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Abstract
Federated learning (FL) is emerging as a privacy-aware alternative to classi-
cal cloud-based machine learning. In FL, the sensitive data remains in data silos 
and only aggregated parameters are exchanged. Hospitals and research institutions 
which are not willing to share their data can join a federated study without breaching 
confidentiality. In addition to the extreme sensitivity of biomedical data, the high 
dimensionality poses a challenge in the context of federated genome-wide associa-
tion studies (GWAS). In this article, we present a federated singular value decompo-
sition algorithm, suitable for the privacy-related and computational requirements of 
GWAS. Notably, the algorithm has a transmission cost independent of the number 
of samples and is only weakly dependent on the number of features, because the 
singular vectors corresponding to the samples are never exchanged and the vectors 
associated with the features are only transmitted to an aggregator for a fixed number 
of iterations. Although motivated by GWAS, the algorithm is generically applicable 
for both horizontally and vertically partitioned data.
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1 Introduction

Federated learning (FL) has recently gained attention as a privacy-aware alternative 
to centralized computation. Unlike in centralized machine learning (ML), where the 
data is consolidated at a central server and a model is calculated on the combined 
data, in FL, the data remains with the data owners (Mothukuri et al. 2021). Instead 
of the data, only model parameters are sent to the other parties, such that the the 
local models are aggregated into a global model (see Fig. 1 for a schematic visuali-
zation of FL).

FL is subdivided in cross-device and cross-silo FL. Cross-device FL assumes a 
high number of devices (e.g., mobile phones or sensors) with limited compute power 
to be connected in a dynamic fashion, meaning that clients are expected to join and 
drop out during the learning process. Cross-silo FL has a lower number of partici-
pants, which hold a larger amount of data, have higher compute power, and are con-
nected in a more static fashion. Clients are not expected to join and drop out during 
the learning process randomly (Kairouz et al. 2021). FL is distinct from distributed 
computing, where the data resides in one location but the operations are distributed 
on several worker nodes.

An attractive application case for cross-silo FL are genome-wide association 
studies (GWAS), which investigate the relationship of genetic variation with phe-
notypic traits on large cohorts (Visscher et al. 2017; Tam et al. 2019). Since genetic 
data is extremely sensitive, data holders cannot make it publicly available. The prac-
tical feasibility of using FL for GWAS has been demonstrated recently (Nasirigerdeh 
et al. 2020; Cho et al. 2018).

Since GWAS are often carried out on populations of mixed ancestry, cryptic pop-
ulation confounders should be controlled for before associating the genetic variants 
to the phenotypic trait of interest. These population confounders represent hidden 
substructures in the cohort which are difficult to control for using categorical covari-
ates (e.g., genetic ancestry). The standard way for achieving this is to compute the 

Fig. 1  Schematic comparison of traditional cloud-based approaches (left) and FL (right). In the cloud-
based approach, data contributors send their private data, represented by padlocks, to a central server, 
where the model is computed. Thereby, data contributors lose agency over their data. In FL, the raw data 
remains with the data owners and only parameters are exchanged
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leading eigenvectors of the sample covariance matrix via principal component anal-
ysis (PCA) and to include these eigenvectors as confounding variables to the models 
used for the association tests (Price et al. 2006; Galinsky et al. 2016).

For federated GWAS, a PCA algorithm for vertically partitioned data is required 
to compute the eigenvectors (see Sect. 2 for a detailed explanation). Although a few 
such algorithms are available (Kargupta et al. 2001; Qi et al. 2003; Guo et al. 2012; 
Wu et al. 2018), none of them is suitable for federated GWAS. More precisely, most 
of the algorithms reviewed by Wu et al. (2018) focus on finding a consensus in mesh 
networks, which is very dissimilar to the setup used in GWAS, where relatively few 
data holders collaborate in a static setting. The algorithms presented by Kargupta 
et al. (2001) and Qi et al. (2003) rely on estimating a proxy covariance matrix and 
hence do not scale to large GWAS datasets, which often contain genetic variation 
data for hundreds of thousands of individuals. One of the few covariance-free PCA 
algorithm suitable for an architecture with a limited number of peers has been pre-
sented by Guo et al. (2012). However, this algorithm broadcasts the complete first 
k − 1 sample eigenvectors to the aggregator, which constitutes a privacy leakage that 
should be avoided in federated GWAS (Nasirigerdeh et al. 2021). Cho et al. (2018) 
present a secure multiparty protocol for GWAS which uses PCA. The protocol 
includes three external parties and potential physical shipping of data. The setup is 
fundamentally different: The data holders are individuals who only have access to 
one record. They create secret shares which are processed by two computing parties.

In previous algorithms, including algorithms designed for horizontally parti-
tioned data as described by Balcan et  al. (2014), the exchanged parameters scale 
with the number of genetic variants (features) in the dataset as the feature eigenvec-
tors are exchanged. At the scale of GWAS with several million genetic variants, this 
is another challenge for the existing algorithms. Furthermore, due to the iterative 
nature of the algorithm, the process is prone to information leakage, a problem pre-
viously not investigated. More precisely, the feature eigenvector updates exchanged 
during the learning process can be used to compute the feature covariance matrix, 
given a sufficient number of iterations. In terms of disclosed information, this makes 
the algorithm equivalent to algorithms exchanging the entire covariance matrix. The 
feature covariance matrix is a summary statistic over all samples, but due to its size 
contains a high amount of information and can be used to generate realistically look-
ing samples. Therefore, the communication of the entire feature eigenvectors should 
also be avoided as far as possible.

Extrapolating from the shortcomings of existing approaches, we can state that, 
for federated GWAS, a PCA algorithm for vertically partitioned data is required that 
combines the following properties:

• The algorithm should be suitable for a cross-silo FL architecture with few static 
participants.

• The algorithm should not rely on computing or approximating the covariance 
matrix.

• The algorithm should be communication-efficient.
• The algorithm should avoid the communication of the sample eigenvectors and 

reduce the communication of the feature eigenvectors.



 A. Hartebrodt et al.

1 3

In this paper, we present the first algorithm that combines all of these desirable prop-
erties and can hence be used for federated GWAS (and all other applications where 
these properties are required). We prove that our algorithm is equivalent to central-
ized vertical subspace iteration (Halko et  al. 2010)—a state-of-the-art centralized, 
covariance-free SVD algorithm—and therefore generically applicable to any kind of 
data. Thereby, we show that the notion of “horizontally” and “vertically” partitioned 
data are irrelevant for SVD. Furthermore, we apply two strategies to make the algo-
rithm more communication-efficient, both in terms of communication rounds and 
transmitted data volume. More specifically, we employ approximate PCA (Balcan 
et al. 2014) and randomized PCