends to the oracle. The output y is the prediction of the target model, i.e., f (x ) = y.
One such interaction with the target model is called a query. If outputs are the only information
one can obtain from f , then we assume that an adversary has black-box access to the target model
or that f is a black box. If the architecture and parameters of the target model are known, then we
assume white-box access to the model or that f is a white box. Any in-between state is called grey

box. If the attacker obtains a (possibly approximate) copy of the target model, then we denote that

model with f̂ .

5.2 Objectives of Model Stealing Attacks

By their objective, as depicted in Figure 2, attacks can be divided into two categories: (1) stealing
exact model properties (Section 5.2.1) and (2) stealing approximate model behaviour (Section 5.2.2).

5.2.1 Stealing Exact Model Properties. Depending on the considered task, the stealing of exact
properties can further be distinguished by the stolen assets: the learned parameters (e.g., the
learned weights of a neural network), training hyperparameters (e.g., a regularisation parameter

ACM Computing Surveys, Vol. 55, No. 14s, Article 324. Publication date: July 2023.
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Fig. 2. Taxonomy of model extraction attacks.

utilised during training), or architecture (e.g., the arrangement of nodes and layers in a neural
network).

Training Hyperparameters. In this category of attacks, an adversary tries to reveal
a hyperparameter responsible for the training process. Wang and Gong [32] proposed an
equation-solving approach for stealing the regularisation hyperparameter from ridge and logistic
regression, SVM, and NN (see Section 7.2). Oh et al. trained a meta-model that can predict some of
the training hyperparameters, such as batch size or optimisation algorithm [52] (cf. Section 7.7).

Architecture. An architecture stealing attack is usually applied to neural networks, as most
other models vary only on training hyperparameters and have a fixed architecture. In this
case, “architecture” means the set of hyperparameters that defines the target model structure. In
particular, the number of layers, layer type and its characteristics like the size of a kernel are parts
of a CNN architecture. Two main approaches to architecture stealing have been proposed in the
literature. The first one is the aforementioned meta-model attack [52] that predicts the architecture
of the target model by utilizing queries. Other works [53–58] exploit side-channel access to the
model. We provide a taxonomy of side-channel attacks, describe the difference from query-based
attacks, and introduce key techniques in Section 8.

Learned Parameters. A parameter stealing attack aims to extract parameters of the target
model whose structure (architecture) is known. Lowd and Meek were the first to propose a
model extraction attack for stealing the weights of a binary classifier [21]. Later, Tramèr et al. [1]
extended the idea and introduced equation-solving attacks (see Section 7.2) that allow to extract the
exact parameters of (multi-class) logistic regression and Multi-Layer Perceptron. Reith et al. [45]
presented an equation-solving attack also for support vector regression with linear or quadratic
kernels. Generally, learned parameter extraction is highly related to other attack types. For
instance, it can be applied after an architecture stealing attack to steal a target model with an
unknown model type. By performing a successful extraction of model parameters, an adversary
automatically obtains identical behaviour.

5.2.2 Stealing Model Behaviour. Jagielski et al. [7] classified a subset of those attacks that aim to
steal the model behaviour based on their accuracy and fidelity performance. We generalise from
concrete metrics to the goals of obtaining the same level of effectiveness as the target model, or
trying to be consistent with the predictions of the target model; we further distinguish two cases
for the latter, depending on what they are tested on. In Section 6.3, we detail concrete, frequently
employed metrics to measure these goals, and in Tables 4 and 5, we analyse model stealing attacks
based on their performance objectives.

Same Level of Effectiveness. This category covers attacks that aim at approximate stealing
and that focus on getting a copy of the target model that reaches the same level of effectiveness.

Given the target model f , an attacker aims to create a model f̂ that performs similarly to f on the
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original data. As a result, the attacker can use f̂ for solving the same task as f without restrictions
(e.g., daily caps or fees). To get a stolen model with similar effectiveness performance, an adversary
can use the same model architecture as in the target model [1, 10, 23], the same model type but
with a different structure [3, 27], or use a completely different class of models [4, 59].

Prediction Consistency. The second category that aims at approximate behaviour stealing

covers attacks that produce a model f̂ that predicts outputs consistently with f . Consistent
predictions means that for any sample x , the stolen model prediction should coincide with the

target model prediction f (x ) = f̂ (x ). Hence, if f misclassifies a sample from the original data, then

we want f̂ to also misclassify it. Depending on the domain of x , we distinguish two sub-categories:
consistency on real data and consistency on crafted adversarial data. For the real-data case, we
will get a model that has the same effectiveness as the target model and makes the same mistakes,

e.g., on the original data. In that sense, f and f̂ are more similar than in the previous category.
Prediction consistency on crafted adversarial data can be the goal of a model stealing attack that
opens the black-box target model for further white-box attacks.

6 MODEL STEALING: THREAT MODEL

A common way to understand the mechanics of a security attack is to model potential threats.
Hence, we specify the attacker’s motivation (incentives) to perform a model stealing attack and
describe potential consequences for the model owner. Then, we analyse how the attacker may
execute an attack. This step is also helpful for modelling potential defences, as it reveals the attack’s
weaknesses. Finally, we formulate concrete goals for model stealing attacks and define metrics to
measure the level of success.

6.1 Attacker’s Incentives

We distinguish the following two reasons for a model stealing attack:
Exploit a (partial) copy of the target model. If the target model is only available via API as

a black box, then there might be some restrictions that prevent API users from unlimited model
querying—for instance, daily caps or fees. If the attacker wants to overcome these, then obtaining a
copy of the model would be the solution. Another motivation is, e.g., stealing a novel architecture,
which could help an adversary to get a better model for another task (i.e., not necessarily the one
that the target model solves). In this case, the attacker does not steal the model itself, but one of
its components.

“Open” the target model for further white-box attacks. An attacker may want to perform
an attack that requires white-box access to the target model. In this case, a model stealing attack
can be used as an intermediate step. By obtaining a copy of the target, the attacker “opens” the black
box to perform some white-box attack on it. Several works exploit model stealing to enable evasion
or poisoning attacks, for example, References [60–62]. As mentioned in Section 3, we did not
include these papers in our classification, since—in contrast to those mentioned in Table 3—they
are focused on the subsequent white-box attacks; here, model stealing is not actually studied, but
rather used as a preparatory step.

6.2 Attacker’s Capabilities

We consider three main aspects regarding the attacker’s capabilities: knowledge about the target
model and the data it was trained on (the original data), actions that the attacker can perform, and
the resources available to them.

Attacker’s Knowledge. As mentioned in Section 5.1, an attacker might have one of the three
types of access to the target model: white-box, grey-box, or black-box. Having white-box access
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Table 3. Taxonomy of Query-based Attacks

Attack goal Stealing method Data domain Target model Papers
Training

hyperparameters
Meta-model Image DNN, CNN [52]
Equation-solving

Tabular

RR, LR, SVM, NN [32]

Learned parameters

Witness-finding LBM, SVM-poly [1, 21, 45]

Equation-solving
LR, MLR, MLP,

SVR-lin/quad
[1, 13, 45]

Path-finding DT, RT [1]
Recovery

Image
ReLU-DNN [7, 64–66]

Architecture
Meta-model DNN, CNN [52]
Recovery ReLU-DNN [65]

Level of

effectiveness
Substitute model

Image, Tabular,

Text, Sequential,

Graph, RL

environment

LBM, MLogReg, DT, RF,

SVM, NN, CNN, BERT,

DRL, chip, GNN, GAN,

Encoder

[3, 5, 10–12,

23, 30, 47–51,

59, 64, 67–

86]

Prediction

consistency
Substitute model

Image, Tabular,

Text, Graph, RL

enviroment,

Recommendation

(M)LogReg, kNN, DT,

LGBM, SVM, SVR, NB,

NN, CNN, RNN, BERT,

DRL, GNN, GAN, SRS

[1, 2, 4–6, 8,

24–27, 42, 44,

45, 47, 68, 70,

75, 81, 84,

86–90]

Note that the attack goal of stealing learned parameters in most cases also implicitly provides behaviour stealing.

means that there is no reson for stealing the model, as it is already known. However, such a model
can still be exploited to reveal its training hyperparameters [32]. Grey-box access refers to the
situation when the architecture of the target model is known, which is required for some types
of attacks (see Section 7, Tables 4 and 5, for more details). However, the default assumption for
model stealing attacks is that there is only black-box access, i.e., the only information revealed are
model outputs. Some of the model stealing attacks are data-agnostic, not requiring any data at all
(see Section 8) or at least no meaningful data (see, for instance, Section 7.2). However, there are
many attacks (Section 7.5) for which the quality of the data is important. We focus on the following
categories: original data, problem-domain data, non-problem domain data, and artificial data. We
describe these categories in detail in Section 7.5.2.

Attacker’s Actions. Queries are the basic interactions between the attacker and the target
model (cf. Section 5.1). We call attacks that use only this type of action as information source
query-based attacks. These attacks are therefore suitable in an MLaaS setting. An overview of
query-based attacks is presented in Section 7. If the attacker has hardware or software access
to the computing resource on which the model is deployed, this opens an additional possibility
for a model stealing attack. In these settings, the attacker can exploit side-channel leakages, thus
performing so-called side-channel attacks (SCAs). We present an overview of side-channel attacks
in Section 8. SCAs can optionally also use queries as an additional source of information.

Attacker’s Resources. As discussed in Section 6.1, there might be restrictions that affect the
number of queries an attacker can perform. Hence, (query-based) model stealing attacks are usually
considered with regards to their query budget—i.e., the number of queries that an attack requires.
It is an important task to find a tradeoff between the attack performance and its query budget.

Based on their capabilities, we can call attackers weak or strong. For instance, an adversary who
knows about the architecture of the target model and the original training data is stronger than one
without that knowledge. It is not always possible to say which capabilities make a stronger attacker
(i.e., less knowledge and more resources vs. more knowledge and fewer resources). However, we
can differentiate within the categories knowledge, actions, and resources.
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6.3 Attacker’s Goals

Every model stealing attack aims to copy the target model or some of its aspects. As discussed in
Section 5, on the top level, we separate the attacks into two categories: (1) stealing exact model
properties and (2) stealing approximate model behaviour (Figure 2). In this section, we focus on
defining metrics that estimate if a certain goal was reached.

Effectiveness. Depending on the stealing objective, the effectiveness of the attack is measured
differently.

• Effective exact model properties extraction means that the extracted values are very close or
equal to the corresponding target values. Thereby, the most common way to measure the
effectiveness is to calculate the absolute difference between target and stolen values.
• The effectiveness of model stealing attacks that aim to steal behaviour is usually measured

with one or several metrics; below, we define accuracy, fidelity, and transferability and
describe their relevance for model stealing attacks. Additionally, different error rates can
be calculated, but they are inverse to the metrics mentioned above; hence, we do not focus
on them.
– Accuracy shows how close model predictions are compared to the ground-truth values.

It is calculated on both target and stolen models, and results are expected to be similar.
However, even equal performance does not mean that the stolen model simulates the
original model perfectly—models can still yield different predictions for single data
points, and averaged identical accuracies can just be a coincidence. This metric is used to
evaluate approximate stealing attacks that aim to reach the same level of effectiveness as
the target model.

– Fidelity is calculated as the accuracy of the substitute model when the target model
predictions are considered the ground-truth. This metric shows how well the stolen
model simulates the original. Furthermore, fidelity does not require ground-truth
labelling, since it uses only the labels of the target model, which can be observed through
querying the model. Consequently, it can be calculated on any data from any distribution
without losing its relevance. Fidelity can be used to evaluate the success of an attack that
aims to create a model that consistently makes the same predictions as the target model.

– Transferability shows how many adversarial examples generated for the stolen model f̂
are also adversarial for the target model f . In other words, let x be a real data sample,

f (x ) = f̂ (x ) = y and x∗ be an adversarial example for f̂ , so f̂ (x ) � f̂ (x∗). Having
f (x ) � f (x∗) then means that there is transferability between the stolen model and
the target model. To measure transferability numerically, one can create a test set of

adversarial examples crafted for f̂ and measure how many of them are misclassified by
f . This metric is used when an adversary wants to reach high prediction consistency
on crafted adversarial data for, e.g., targeting a black-box model with an evasion attack.
Papernot et al. [63] showed that adversarial examples, crafted via exploiting a stolen
black-box model, lead to a high misclassification rate on the target model.

Efficiency. To measure the efficiency of an attack, two metrics are usually used: the number of
queries, i.e., the query budget, and the time needed to carry out the attack. We focus on the number

of queries per parameter, which is a metric often employed for analysing equation-solving attacks
(Section 7.2) but is relevant for most query-based attack types.

• The number of queries (query budget) corresponds to the price an adversary pays for
performing an attack and is usually calculated only for query-based attacks. A drawback
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of this metric is that it can only be compared for models of the same size, as the amount of
required queries generally increases with the learned parameters
• To account for that, the number of queries per parameter is calculated as the query budget

divided by the number of learned parameters of the target model and thus allows to compare
attacks across different target model.
• Timing is measured less frequently and it usually means the time of preparation for an attack.

For instance, if an API provides 1,000 queries per day for free and an adversary has no budget
but wants to apply an attack that requires 3,000 queries, then three days will be spent just
on data collection. Since this metric can depend on API or computational resources of an
attacker, we do not consider it in this article (cf. Tables 4 and5).

7 QUERY-BASED MODEL STEALING ATTACKS

In this section, we discuss query-based model stealing approaches. We group them by the stealing
method and analyse each of the methods separately. In particular, we describe the adversary’s
capabilities for each attack and analyse their efficiency and effectiveness. Table 3 presents the
taxonomy of query-based attacks using the categorisation described in Section 5.2.1. If a paper
only proposed an improvement of a known attack and does not perform the attack itself, then
we did not include it (e.g., Reference [43]). If authors claim their attack to be a behaviour stealing
attack but actually provide a method for stealing parameters, then we define their goal as parameter
stealing in Table 3. Such classification does not contradict the one defined by the authors, since
a high-performing parameter stealing attack usually leads to a model with equivalent behaviour.
We define the goal of an attack as the “level of effectiveness” if the performance of the attack is
evaluated using accuracy. If the performance is evaluated using fidelity or transferability, then the
goal of the attack is defined as “prediction consistency.” In some of the papers, both accuracy and
fidelity (or accuracy and transferability) were measured. Those papers belong to both categories
simultaneously. Success measures for these methods are discussed below in Tables 4 and 5; this
section focuses on the description of the approaches.

7.1 Witness-finding Attack

Lowd and Meek presented the earliest model stealing attack, which aims to steal parameters of
linear binary models (LBMs) [21]. Considering one positive and one negative sample, they changed
the feature values of the positive sample one-by-one until they found sign witnesses—i.e., a couple
of samples that are identical except one feature value f and belong to different classes. They set
the corresponding weight wf to 1 or −1, depending on sign witness values and then used a line
search to reveal the relative weight of other features. Since the main step of the attack is to find
sign witnesses, we call it the witness-finding attack (WFA). An adversary needs the target model
architecture and two data samples (one positive and one negative) to perform this attack. Since the
attack allows the exact extraction of weights, it produces a model with the same performance as
the target model. The main drawback is the inefficiency of the attack: It takes at least 11 queries per
parameter (weight) to steal a model (cf. Table 4), which can be problematic for large models. More
than a decade later, Tramèr et al. and Reith et al. adapted the witness-finding attack to Support
Vector Machines (SVMs) and Support Vector Regression Machines (SVRMs) [1, 45].

7.2 Equation-solving Attacks

We define an attack as equation-solving attack (ESA) if it is based on setting up a system of
equations and solving it. The solution corresponds to the values an adversary wants to extract.
Thereby, an ESA appears when the extraction goal is the exact values of the target model—more
specifically, either the learned parameters or the training hyperparameters.
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ESAs were first utilised by Tramèr et al. for stealing learned parameters of (Multi-class) Logistic
Regression, and Multi-Layer Perceptron [1]. They sent data samples x1, . . . ,xn to the target model
fw with learned parametersw and used the outputsy1, . . . ,yn to construct the system of equations
fw (xi ) = yi , i = 1, . . . ,n. The solution of the system reveals the values of the parameters w .
Similarly to the witness-finding attack, it reaches perfect extraction scores (cf. Table 4). However,
an ESA is more efficient, requiring 1 to 4 queries per parameter, depending on the target model
type. The attack also requires the architecture of the target model to be known and data samples
to query the model. However, since queries are only used to construct a system of equations, the
attacker can use samples that are not necessarily real or meaningful. Reith et al. applied this attack
for stealing parameters of SVRs with linear or quadratic kernels [45]. Yan et al. used an ESA to steal
an MLP under a differential privacy defence [13] that adds noise to the outputs close to the decision
boundary [91] (cf. Section 9.2.3). They duplicated queries and, by observing different outputs for
the same inputs, created a system of equations, the solution to which approximates the outputs of
the target model.

Wang and Gong used an ESA to steal a regularisation hyperparameter, used in the objective
function to balance between a loss function and a regularisation term [32]. The learned parameters
of the target model should minimise the value of the objective function. Hence, the gradient of the
objective function, calculated on the model’s parameters, should be (close to) 0. Based on this,
an adversary first computes gradients of the objective function and sets them to 0. An obtained
over-determined system can be solved by using the linear least square method. To perform this
attack, an adversary needs white-box access to the target model. Thereby, for extracting training
hyperparameters with having only black-box access, one must first perform an architecture and
learned parameters extraction attack.

7.3 Path-finding Attacks

The path-finding attack (PFA) was presented by Tramèr et al. for stealing Decision Trees (DTs) and
Regression Trees (RTs) [1]. This attack requires prediction labels and an identifier of the leaf that
outputs the label. An adversary sends an input x to the target tree t and collects an output t (x )
and a leaf identifier id . Then, by varying values of features, the adversary uncovers the conditions
that an input sample has to satisfy to reach the leaf id . The leaf identifier is required to be able to
distinguish between different leaf nodes that lead to the same label being returned and thus would
be indistinguishable by that information alone. Besides the predictions, this attack also recreates
the conditions a sample has to satisfy to be classified by a specific leaf. If all leafs have unique
IDs, the stolen tree has identical behaviour to the original one. For regression trees, the authors
achieved perfect fidelity scores, as all leaves had unique identifiers. For classification tasks, this
was not the case and the performance was worse (cf. Table 4). Compared with the aforementioned
attacks, the PFA is the most inefficient, requiring 66–317 queries per parameter, depending on
the target tree. The authors tried to optimise the attack by allowing samples with only some of
the features, so-called “non-complete queries.” As a result, the number of queries per parameter
decreased to 44–91.

7.4 Recovering Attacks

Recovering attacks (RAs) are designed to reveal the weights or even the architecture of (D)NNs
with (at least partially) linear activation functions. All works we identified focus on (D)NNs with
ReLU activation functions (ReLU-(D)NNs). Milli et al. were the first who theoretically described
a recovering attack for stealing parameters of ReLU-(D)NNs with two layers [64]. They claimed
that the ReLU network’s weights could be viewed as separating hyperplanes. By finding input
points that lie on these hyperplanes, one can recover the weights up to their signs. These points
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are also called critical [7, 66] and boundary [65] points. Finally, one can recover the sign of the
weights by querying samples and solving a system of equations. Jagielski et al. implemented such
an attack and showed that the stolen model has very high fidelity and perfect transferability [7] (see
Table 4). Rolnick et al. extended this approach for stealing a model of arbitrary depth and revealing
its architecture [65]. Carlini et al. compared the model stealing problem with crypto-analysis of
block ciphers [66]. They proposed an attack that reveals weights of ReLU networks and requires
fewer queries than Rolnick et al. (see Table 4). RAs are the least efficient for small models among
the attacks presented in Table 4. It takes approximately 312 queries per parameter to steal a model
with 210 parameters [66]. For models with tens of thousands of parameters, this score decreases
to 12, still leaving these attacks among the most inefficient ones. However, since a successful RA
leads to the exact copy of the target model, it fully reproduces its behaviour.

7.5 Substitute Model Training

This approach has been widely used over the past years by numerous authors (see Table 3 and
Figure 1(b)). The idea is to train a substitute model (cf. Table 2 for alternative terminology used
throughout the literature, e.g., “surrogate model”) using data labelled by the target model, i.e., using
the target model as an oracle for the labels. The substitute model can have the same architecture
as the target model; however, this is not necessary and usually not the case. The main condition is
rather a syntactical input-output correspondence between models, i.e., the substitute model has to
accept the same format of inputs and return outputs in the same representation as the target model.

The first substitute model attack, besides other attacks presented, was introduced by Tramèr
et al. [1]. They called the attack “retraining,” but in fact they trained a substitute model for LBMs,
(multi-class) Logistic Regression, MLP, and SVM with RBF kernel, assuming that an adversary
knows which target model is used. Reith et al. used the same approach for stealing SVMs and
SVRs with linear and quadratic kernel [45]. Another early form of this attack was presented by
Papernot et al. [2]. They proposed two substitute models: a more complex DNN and the simpler
LogReg for stealing DNN, LogReg, SVM, Decision Trees, and k-NN. The main goal was to train a
model with a decision boundary similar to the one of the original model in terms of transferability,
i.e., that an approximation of the original model allows to craft adversarial examples that will, with
high probability, fool the target model. The substitute model can thus be used to carry out evasion
attacks against the target model.

In the following, we discuss different aspects to substitute model training, namely, (i) the
substitute model architecture, (ii) the type and domain of training data, and (iii) the strategies
to pick the samples and thus required number of queries. Attacks against specific model types and
domain-specific models are discussed in Section 7.6.

7.5.1 Substitute Model Architecture. In general, to perform a substitute model attack an
adversary first has to pick a model’s architecture. Usually, this decision is influenced by the type
of model inputs. For instance, if a model is an image classifier, then a CNN can be a good choice.
Recent works have shown that for a higher stealing success rate, an adversary’s model has to be
at least as deep (complex) as the target model [3–5, 8, 69]; this applies also to language models
and LSTMs [5, 69]. Shi et al. experimented with stealing Naive Bayes and SVM using DNNs and
vice versa [4]. Their results also showed that using a more complex model (DNN) results in a
better-performing substitute model.

7.5.2 Substitute Model Training Data. Another important aspect of substitute model training
attacks is the dataset used for training. This dataset is often unlabelled, and thus, the target model
is first queried with it to observe corresponding labels. The data and obtained labels then form
the training data for the substitute model. We can distinguish various scenarios regarding the
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domain of the problem or data. While in regards to model stealing a clear definition of “domain”
is lacking, this concept has been explored in detail in the context of Transfer Learning [92] where
“domain” is characterised as consisting of two components [92]: the feature space and a marginal
probability distribution. If two domains are different, then they may differ in feature space or the
marginal probability distribution. We will use these components to characterise different settings
in model stealing. As described in Section 6.2, we distinguish four categories of data: original,
problem domain, non-problem domain, and artificial.

Original data is the data that was actually used to train the target model. While some attacks
assume the availability of this data, and it corresponds to an attacker with the strongest data
knowledge, it may not be a realistic scenario.

Problem Domain (PD) data [2] is data drawn from a distribution that closely resembles the
original dataset—for example, using images depicting human faces to steal a model trained for face
recognition. This would be data where the feature space is the same, and the marginal probability
distribution might be quite similar, but not identical. In most cases, this data is obtained from public
data repositories. Depending on the domain, getting such data could still be difficult and expensive.
Having problem domain data results in weaker knowledge than original data.

Non-Problem Domain (NPD) data [10] is data sampled from the same type of content as the
target model’s input, e.g., image data for image models and text data for text models. This data
has the same syntactic type, potentially the same feature space, but a rather different marginal
probability distribution. If there is any public data of the same modality as the original model,
then any attacker can use it and, hence, we can consider NPD data as the weakest knowledge.

Artificial data includes, e.g., data produced by GANs [30], data sampled from standard
probability distributions [1], noise [67], and data obtained as the result of optimisation of the
input space without using any natural samples [47, 88]. Depending on the method used, artificial
data can be more or less valuable than, e.g., NPD data. Hence, we can not unequivocally say how
strong an attacker is with artificial data without knowing the properties of this data.

Papernot et al. experimented with stealing a model trained on the MNIST dataset [2]. They
performed an attack using a handcrafted digit dataset for model querying, assuming that the
original data is not available. Correia-Silva et al. proposed an attack called “Copycat” that trains
a substitute for a target CNN using NPD data [10]. Orekondy et al. also used NPD data to train
a substitute model (a “Knockoff net”) for stealing CNNs [3]. In their results, a substitute model
trained on the original data performs better than the one trained on NPD data. Later, Zhang et al.
explored how the attacker’s knowledge affects the attack performance if the attacker’s dataset
only covers a few classes of the original dataset or if there is only non-problem domain data
available [76].

Gong et al. proposed to leverage a model inversion attack in their SMA called InverseNet [88].
First, they trained a simple substitute model on data selected from public datasets. Based on this
model, they selected samples with high confidence scores as starting point for a model inversion
attack to obtain representative samples for each class. After being augmented, these samples are
used to query the target model to train a final substitute model.

Having data with a distribution similar to the original dataset can be crucial for the substitute
model performance, especially for complex classification tasks. However, since it might be
challenging to obtain such data, several works consider so-called “data-free” scenarios, where an
attacker creates artificial data, assuming only little or no available natural data. Kariyappa et al. [30]
proposed a model stealing attack called “MAZE,” which uses a generative model that works similar
to GANs, but learns to generate those samples on which attacker and target models disagree the
most. They also considered a case in which an adversary has access to a small subset of original
training data. In these settings, they trained a Wasserstein GAN to generate artificial samples.
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This attack performed better and required significantly fewer queries than the initial attack. Yuan
et al. proposed an attack called “ES Attack” [47]. It consists of two key steps: estimation of the
parameters of the substitute model and data synthesising. The authors presented two methods for
crafting artificial samples: the first uses an Auxiliary Classifier GAN for data generation and the
second operates directly in the input space.

Truong et al. launched a data-free model extraction (DFME) attack to steal CNNs [51]. They
trained a generator that produces samples in which the target and the substitute models disagree
the most. Miura et al. introduced MEGEX—an adaptation of the DFME attack for the case when
confidence scores and gradient-based explanations are returned for each query [49]. Sanyal et al.
introduced DFMS-HL, an SMA that requires no data and, in contrast to other data-free attacks
[30, 49, 51] uses only top-1 labels for stealing CNNs [83]. From a (randomly) initialised GAN, they
iteratively generate samples that are labelled by the target model and are used for both training
the substitute model and improving the GAN. The generator was trained using adversarial loss
and class diversity losses, whereby the latter allows reaching an almost uniform distribution of
generated samples across all classes. Xie et al. also used a GAN to produce samples for their attack
called GAME [84]. However, they assumed that (N)PD data is available and used it to train an
auxiliary classifier GAN (AC-GAN). Through active learning, they determined the most promising
classes and then used the AC-GAN to generate samples from these classes to train a substitute
model.

While attacking a classification model, an adversary might obtain different levels of detail from
the target model, e.g., confidence scores for each class, or just top-1 labels. While confidence
scores might contain important information for an attack, they are not always available. A few
works proposed how to imitate them having only top-1 labels available. Wang et al. proposed
the Black-Box Dissector, an SMA that operates with NPD data [81]. They showed how to
estimate the confidence scores of the target model by erasing parts of images (selected by, e.g.,
the Gradient-weighted Class Activation Mapping (Grad-CAM) method [93]) and aggregating
predictions for them. Wang and Lin proposed another method of emulating class probabilities
[78]. For each class, they first created a prototypical representation and then set the probability of
belonging to a certain class based on the distance to the corresponding representations.

Roberts et al. provided an SMA using only noise as input for querying [67]. They experimented
with noise coming from different distributions: Uniform, Standard Normal, Standard Gumbel,
Bernoulli, and Ising. The authors claim that their attack is a parameter stealing attack; however,
since they are not stealing model parameters directly but instead observe them by substitute model
training, we classify this attack as behaviour stealing attack.

Mosafi et al. proposed an approach using a composite data generation method [12]. They
created a new dataset from a public one by superimposing two randomly selected images and
used it to train a substitute model. The authors showed that a substitute model trained using the
superimposed images—even if only predicted labels are available from the model—performs better
than a model trained on regular data with confidence scores, i.e., a more detailed output.

7.5.3 Number of Queries. Another important aspect is the number of samples sent to the
black-box model for labelling (i.e., the number of queries), since this is one of the most critical
metrics in terms of the attack’s efficiency—and also a potential way for a defender to detect attacks.
The strongest assumption in this case means having an attacker with no limits on the number of
queries. In weaker settings, an adversary has a limited number of queries available and hence
applies different techniques to reduce them. These techniques include, for instance, picking the
most informative samples for querying, making samples more informative by crafting adversarial
examples, or augmenting the attacker’s dataset. Where available, we have gathered information
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on the number of queries (absolute as well as relative to the number of parameters of the model)
in Table 5.

Three optimisation techniques have frequently been proposed to pick the most optimal samples
for queries: active learning, reinforcement learning, and evolutionary algorithms. Active learning
is one of the most widely explored techniques for optimising the querying process. Tramèr et al.
were the first to propose optimising queries [1], suggesting two optimisation strategies: besides
line-search (samples laying close to the decision boundary), they use adaptive retraining based
on active learning. Later Reith et al. used adaptive retraining to steal SVRs [45]. Chandrasekaran
et al. [23] showed how two active learning approaches, namely, probably approximately correct
(PAC) and query synthesis (QS), can be applied to steal DTs, RFs, LBMs, SVMs. Shi et al. [27]
used an active learning approach that reveals uncertain samples that are in turn used as queries
to steal FNN (MLP). Pengcheng et al. [26] compared a non-optimised random selection strategy
with two active learning methods: least confidence and margin-based. Pal et al. explored active
learning strategies such as uncertainty, K-center, and DeepFool-based Active Learning (DFAL) to
identify the most meaningful samples and, subsequently, use them for their “Activethief” attack
[25]. Several other works used active learning together with non-problem domain or artificial data
for stealing image classifiers [24, 78, 84].

Reinforcement learning for picking optimal samples was first utilised by Orekondy et al. in their
Knockoff attack [3]. Zhang et al. demonstrated that an attacker applying reinforcement learning
and adversarial examples for the querying process performs better than having non-problem
domain samples with no query strategy [76]. Barbalau et al. [50] assumed that for an adversary
without problem-domain data, it could be difficult to generate samples that are classified with
high confidence by the target model. Hence, they applied an evolutionary algorithm to select from
samples generated by a GAN those that will be predicted with high confidence.

Another way to optimise queries is to generate samples that help an adversary train a model
with better performance. Adversarial examples were first utilised by Papernot et al., who used
Jacobian-Based Data Augmentation (JBDA) to generate new samples that are close to the decision
boundary [2]. Juuti et al. [8] and Pengcheng et al. [26] crafted training samples using white-box
adversarial example generation techniques, for instance, the fast gradient sign method (FGSM)
[94]. Yu et al. combined active learning and adversarial examples to reduce the number of queries
in their attack FeatureFool [72], which exploits benign and adversarial examples with different
but low target model confidence scores. We note here that, in some papers, the authors used
adversarial examples rather to reach a high transferability of the attack, instead of optimising
the number of queries. However, this approach is promising for both goals. We also notice that
adversarial crafting was mainly applied to original or problem-domain data, which might mean
that this approach only works for an attacker with stronger data knowledge.

Data augmentation techniques enlarge the attacker’s dataset while spending less queries. Shi
et al. proposed to optimise the number of queries by using GAN-based data augmentation [42].
They first queried the target model with a small number of samples, then used the dataset thus
obtained to train a GAN, which was in turn used to produce training data for the substitute model
training. We distinguish attack approaches that use generative models to increase the quality of the
attacker’s data, mentioned in Section 7.5.2, from attacks that aim to augment the attacker’s dataset.
In the first case, the number of queries is usually much bigger (see Table 5), and an attacker does
not optimise the queries, as in the second case.

Besides query optimisation, a few other strategies for attack improvement were proposed. Joshi
et al. suggest to use a gradient-driven adaptive learning rate (GDLR) to make the substitute model
learning process more efficient [43]. Aivodji et al. [68] showed how MLPs can be stolen using
counterfactual explanations (CFEs) in addition to the regular labels. Counterfactual explanations
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are very similar to adversarial examples, whereby their intent is not to deceive the model, but rather
to explain it [95]. These samples, together with initially queried ones, are used for substitute model
training. Wang et al. argue that using CFEs and regular queries to train a substitute model leads
to shifting the decision boundary far away from the one of the target model [90], since regular
queries usually lay far from the decision boundary, while CFEs are close to it. Thus, if a model
tries to separate them, then the decision boundary shifts towards the regular samples. To overcome
this issue, the authors introduced DualCF, an attack that additionally uses CFEs of CFEs (named
CCFEs), thus creating samples close to both sides of the decision boundary. They also theoretically
proved that a single couple of CFE and CCFE is enough to extract a linear model with 100% fidelity.

7.6 Substitute Model Training Attacks against Specific Model Types and
Domain-specific Models

Substitute model attacks can be widely used for different models and data domains. Below, we
provide an overview of works that explore these attacks in very specific or highly focused settings.
Since most of the research is dedicated to CNNs and classification, attacks and defences on other
types of models are less explored and remain an open topic.

Takemura et al. [69] explored attacks against LSTM for both classification and regression tasks.
They trained an LSTM as well as RNN with lower complexity as a substitute model and showed
that the substitute LSTM performs better than the RNN. Krishna et al. [5] explored model stealing
attacks against BERT-based models [96], which are commonly used in natural language processing
(NLP). They showed how all of transfer learning, a mismatch between target and substitute
architectures, and the attacker’s data source affect the substitute model performance. He et al.
also explored SMAs against BERT-based models and evaluated their transferability scores [74].
They also showed that the accuracy of the attack remains high even if there is a mismatch in the
architectures.

Behzadan and Hsu [6] investigated a model extraction attack against deep reinforcement
learning. They utilised a technique called “Deep Q-Learning from Demonstrations” to develop
two attacks that learn an adversarial policy—i.e., an imitation of the target policy. They first tried
to predict the training algorithm family based on an action sequence using an RNN. Then, the
authors utilised imitation learning [97] to train a substitute DRL model.

Szyller et al. target image transformation models [73] and stole the functionality of GANs for
neural style transfer and super-resolution tasks by training a substitute model on image pairs
obtained from queries. Hu and Pang trained a substitute GAN on images generated by the target
GAN for two scenarios: high-fidelity and high-accuracy extraction [75]. The main distinction is
that for high-accuracy extraction, they applied an additional step of subsampling high-quality
samples by using the discriminator of the target GAN.

Liu et al. launched an SMA (called StolenEncoder) against encoders trained in self-supervised
settings using contrastive learning [79]. They queried the target encoder with images to obtain
the original embeddings and trained a substitute encoder so its embeddings coincided with the
original. To reach better performance while using fewer queries, they augmented images and
used embeddings of corresponding non-augmented images as ground truth. Sha et al. considered
the same settings and proposed another attack that uses contrastive learning, called ContSteal
[80]. They defined a loss function that minimises the difference between target and substitute
embeddings of the same image and maximises it for different images. Dziedzic et al. explored
three attack scenarios against encoders [85]. In some settings, using the original projection head
is beneficial for the downstream classification accuracy.

Several works explore model stealing attacks against graph neural networks (GNNs). Since
graphs are a collection of nodes and edges, they generally contain more degrees of freedom and
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using random data as attacker’s data is less effective. DeFazio et al. were the first to introduce a
GNN model stealing method [87]. They considered a node classification problem and proposed
an attack that allows to steal a 2-layer GNN if knowing a subset of original training data and
having access to a 2-hop subgraph of the original graph. Wu et al. [70] also attack GNNs for node
classification problems. However, the authors explored different settings regarding the attacker’s
knowledge: The adversary may know node attributes, the graph structure, and/or have access to
shadow (auxiliary) data. He et al. [71] also explored these settings while attacking GNNs; however,
in contrast to previous works, they considered link stealing attacks that aim to reveal if two
nodes are connected. Shen et al. considered SMAs against inductive GNNs, i.e., GNNs that can
infer previously unseen unlabelled data [86]. They studied two attack types: with and without
knowledge of the target GNN structure. For each of them, they considered three different attackers,
depending on the available output information.

Teitelman et al. proposed an attack that steals the functionality of a microchip [59]. They
introduced an architecture called Deep Neural Tree, which is a combination of a neural network
and a decision tree. This model can learn to distinguish different tasks of the chip and provide a
certain level of explainability, thanks to the tree-like architecture.

Yan et al. proposed a dual-task model extraction attack (DTMEA) [82] for stealing a model that
returns both confidence scores and output explanations by training a multi-task CNN with two
classification heads: one solves the classification task, and another learns to imitate explanations.
Although stealing explanations is not the primary goal of model stealing, the multi-task substitute
model reached higher accuracy than a substitute trained only on confidence scores.

Ali and Eshete [44] explored SMA against malware classifiers for Windows Portable Executables
(PEs). In particular, they use different data representations for the target model (features extracted
from bytes) and a substitute model (images based on bytes-to-pixels mapping). They also
experimented with mismatching architectures for target and substitute models and concluded that
a similar architecture is not the best choice. In their experiments, using a pre-trained Inception-V3
as a substitute model resulted in higher fidelity than using a custom MalConv model (CNN for
Malware detection) that corresponds to the target model architecture. We speculate that one of the
reasons could be that the size of the substitute training set was only 40% of the size of the target
training set; hence, transfer learning could play a crucial role. Yue et al. explored SMA against a
sequential recommender system (SRS), aiming to open the black-box target model for performing
further profile pollution and data poisoning attacks [89].

Aarts et al. considered a different goal for creating substitute models [77]. Instead of creating
a high-performing substitute that completely emulates a target model, they proposed to train a
substitute to a certain level of effectiveness and then, depending on its confidence scores, use either
the substitute or the target model to obtain predictions. This scenario is feasible if an attacker steals
the model to launch a competitive API, since, in this case, even by delegating some of the queries
to the target model and paying for them, the attacker can turn a profit.

7.7 Meta-model Training Attacks

Oh et al. [52] proposed the meta-model attack (MMA)—the first and so far only query-based
attack that can reveal information about the target model architecture. They trained a meta-model
that, for a given model, predicts details about the target model structure, training setup, and the
amount of training data. As dataset for the meta-model, they used a set of candidate CNNs that
vary in architecture parameters (type of activation functions, the number of convolutional and
fully connected layers, etc.), optimisation parameters (type of algorithm, batch size), and data
parameters (data split, data size). Then the meta-model was trained to represent the correlation
between hyperparameters of a model and its performance on specific test samples. Those samples
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Table 4. Performance and Other Characteristics of Query-based Attacks Excluding SMAs

Attack
Model Data TM Properties Stealing Performance

Target (TM)
Attack

(AM)
Modality Effectiveness Parameters Query budget Efficiency Score

Stealing

Effectiveness

WFA [21]
NB

Same as
target Tabular

23k; 1k; 1k 261k; 25k; 23k 11; 25; 23 Exact extraction

MaxEnt
Same as
target

23k; 1k; 1k 119k; 10k; 9k 5; 10; 9 Exact extraction

WFA [1] LogReg
Same as
target

Tabular d 50d 50 Exact extraction

WFA [45] SVM-lin
Same as
target

Tabular d 17d 17 Exact extraction

ESA [1]
(M)LogReg,
NN

Same as
target

Tabular N/A d
d; |classes| × d;
4d

1; |classes|; 4 100% fid; 100% fid; 99.99% fid

ESA [45] SVR-lin/quad
Same as
target

Tabular N/A d d; 1
2 d2 + 3

2 d+1 1; 1
2 d+ 3

2 100% fid

ESA (dupl. quer.) [13] LogReg, NN
Same as
target

Tabular N/A d |duplications|×d |duplications| 88–100% fid; 98–100% acc

PFA (compl. quer.;

incompl. quer.) [1]

DT Same as

target
Tabular N/A

26–3184 1.7k–101k;
1.1k–30k

19–318;
17–100

86.4–100% fid; 99.65–100% fid

RT 49–1554 6k–32k;
1.8k–7.4k

122–206;
36–48

100% fid; 100% fid

Recovery [7] ReLU NN
Same as
target

Image 94.3-97.7% 12,5k–100k 217.2 - 220.2 12 99.98–100% fid

Recovery [65] ReLU DNN
Same as
target
(isomorphic)

Image,
Tabular

N/A N/A N/A 250–390 (est) N/A

Recovery [66] ReLU DNN
Same as
target

N/A N/A 210–100k 216–221.5 30–312 100% fid

N/A indicates that the authors did not provide the information.

were subsequently used to reveal the hyperparameters of the target model. One peculiarity of the
attack is that to successfully steal a hyperparameter, this hyperparameter should be influential for
the target model, and its value should appear in the training set. For instance, to steal the number of
convolutional layers, an adversary has to be sure that the target model is indeed a convolutional
neural network and that in the training set of the meta-model there is a model with the same
number of convolutional layers. The attack requires significant computational power and time
resources. For instance, to perform hyperparameter stealing on MNIST classifiers, the authors
created 10,000 candidate CNNs that took 40 days of training on a GPU. On average, the attack
predicted the correct hyperparameter value in 80.1% of the cases, whereas the average chance
to guess is 34.9%. Given that the meta-model attack steals the hyperparameters of the model,
an adversary needs an additional parameter-stealing attack to obtain a model that approximates
the target model behaviour. For the same reason, this attack cannot be compared with other
query-based attacks in terms of effectiveness and efficiency.

7.8 Comparison of Query-based Attack Performance

In this section, we compare the performance of query-based model stealing attacks in terms of
effectiveness and efficiency of the attack, with the help of Tables 4 and 5, whereby the latter covers
substitute model attacks and the former other query-based attacks. For each of these attacks, the
tables provide the type of models they have been applied to—for both the target model (TM) to
be stolen and the model type chosen by the attacker, i.e., the attacker model (AM))—and the data
modality considered in the evaluation.

Further, the tables provide details on the performance of the attacks. We report the effectiveness
of the target model as reference (by default in % accuracy) as well as the number of parameters to
be stolen, i.e., the number of learned parameters of the target model. Also, the reported number

4Since DTs and RTs are non-parametric, we use the number of leaves in a tree.
5Same as target* means that we report results for the same architecture but the authors also provide results for other

substitute architectures.
6Shadow data.
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Table 5. Performance and Other Characteristics of SMAs

Attack
Model Data TM Properties Stealing Performance

Target (TM)
Attack

(AM)
Modality Effectiveness Parameters Query budget Efficiency Score Stealing Effectiveness

SMA-*/NN (retraining) [1]
MLogReg; NN;
SVM-RBF

Same as target Tabular N/A d
100d×|classes|;
100d; 10d–100d

100×|classes|; 100;
10–100

98.24–100% fid

SMA-* (retraining) [45] SVM-lin/RBF, SVR-RBF Same as target Tabular N/A d d; 20d; d–40d 1; 20; 1–40 99–100% fid

SMA-NN [2]
CNNs, LogReg, SVM,
DT, kNN

LogReg, CNNs Image 92–94.97% 60k (est) 6.4k 9 (est) 61–89% fid, 96–97% tr

SMA-NN [4] NN, SVM, NB SVM, NB, NN Text 85.56–96.51% N/A 859 N/A 97.44–97.9% fid

SMA-CNN (Copycat) [10] VGG-16 Same as target Image 88.7–95.8% 138m (est) 3m 2×10−2 (est) 93.7–98.6% rel acc

SMA-CNN;RNN (Activethief)

[25]

CNN

Same as target

Image

N/A N/A

10k–120k

N/A

64.2%–95.8% fid (10k)84.99–98.54 fid
(120k)

CNN [98]
Text

10k–89k
75.87–77.69 fid (10k)86.21–90.07 fid
(89k)

RNN (GRU) 89k 89.12–93.01 fid (89k)

SMA-CNN [8] CNN, VGG-16 Same as target Image 95–98% CNN: 486k 102k; 6.4k 2.1×10−1; 1.3×10−2 97.9% fid; 39.3 % tr

SMA-CNN (Knockoff) [3] ResNet34 Same as target*5 Image 78.8% 21M (est) 60k 2.9×10−3 (est) 76.2% acc (97% rel acc)

SMA-CNN (Knockoff) [11] ResNet34 Same as target Image 71.1–98.1% 21M (est) 1.2m (est) 6×10−2 (est) 53.5–94.8% acc (75–97% rel acc)

SMA-NN (DS) [42] N/A NN Tabular N/A N/A 100 N/A 69.2–72.6% fid

SMA-NN (AL) [27] N/A NN Tabular N/A N/A 1k N/A 80.77% fid

SMA-CNN (DS + AL) [26]
CNN CNN (simple)

Image
99.24%

N/A 100–25.6k N/A
47.64–94.19% fid

ResNet VGG-16 91% 53.61–79.75% fid

SMA-* (AL) [23]
SVM-kernel

Same as target Tabular
N/A

N/A
48–1k

N/A
94.5–98.2% acc

DT 52.1–86.8% 361–244k 73.1–89.4% acc

SMA-CNN (PD, AL) [24] CNNs CNNs
Image

N/A N/A
10k; 30k; 100k

N/A

64.2–95.8%; 78.36–98.18%;
81.57–98.81% fid

Text 10k; 30k; 89k
58.6–77.67%; 71.8–87.04%; 77.8–90.07%
fid

SMA-CNN (DS) [12] CNN VGG-16 Image 90.48% N/A N/A N/A 89.59% acc

SMA-CNN (DS) [47] LeNet5, ResNet18,34
LeNet5,
ResNet18,34

Image 91.12–99.10% 60k–60m (est) N/A N/A
80.79–93.97% acc (88.66–94.82% rel
acc); 92.14–100% tr

SMA-CNN (membership;

gradients) [64]

MLogReg, ReLU-NN,
CNN Same as target,

permuted

Image:
MNIST

93–99% (est) N/A
CNN: 1k;10;
MLogReg: 784;1;
ReLU-NN: 10k;100

N/A 93–99% acc (est)

CNN, VGG-11, ResNet18
Image:
CIFAR10

75–90% (est)
11m–15m (est; excl.
CNN)

CNN: 10k;100;
VGG/ResNet:
10k;1k

10−5-10−3 (excl. CNN) 75–88% acc (est)

SMA-CNN [30] LeNet, ResNet20 WideResNet22 Image 91.04–97.43% N/A 5M–30M N/A 82.9–94.32% acc (91–99% rel acc)

SMA-*/CNN (noisy) [67] CNN Same as target Image 88.62–99.03% N/A 600k N/A
10.47–95.93% acc (11.81–96.87% rel
acc)

SMA-CNN (DS) [50] AlexNet half-AlexNet Image 82.5% 62M (est) N/A N/A 79.0% acc

SMA-CNN [44] CNN Inception Image 93% N/A 16k N/A 88.65% fid

SMA-CNN (FeatureFool) [72] N/A VGG-19-DeepID Image 77.93% N/A 2.15k N/A 76.05% acc (97.63% rel acc)

SMA-CNN (InverseNet) [88] CNN Same as target* Image N/A N/A 30k N/A 95.88% fid

SMA-CNN (DFME) [51] ResNet34 ResNet18 Image 95.5% 21m (est) 20m 0.95 (est) 88.1% acc (92% rel acc)

SMA-CNN (MEGEX) [49] ResNet34 ResNet18 Image 95.5% 21m (est) 20m 0.95 (est) 92.3% acc (97% rel acc)

SMA-CNN (DS) [83] ResNet34 ResNet18 Image 95.5% 21m (est) 8m 0.38 (est) 93.96% acc

SMA-CNN (NPD, Rl) [76] N/A N/A Image N/A N/A 10k N/A 75.4% acc

SMA-CNN [77] MobileNetV2 Same as target Image N/A 3m (est) 131k 4.4×10−2 (est) 100% fid (est)

SMA-CNN [78] ResNet34 Same as target Image N/A 21m (est) 30k 1.4×10−3 (est) 80.90% acc

SMA-CNN (Black-box Dissector)
[81]

ResNet34 Same as target* Image 91.56% 21m (est) 30k 1.4×10−3 (est) 80.47% acc, 82.14% fid, 76.63% tr

SMA-CNN [82] ResNet50 CNN Image 92.03% 24m (est) 50k 2×10−3 (est) 85% acc (est)

SMA-CNN (GAME) [84] AlexNet Half-AlexNet Image 98.29% 62m (est) N/A N/A 75.88% acc (77% rel acc), 76.74% fid

SMA-* (CFEs) [68] NN Same as target Tabular 84.7% N/A 1k N/A 94.89 % fid; 83.97 % acc

SMA-* (DualCF) [90] MLP Same as target Tabular N/A N/A 329 N/A 99% fid (est)

SMA-RNN [5] BERT BERT, XLNet Text 76.1–93.1% 345m (est) 9.4k–392.7k 3×10−5-10−3 (est)
66.8–91.4% acc (87.78–98.17% rel acc);
72.5–92.8% fid

SMA-RNN [74] BERT Same as target Text 97.1% 110m (est) N/A N/A 92.8% acc 76.5% tr

SMA-RNN [69] LSTM
RNN Image 97.3%

N/A N/A N/A
90–97.5% acc

LSTM Sequential 0.899R2 0.85R2 (est)

SMA-GNN [87] GCN Same as target Graph N/A N/A 70 N/A 64–80% fid

SMA-GNN [70] GCN Same as target Graph 71.3–81.6% N/A 60–120 N/A 70.8–79.9% acc; 84.6–89.6% fid

SMA-GNN (ShD) 6 [70] GCN Same as target Graph 69.7–81.6% N/A 60–120 N/A 70.8–83.2% acc; 73.6–83.7% fid

SMA-GNN [71] GCN Same as target Graph N/A N/A 10% of nodes N/A 0.958–0.999 AUC

SMA-GNN [86] GIN GIN Graph 92.4 % N/A 5.9k (est) N/A 87.7% acc, 90.6% fid

N/A indicates that the authors did not provide the information.

of queries is shown; in several works, multiple settings are evaluated, e.g., an attack with a small,
medium, and large number of queries (and corresponding other effectiveness measures); these
are also shown in the table. If both the number of parameters and queries are given, then we
can compute the relation of queries per parameter as efficiency score. Finally, the tables detail the
reported stealing effectiveness, i.e., the accuracy, fidelity, or transferability (cf. Section 5.2.2), or
other scores, e.g., AUC.
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There are two categories of data not provided in the table: (1) The effectiveness score of the target
model for WFAs (denoted as grey cells). As WFAs produce an exact copy of the target model, the
accuracy of the target model equals the accuracy of the stolen model. Hence, the relative accuracy
is always 100%, and we do not need to know the effectiveness of the target model.

(2) Non-available data, denoted as N/A. It corresponds to data that is not provided by the authors
of papers. In some cases, we estimated certain data. For example, we could estimate the number
of parameters of the target model from a given model architecture name. These cases, together
with corresponding efficiency scores, are indicated in the table with est. We also used this notation
for attack performance scores extracted from plots or diagrams when no exact numbers were
provided.

One observation from Table 3 is that a comprehensive comparison between the proposed
methods is difficult due to the lack of a uniform reporting standard. We highlight two issues:

(1) Effectiveness is reported in multiple ways, e.g., absolute accuracy on the original
classification task (which is not comparable among different datasets). Relative accuracy and
fidelity are more expressive, as they contrast the effectiveness of the stolen model with the
original one. Which of these two measures is more important depends on the exact use case.
Reporting both would therefore be the preferred approach. For a more extensive analysis,
we also suggest to report the transferability rate of the stolen model, since it reveals the
similarity between the decision boundaries of the target and adversary models.

(2) It is difficult to properly assess the efficiency of several of the attacks, since the literature very
often omits important aspects. For example, the absolute number of queries needs to be put
rather in relation to the amount of information that needs to be stolen, such as the number of
learned parameters of the target model, to compute an average amount of queries required
per parameter. However, in many cases at least one of the required numbers for computing
the score is not provided.

We note that the efficiency scores are most useful when comparing different attack variations on
similar model types, since attacks are not directly comparable across model types. As such, it might
be feasible for an attacker to spend 10 queries per parameter when stealing a model with 1,000
parameters in total, but such ratios would be prohibitive if stealing a CNN model with millions
of parameters. We also want to point out that comparing attacks should take the adversary’s
capabilities into account. In Table 3, we highlight some settings like the difference between the
target and the adversary model architecture; however, due to limited space, we are omitting, for
instance, the difference between original and attacker training data.

8 SIDE-CHANNEL ATTACKS

Side-channel (SC) attacks (SCAs) exploit hardware or software characteristics to reveal the model.
Therefore, their performance strongly depends on the device on which the target model is
running. SCAs were initially proposed for key recovery attacks in cryptography, e.g., against
RSA [112]. Recent usages of SCAs extend to the model stealing domain, where they have most
commonly been employed to extract the model architecture; however, some attacks also target
other hyperparameters or learned model parameters. While some authors are calling their attack
a “reverse-engineering attack,” we will use the terminology defined in Section 5.1 and call it a
model stealing attack.

Table 6 provides a classification of side-channel attacks based on access to the model and the
exploited channels. Generally speaking, for an SCA, an attacker models possible effects of specific
causes, e.g., by generating a set of candidate models and observing how their inference influences
the respective side-channel. If the attacker is observing effects of an unknown model on the
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Table 6. Taxonomy and Attack Success of Side-channel Attacks

Success
Access Channel Stealing goal Target Model Ref Arch Params

Software

Timing

Architecture

CNN [99] ∼

Cache

VGG-19, ResNet-50 [56] �
VGG-16, ResNet-50 [55] ∼

AlexNet, VGG-13/16 [100] �
MalConv, ProxalessNAS [101] �

Hardware

PCIe Bus Parameters ResNet-34/101/152,NasNet [54] �

Memory
Parameters quantized CNN (ResNet-18/34, VGG-11) [102] ∼

Architecture Alexnet, VGG-16, Resnet-18/50/101 [103] ∼

Architecture, parameters AlexNet, SqueezeNet [53] � ∼

EM
(electro-
magnetic)

Parameters
NN [104] ∼

AlexNet, VGG-16, (Wide)ResNet-50,
Inception-v1/v3, DenseNet, NasNet,
Xception, Inception-ResNet-50-2

[105] �

Architecture AlexNet, VGG-19 [54] �
Architecture, parameters

Binary NN [106] ∼ ∼

NN, CNN [107] � ∼

Architecture, parameters
Decision Tree [108] � �
Binary NN, CNN, VGG, LeNet, AlexNet [109] ∼ ∼

Power trace
AlexNet, Inception-v3, ResNet-50/101 [57] ∼ ∼

Parameters
NN [110] ∼

Binarized NN [111] ∼

PCIe Architecture, parameters NN, VGG-16, ResNet-20 [58] � �
�indicates that the stealing goal is fully achieved, while ∼indicates partial success.

side-channel, then this can then be used to learn information about possible causes, e.g., possible
model hyperparameters.

8.1 Software Access

While having software access to the device, an adversary can exploit cache or timing side channels.
Both channels can be used to infer the type of computational operations performed; however,
attacks based on this can only extract the architecture of a model. Most cache side channels try to
manipulate the contents of a cache (shared or otherwise accessible, e.g., via cache conflicts) prior to
the running of the target process to force a reload of the cache from memory. The timing difference
(memory needed to be reloaded or not) can then be used to infer if the target accessed that cache.
Well-known attacks of this kind are, e.g., PRIME + PROBE [113] and FLUSH + RELOAD [114].

Duddu et al. [99] exploited timing side channels to extract the depth of the network. Based
on this information, they evaluated a set of candidate architectures and selected the one with the
most similar prediction behaviour to the target model. This attack requires a membership inference
attack beforehand, as original training data is needed to evaluate (and select from) the candidate
architectures. The authors applied reinforcement learning to construct the optimal substitute
architecture. Hunt et al. [115] used GPU kernel execution time for predicting classification outputs.

Hong et al. [56] used a Flush+Reload side channel to match an observed architecture to a set
of candidate architectures by learning a Decision Tree meta-model on the SC attributes, thus
demonstrating the ability to steal VGG-19 and ResNet-50 architectures out of 13 candidates. Hong
et al. [101] also exploited a Flush+Reload cache SC to reveal a CNN architecture. They extracted the
trace of calls of specific PyTorch or Tensorflow functions that compose an NN. Observed execution
times are then mapped onto a computational graph that corresponds to the target model. They
demonstrated the attack performance against MalConv [116] and ProxylessNAS [117] models.
Yan et al. used Prime+Probe and Flush+Reload to extract VGG and ResNet architectures [55].
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The authors analysed Generalised Matrix Multiply executions and revealed, with the help of a
meta-model, DNN hyperparameters responsible for the network architecture such as the kernel
size and number of layers. The proposed attack allows to reduce the search space of architecture
candidates. Liu and Srivastava [100] also utilised the information leaked via cache side-channel.
They introduced a framework in which DNNs are characterised by the patterns of their access to
specific caches over time. Their architecture stealing attack does not require sharing the memory
segment between the attacker and the model, unlike, e.g., Reference [56], and allows the exact
architecture reconstruction (and not only restricting the search space as in Reference [55]).

8.2 Hardware Access

Hardware access to the device on which the model is executed opens a door for more advanced
attacks. These side-channel attacks are based on the observation that all computation running on a
certain platform results in unintentional physical leakages. These manifest as physical signatures
of reaction time, power consumption, or electromagnetic (EM) emanations while the data is
manipulated.

Hua et al. [53] were among the first to implement an attack using hardware-access side-channels.
They showed that the architecture and parameters of a CNN can be revealed through the inputs and
outputs of the accelerator and off-accelerator memory access patterns, even if the accelerator has a
protected memory access (in an enclave). Rakin et al. adapted a rowhammer memory SCA to steal
parameters of a CNN quantised to 8-bit [102]. Wang et al. studied architecture extraction attacks
using hardware side channels [103]. They explored how model execution events can be observed
through hardware behaviour (calling these observations “Arch-hints”), which side channels can
be used, and how one can estimate the effectiveness of a given Arch-hint. Then they applied their
observations to launch an attack against Unified Memory, i.e., the memory is shared among all
processes running on the machine to track the model traffic and use that information to extract
the sequence of layers in the target model.

Hu et al. [54] proposed an architecture stealing attack leveraging EM emanations or PCI-express
bus events as side channel to infer read/write volume, memory addresses, and execution time
as features of a CNN. They learned the relation between these features and model internal
architecture aspects such as CNN layer types and sizes of layers and kernels. Batina et al. [107]
proposed an attack for stealing architecture and parameters of NNs, extracting the activation
functions, the number of layers and neurons in the layers, the number of output classes, and
parameters via an EM channel. Subsequently, their methodology was used by Jap et al. to attack
tree-based algorithms [108].

Yoshida et al. showed a parameter stealing attack on a DNN accelerator implemented on an
FPGA (field-programmable gate array) [104]. This work shows that an adversary can extract model
parameters by exploiting EM leakage even if they are protected by data encryption. Dubey et al.
considered a parameter extraction attack against a Binarised Neural Network (BNN) running on a
remote multi-tenant FPGA platform via a power SC [111]. Yu et al. [109] combined side-channel
and query-based approaches. They stole the architecture of a NN via an EM side-channel and then
trained a substitute model using adversarial examples. Their research was extended by Regazzoni
et al. [106], who also studied NN structure identification via EM emanations. Xiang et al. [57]
leveraged power traces to reveal the architecture of a DNN, estimated sparsity of parameters,
and derived the weights. Zhu et al. [58] identified a new attack surface, unencrypted PCIe traffic,
to observe GPU-based operations. The proposed attack, called “Hermes Attack,” succeeds in
stealing a DNN model with identical hyperparameters, parameters, and architecture. Li and Merkel
investigated how the availability of power side-channel leakage can improve the transferability of
a substitute model [110]. They trained a substitute model and compared its performance with a
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Table 7. Taxonomy of Defence Techniques

Defence goal Method Papers

Detection

Unique model identifier [46, 118]

Watermarking [119–122]

Monitor-based [8, 13, 72, 123–128]

Prevention

Basic [1, 27]

Re-training from scratch [5, 11]

Differential privacy [13, 91]

Input perturbations [75, 129–131]

Output perturbations [9, 75, 131–138]

Model modification [31, 139–141]

model that also uses power consumption information. The results showed that power information
helps to increase the similarity between weights, but not the transferability.

Breier et al. [105] introduced a parameter extraction attack on DNNs obtained via transfer
learning [92], i.e., a known architecture and only a few fine-tuned layers. This is achieved through
a fault injection attack, specifically an attack flipping a sign bit. The fault injection requires power
or EM leakage to detect the right time for the attack. Then, from the differences of the original
output and the sign-flipped output, model parameters are reconstructed.

9 DEFENCES AGAINST MODEL STEALING

In this section, we provide an overview and systematisation of defences against model stealing
attacks. Table 7 shows our proposed taxonomy and classifies defence approaches.

An important distinction between defences concerns their mode: reactive, e.g., detection of an
(ongoing or past) attack, or pro-active, i.e., prevention of an attack. We can further distinguish
reactive defences along two goals as follows: (i) ownership verification tries to prove ownership of
a stolen model and is mostly achieved by unique model identifiers or watermarking; it mainly aims
at proving past attacks; (ii) attack detection tries to establish whether a model is (currently) being
attacked and is mostly achieved by monitoring (in itself another reactive method). If pro-active
methods are employed, then they aim to mitigate an expected attack and usually modify some
aspects of the model—the architecture, the learned parameters, the decision boundary, or the
overall effectiveness of the model. An important distinction is on whether the model owner has
the possibility to influence the model already during its training stage. If so, and depending on
the defence asset, then knowledge distillation is one strategy for instance. If the trained model
is given, then various approaches can modify the output, weights, or even the architecture in a
post hoc fashion. Reactive methods cannot prevent that a model gets stolen, but inform the model
owner about the incident. However, detecting an ongoing attack via a reactive monitor might be a
trigger for a pro-active defence to mitigate or even halt the attack. This might be more beneficial
than applying pro-active methods upfront, since these generally also have a negative impact on
legitimate users, e.g., reduced predictive accuracy. It should be noted that a defence’s success is
not a binary state, i.e., completely preventing that information gets stolen or failing to do so. In
many settings, it is sufficient if the defence can, for example, lower the fidelity of the stolen model
so it becomes useless for the adversary.

9.1 Attack Detection (Reactive)

9.1.1 Unique Model Identifier. Unique model identifier (UMI) is a reactive approach to prove
the ownership of a model, similar to the concept of device fingerprinting [142]. The idea is to
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identify a unique model property that will transfer to a substitute model during model stealing. A
model owner can then verify that a model was stolen by revealing this property, but in contrast
to model watermarking (cf. Section 9.1.2), the owner does not need to actively embed it, as it is
model-inherent. Maini et al. proposed a defence called Dataset Inference (DI) [118] that allows
checking whether a model was trained on a specific dataset. The defence is based on the idea that
training samples have a larger distance to the decision boundary than other samples. The model
owner can use a subset of the original training data to measure if those samples are far from
the decision boundary for the substitute model. If it holds, then the substitute model contains the
identifier of the target model and, hence, can be considered as stolen. However, DI is not applicable
if the original dataset is publicly available, since other models trained independently on this dataset
will be recognised as stolen. This issue was highlighted by Li et al., who showed that DI incorrectly
classifies a benign model as stolen if it is trained on data that comes from the same distribution
as the original data [122]. They proposed embedding some external knowledge into the target
model as an alternative solution (see Section 9.1.2). Lukas et al. aimed to find a specific subclass of
transferable adversarial examples—termed conferrable adversarial examples—to obtain a unique
fingerprint from substitute models [46]. Conferrability means that these adversarial examples
transfer to substitute models, but not to other independently trained models. Hence, conferrable
examples can be used to check if a particular model is a substitute for the target model.

9.1.2 Watermarking. Model watermarking (WM) is another approach to prove ownership of a
(stolen) model [143]. In contrast to UMIs, this is usually achieved by actively embedding hidden
information in the model that only the legitimate owner knows how to extract. One possible way is
to build secret backdoors into the model: During training, a model learns to predict the predefined
values for some outlier samples, i.e., the model overfits to specific outliers. Then, knowing these
specific samples, one can query the model and recognise the watermark through its predictions.

To resist model stealing, watermarks need to persist during the attack and appear as well in the
stolen model. Jia et al. [119] trained a model to extract common features from problem-domain
samples and watermarking samples. This approach guarantees that an adversary who queries
the model on the problem-domain data distribution will extract watermarks together with model
behaviour. Szyller et al. [120] proposed a strategy called DAWN—instead of applying watermarking
during the training process, they change, for a small number of queries, the output of the model,
thus using queried samples as (dynamic) watermark carriers. Chakraborty et al. proposed another
dynamic watermarking strategy called DynaMarks [121]. In contrast to DAWN, the authors alter
the probabilities that the target model returns, thus in most cases preserving more utility of the
model. The added perturbations are randomised; hence, an attacker cannot bypass this defence by
querying the same sample several times. The watermark is then extracted through comparing the
distributions of probabilities per class returned by the substitute model and the original protected
model.

Li et al. modified a part of the training set by applying Style-GAN while preserving the original
labels [122]. Then, by observing model gradients on a modified image, they were able to say if
the knowledge about those samples is present in a given model. However, this defence requires
white-box access for ownership verification. A recent survey of further watermarking approaches
is given by Reference [143].

9.1.3 Monitor-based. Another reactive defence approach is detecting malicious users by
analysing the queries. This approach is called monitor [123] or monitoring-based [13]. Kesarwani
et al. [123] implemented a monitor that estimates the data space covered by the issued queries,
thus inferring a kind of “extraction completeness status” (ECS). The authors used this approach to
detect attacks on decision trees. Juuti et al. [8] proposed a defence technique named PRADA that

ACM Computing Surveys, Vol. 55, No. 14s, Article 324. Publication date: July 2023.



A Survey on Stealing Machine Learning Models and Defences 324:27

analyses the distribution of queried samples. Their method is based on detecting a deviation from
the normal distribution in the distances between queried samples.

Yu et al. proposed a monitor called DefenseNet [72], which is an NN trained to classify if a
sample is adversarial or benign. As input features, DefenseNet takes all outputs from each hidden
layer of the target model produced during sample forward propagation. Zhang et al. introduced
SEAT, a monitor that aims to defend against attacks using adversarial examples [124]. They
trained an encoder that checks whether a current query is too close to any of the previous queries
and, thus, likely to be an adversarial example. As soon as the number of such detections exceeds a
certain threshold, the corresponding user is blocked. Pal et al. proposed a monitor called VarDetect
that uses a variational autoencoder (VAE) [125]. The monitor collects queries, and if the count
reaches a certain number, the monitor checks if those queries are coming from a benign (original or
PD data) or malicious (artificial, adversarial PD or NPD data) client. Liu et al. proposed SeInspect, a
two-stage monitor for image data that first analyses the last batch of queries sent by a user and, if
it seems suspicious, analyses the user’s whole query history to detect an attack [126]. The authors
showed that although a slightly perturbed image can be indistinguishable from the original,
the features for these images on the penultimate layer of the target network differ significantly.
They used this observation to detect both adversarial examples and NPD images as malicious
queries.

Sadeghzadeh et al. utilised a notion of the hardness of data samples to launch a monitor called
HODA [127]. The hardness of a sample is determined by the number of epochs required for its
prediction to stabilise. The authors showed that in-distribution samples are generally easier to
learn than NPD or adversarial examples, so the latter can be detected by measuring their hardness
scores. Dziedzic et al. designed a monitor-based defence that increases the effort to query hard
examples based on ideas of the Proof-of-Work (PoW) principle [128]. They exploited differential
privacy techniques to quantitatively measure the extracted information of a query and created a
proportionally difficult puzzle the attacker needs to solve before the query is answered, effectively
slowing down the attacker’s querying process.

9.2 Attack Prevention (Proactive)

Attack prevention approaches are mostly directed against the effectiveness of the attack, i.e., they
do not prevent the attacker from obtaining a model, but aim to render the quality of the stolen
model too low for it to be useful.

9.2.1 Basic Defences. This section covers basic defence approaches, all of which are based
on simple ideas and can be easily implemented. Tramèr et al. [1] proposed defences with low
implementation overhead that can be applied to models that return detailed class prediction
information, such as soft-max outputs or logits. One approach is to return only the label predicted
for the sample, but no additional information.

9.2.2 Training from Scratch. Atli et al. [11] explored defence techniques against Knockoff nets
[3] (cf. Section 7.5). In the original version of the attack, the target models were pre-trained on
ImageNet; ImageNet was also used by the attacker to query the target model. Atli et al. trained
two models with a specific architecture for the data domain from scratch; attacking them with
Knockoff nets was then less successful. A similar approach was explored by Krishna et al. [5] as
a countermeasure against their attack on BERT-based models. They trained a model from scratch
[92] and observed that the F1 score of the stolen model had also decreased.

9.2.3 Data Perturbation. Several studies showed how data perturbation can be used to defend
against model stealing (see Table 7). The main idea of this approach is to make the model predict

ACM Computing Surveys, Vol. 55, No. 14s, Article 324. Publication date: July 2023.



324:28 D. Oliynyk et al.

an inexact output while preserving integrity. There are two types of data to perturb: data fed to
the model, i.e., input, or the model prediction, i.e., output.

Wang et al. introduced the concept of Information Laundering (IL) [131]. They considered input
and output perturbations simultaneously to achieve two goals: (i) hide the predictions of the
target model to increase its confidentiality and (ii) preserve the utility of the model. The work
theoretically describes the optimal distribution of input and output perturbations such that both
goals are achieved.

Input Perturbation (IP). Grana analytically proved that perturbations added to inputs prevent
logistic and linear regressions from parameter stealing [129]. Guiga and Roscoe [130] protect
image models by adding noise to the unimportant pixels selected by the Gradient-weighted Class
Activation Mapping (Grad-CAM) method [93]. Hu and Pang proposed two defences for GAN
protection [75]. The first defence takes several input queries and replaces each of them with an
input obtained as a result of linear interpolation of two original queries. The second defence applies
constraints on inputs such that outputs can belong only to a predefined set (e.g., generating faces
with only green eyes).

Output Perturbation (OP). Tramèr et al. [1] provided a basic form of this defence, namely,
rounding the predicted scores; they state, however, that it is not a promising strategy. A more
advanced form of OP was proposed by Orekondy et al. [9] who named their defence Maximising
Angular Deviation (MAD). The main idea is to perturb output confidence scores to make the
gradient maximally far from the original. Lee et al. [132] proposed to use the reverse sigmoid
activation function as a defence. A specific characteristic of that function is that it maps different
logit values to the same probability. This leads to wrong gradient values and complicates the
stealing process.

Shi et al. [60] proposed a defence against decision boundary stealing. They claim that flipping
some labels in the training set can make the model more robust against evasion attacks and, thus,
against revealing the decision boundary. Kariyappa and Qureshi [133] proposed a more advanced
approach than Shi et al. [60]: Wrong predictions are returned only for queries that are out of
distribution. Chen et al. utilised an adaptive softmax transformation to perform another OP defence
called DAS-AST [134]. By modifying softmax outputs, they changed the distribution of samples
obtained by an attacker, misleading them from the decision boundary.

One of the earliest defences was reported by Alabdulmohsin et al. in 2014 [138], when
the authors explored the security of SVMs against several types of adversarial attacks. They
proposed to train several models and randomly pick one of them to produce an output. Kariyappa
et al. extend on that by a defence called Ensemble of Diverse Models (EDM) [135]. They train
multiple models that all accurately classify in-distribution samples but are trained to on purpose
predict diverse values for out-of-distribution samples. Since the decision boundaries of those
models different, the accuracy of a substitute model trained on out-of-distribution data is
decreased.

Lee et al. considered an OP defence called DeepDefence for target models that return
probabilities and gradient-based explanations in the form of attribution maps (such as Grad-CAM)
[136]. They proposed to perturb the gradients of the target model to make them orthogonal
to the original ones, while preserving the order of the top-k probabilities and the values of
an attribution map. Mazeika et al. argued that some highly effective OP defences perturb
confidence scores too much, thus harming benign users [137]. In contrast, they introduced a
defence called GRAD2, which adds perturbations that direct the substitute model training in a
predefined (non-optimal) direction while preserving the number of total changes below a certain
threshold.
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Hu and Pang devised a concept of OP for GANs [75]. They proposed to add noise to images,
apply the Gaussian filter, and JPEG compression.

Differential Privacy. Zheng et al. [91] used a form of differential privacy [144] against behaviour
stealing. Their main idea is to make outputs of all samples that are close to the decision boundary
indistinguishable from each other. This is achieved by adding perturbations to these outputs
through a so-called “boundary differential privacy layer” (BDPL). Yan et al. [13] broke BDPL
with their query-flooding parameter duplication attack (QPD) (cf. Section 7.2) and, subsequently,
proposed a new defence called MDP that combines differential privacy (as in Reference [91]) with
monitoring to mitigate the QPD attack. If an attack is assumed by a monitor, then the amount of
noise that should be added to the data is dynamically determined. This makes the perturbation
less predictable and, thus, determining the true output more difficult.

9.2.4 Model Modification. Contrary to perturbing the data, which aims at reducing the
precision of the stolen models’ behaviour, one can modify the model architecture and/or
parameters. The motivation for protecting architectures can, e.g., be that an architecture is novel
and has certain advantages over others. The main goal of the defender is thus not to protect
one specific trained instance of this architecture (i.e., the learned model parameters) or training
hyperparameters, but the general architecture itself, as this should prevent an attacker to apply it
to a different domain.

Xu et al. [31] proposed a defence that simulated a CNN feature extractor using a shallow
sequential convolutional block and used it to train a smaller model with similar performance,
applying ideas from Knowledge Distillation. Lin et al. [139] proposed a strategy inspired by
secret sharing in cryptography. A model is first transformed into what they refer to as a bident

model structure, i.e., a model with two independent branches that merge before the output layer.
Each sub-model receives the same input, and the sub-models’ outputs are merged into a single
output. Given the output and one sub-model, it is impossible to reconstruct another sub-model
and, therefore, the whole model. Chabanne et al. [140] investigated a defence against recovering
attacks (Section 7.4). The authors added redundant layers to a CNN with ReLU activation
functions that do not change the functionality but make the model more complex and, thus, more
difficult to steal. They further showed that the modified model’s decision boundary differs from
the original model’s decision boundaries but keeps a similar functionality. Szentannai et al. [141]
implemented a defence for NNs with fully connected layers. The authors proposed to transform a
model into a functionally equivalent model, but with so-called “sensitive weights” that make the
model less robust and, thus, behaviour stealing more difficult. To do this, they added deceptive
neurons to the network that add noise to individual layers but cancel each other out in the overall
effect.

10 ANALYSIS OF ATTACKS AND DEFENCES

In this section, we analyse how attacks and defences compare against each other. To this end,
we propose two guidelines: (1) how to steal a model and (2) how to protect it against model
stealing. Further, based on results reported in the literature, we show how model stealing attacks
and defences fare against each other.

In related work, Duddu and Vijay Rao [145] proposed a framework based on a Bayesian network
to quantitatively estimate information extracted from a target DNN model through model stealing
attacks. Based on the results, the most prominent combinations are equation-solving attacks with
either a meta-model attack or a side-channel attack. It is worth mentioning that this analysis did
not explore if these combinations are possible in practice. For instance, the meta-model attack was
applied for CNNs, whereas none of the equation-solving attacks targets CNNs.
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Fig. 3. A comprehensive taxonomy of model stealing attacks, in the form of an “attacker’s guide.”
Abbreviations used: SMA - Substitute Model Attack, SCA - Side-Channel Attack, MMA - Meta-Model
Attack, RA - Recovering Attack, PFA - Path-Finding Attack, WFA - Witness-Finding Attack, ESA-(H)P -
Equation-Solving Attack - (Hyper)Parameters.

10.1 Guideline on How to Steal a Model

As a summary of our attacks analysis, in Figure 3, we provide a guideline for the best attack
based on the stealing objectives and attacker’s capabilities. Depending on the objective of the
attacker, an exact (for architecture, training hyperparameter, or learned parameter stealing) or
approximate (for the level of effectiveness or prediction consistency stealing) attack approach
is to be chosen. Approximate extraction does not necessarily require information on the target
model type, given that model-agnostic generic approaches, denoted as SMA*, are available. Having
more detailed information on the domain or type of data can give an indication on which
specific model type is well suited. Then, a method specifically designed to steal, e.g., recurrent
neural networks (SMA-RNN ) can be employed. In the group of exact extraction attacks, stealing
training hyperparameters requires knowledge of the model type and learned parameters. With
this information available, attacks addressing specific model types such as logistic regression or
SVM can be carried out. Similarly, for stealing model parameters, attacks specialised in specific
model types have been proposed, e.g., witness-finding attacks (WFA) target linear binary model
types, and path-finding attacks can be used to steal Decision or Regression Trees. Stealing the
architecture mostly applies to neural networks, where hyperparameters define the layers, neurons,
activation functions, and so on. It can be achieved in two ways: If the attacker can issue (black-box)
queries to the model, then a meta-model attack, which builds on a knowledge base of known
architectures, can be used. Such a knowledge base needs to cover many different architectures
and is thus expensive to obtain. If such an approach is not feasible, but a hardware or software
side-channel access is available, then this can be utilised.

10.2 Guideline on How to Protect a Model

Figure 4 provides a guideline on choosing a defence strategy according to particular goals and
conditions. Hence, the considered defence taxonomy (Table 7) has two branches on the top level:
reactive and pro-active defences. Depending on the availability of the model training stage, there
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Fig. 4. Comprehensive taxonomy of model stealing defences in the form of a “model protection guideline.”

Table 8. Comparison of Attacks and Reactive Defences

Attack/Defence types
Monitor WM UMI

ECS [123] PRADA [8] DefenseNet [72] SEAT [124] VarDetect [125] PoW [128] SeInspect [126] HODA [127] DAWN [120] [119] [46] DI [118]

ESA-P (dupl. quer.) [13] ↘ [13]

PFA [1] ✓ [123]

SMA-* (retraining) [1, 45] ✓ [8] ✓ [125] ✓ [126]

SMA-NN [2] ✓ [8] ✓ [124] ✓ [125] ✓ [128] ✓ [126] ✓ [127] ✓ [46]

SMA-CNN Copycat [10] ✓ [125] ✓ [128]

SMA-CNN (PD, AL) [24] ✓ [24] � ✗ [24] �
SMA-CNN (DS) [47] ✗ [47]

SMA-CNN;RNN (Activethief) [25] ✗ [25] ∼ ✗ [25] ✓ [125]

SMA-CNN [8] ✗ [8] ✓ [124] ✓ [125] ✓ [126] ✓ [127] ✓ [120]

SMA-CNN (Knockoff) [3] ✓ [125] ✓ [128] ✓ [126] ✓ [127] ✓ [120] ✓ [46]

SMA-RNN [5] ✓ [5]

SMA-CNN (FeatureFool) [72] ✗ [72] ✓ [72] ✓ [124]

SMA-CNN (DFME) [51] ✓ [124] ✓ [128]

SMA-Encoder [85] ↘ [85] ∼ ↘ [85] ∼ ✓ [85] ↘ [85] ∼

✓ - attack is mitigated;↘- defence has limited effect; ✗ - defence is broken; ∼- claim made by the authors; �- speculation

made by the authors.

are different approaches how a model owner can mitigate an attack that targets a certain asset. For
instance, if the owner wants to defend the architecture of the model, then defences that modify
the target model architecture are the best option, since they “hide” the original architecture. If the
owner’s primary goal is to track or detect malicious users of an API, then unique model identifier,
model watermarking, or monitor defences can be applied. However, if an adversary never makes
a stolen model public, then unique model identifiers and model watermarking are useless. Further,
monitors may detect an ongoing attack too slowly and issue a warning of potential danger only
when the target model has already been stolen. A combination of different defence techniques
could lead to a better protection level. Following the guideline, one can choose suitable defences
and combine them into a potentially more powerful defence.

10.3 Attacks and Defences Lineup

Tables 8 and 9 provide a lineup of query-based attacks against reactive and pro-active defences
correspondingly, indicating which attack can be mitigated by what defence, and which defence
has already been broken by another attack. Rows in Tables 8 and 9 correspond to query-based
attacks, while columns correspond to defences. Whenever a defence in a column d was shown to
mitigate the attack in row a, we put a ✓ mark in cell (a,d ) and a reference to the respective paper.
If the mitigation was not shown, but a claim has been made without experimental demonstration,
then we indicate this with an additional ∼. If the authors only speculate about the (in)effectiveness
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Table 9. Comparison of Attacks and Pro-active Defences

Attack/Defence types
Basic Data Perturbation Diff. Privacy No TL Model Modification

[1] IP [130] OP [132] OP [133]
OP

(MAD) [9]

OP

(DAS-AST) [134]

OP

(EDM) [135]

IP, OP

[75]

IP+OP

(IL) [131]

OP

(GRAD2) [137]

BDPL

[91]
MDP [13] [5, 11]

Distill.

[31]

Parasatic

[140]

WFA [1, 21, 45] ✓ [91]

ESA-P [1, 45] ✗ [1] ✗ [45] ∼ ✓ [130] ✓ [131] ✓ [13]

ESA-P (dupl. quer.) [13] ✗ [13] ✗ [13] ✓ [13]

PFA [1] ✗ [1]

RA [7, 64–66] ✓ [140] ∼

SMA-* (retraining) [1, 45] ✓ [131] ✓ [91]

SMA-NN [2] ✓ [133] ✓ [9] ✓ [134] ↘ [135]

SMA-CNN (PD, AL) [24] ↘ [24] � ✗ [24] �
SMA-CNN (DS) [12] ✗ [12] ∼

SMA-CNN (DS) [47] ✗ [47]

SMA-CNN;RNN (Activethief) [25] ✗ [25] ∼

SMA-CNN [8] ✗ [8] ✓ [9] ✓ [134] ↘ [135]

SMA-CNN (Knockoff) [3] ↘ [3] ✓ [11] ✓ [133] ✓ [134] ✓ [135] ✓ [137] ✓ [11]

SMA-CNN [30] ✓ [30] ∼ ✓ [30] ∼ ✓ [30] ∼ ✓ [30] ∼

SMA-RNN [5] ✗ [5]

SMA-CNN (Black-box Dissector) [81] ✗ [81] ✗ [81]

SMA-GAN [75] ✓ [75]

SMA-Encoder (StolenEncoder) [79] ✗ [79] ✗ [79]

SMA-Encoder [85] ↘ [85] ∼

✓ - attack is mitigated;↘- defence has limited effect; ✗ - defence is broken; ∼- claim made by the authors; �-
speculation made by the authors.

of defences, then we denote this with an additional �. If a defence was proven or claimed to be
completely ineffective against an attack, then we indicate this with a ✗ mark. A mark ↘ means
that a defence is partially effective: either the attack performance has fallen only slightly (less than
5%), or, if the defence was a monitor, then the attack was detected too slowly. If a defence has been
broken at least for one considered dataset, then we mark it as broken. If a cell (a,d ) is empty, then
it means that there is no information available about the effectiveness of the defence d against the
attack a and vice versa.

In this lineup, we did not include papers that present only theoretical results or do not provide
a specific lineup against an attack. For instance, we did not include defence papers that consider
their defences against a generic class of attacks without referring to a specific attack paper. We
also omit defences that are described in attack papers if they are either attack-specific and not
effective or described in insufficient detail.

From Tables 8 and 9, we can observe that the basic defence method proposed in Reference
[1], which relies on returning labels instead of confidence scores, has been broken by several
attacks and, thus, seems unreliable. Regarding other defences, several early monitors—while
initially successful against early attacks—have since shown to be ineffective against more recent
strategies developed to specifically counter them [8, 123]. However, none of the monitors published
afterwards is broken. A few defences are, at the time of writing, not broken by specific attacks;
however, we note that the current lineup is not complete—many combinations have simply not
been considered, and their outcome would thus be unclear. Further, we want to mention that there
is likely a difference in the exact outcome, depending on who is performing the lineup, i.e., whether
a novel attack tries to break a defence or a defence tries to show that it is effective against an attack.
Depending on who is in the driver’s seat, it might be that the general knowledge of the technique
(e.g., the importance of certain parameters) as well as the invested effort might favour the attacker
or the defender. This again highlights the need for a systematic and “independent” assessment of
the effectiveness of defence methods.

11 CONCLUSIONS

In this article, we provided a comprehensive overview and systematisation of attacks and defences
related to model stealing (model extraction). We first provide a common terminology, unifying the
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disparity of notions used across the literature. We explored the conditions, methodology, and goals
of model stealing approaches and subsequently classified them, showing which attacks are possible
in specific settings. This resulted in a comprehensive taxonomy and guideline. Moreover, we
extensively analysed defence approaches and developed guidelines for choosing the most effective
defence strategy. We then compared which defence is mitigating—respectively, broken by—current
attack strategies. Based on our survey and analysis, we observe several research issues, challenges,
and future directions of research.

We observe a general lack of standardised and systematic methodology in the research on model

stealing, and especially on reporting of both attacks and defences. For attacks, many works omit
important details on the efficiency of the attacks. For example, for query-based attacks, it is often
not stated how many queries are required or how complex the model to be stolen is. Thus, it is
difficult to compare efficiency between different methods.

We thus propose a methodology for conducting research in this field based on the contributions
in this article: (1) Research papers should use a common notation; the terminology and
taxonomies for attacks and defences proposed in this article would be fitting candidates. (2) Using
this terminology, research contributions should provide a detailed threat model, specifying the
goal of the attacker (e.g., following our taxonomy) as well as their capabilities, e.g., the knowledge
of the model, the actions (e.g., querying or side-channel), and the resources (e.g., the query budget).
(3) Having defined a concrete goal motivates which criteria should be used to measure the attack
effectiveness and efficiency. If no concrete goal can be defined, e.g., to not limit the attack to a
specific application, then we do encourage future works to be more comprehensive and measure all
applicable criteria we have outlined in Section 5.2.2, such as fidelity, accuracy, and transferability,
to enable broad comparison with other works. We note that the methodology in evaluation and
reporting results lags behind especially for side-channel attacks, which currently mostly consists
of anecdotal evidence and qualitative claims, but does not offer much in terms of quantitative,
dependable results.

In terms of methodology, a unified evaluation framework would enable more comparability and,
thus, progress in techniques; this should include, e.g., benchmark datasets, trained models, and
open source and unified implementations of attack and defence approaches, as for instance in a
recent initiative for adversarial examples [146].

Regarding defences and their performance against various attacks, we observe that the current

experimental lineup between attacks and defences is rather incomplete. As many combinations were
not studied, it is difficult to obtain a clear picture of the overall effectiveness of the proposed
methods. A large-scale, analytic and empirical evaluation would help to significantly advance
this aspect. As future research challenge, adaptive attackers—who are widely studied in evasion
attacks against Machine Learning models [147] and constitute attackers who are aware of a certain
defence and try to counter it—are not yet widely considered in model stealing. For example, against
dynamic watermarking, an attacker could be utilising defences against data-poisoning-based
backdoor attacks, such as Reference [148].

Another future research challenge is the rather large gap of dedicated defences against

side-channel attacks (SCA). The main strategy currently used is to rely on classical IT security
measures, i.e., a stringent access control, both on the hardware and software level, or the use of
dedicated infrastructure (or effective isolation of processes) to avoid attacks that are exploiting,
e.g., shared memory access. As these strategies are likely limited in scope, there is, however,
a need for pro-active methods that are model-inherent and can reduce the effectiveness of
SCAs.

Overall, we note that there are both a large number of possible attacks against the investment
made into the creation of trained ML models, but also defence options—but both are still requiring
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substantially more structured investigation. However, having a structured taxonomy allows to
more systematically address the problem space and provides guidance not only for the attacker,
but also the defender. Failing to consider and invest resources into these challenges may well lead
to a shocking awakening if and when some attacker might subtly tell us they know (in much more
detail than we wanted them to) what we invested our GPU cycles in last summer, and that our
model was gone in 60k queries—or to allow us to tell them that we know what they tried to do to
our model last summer.
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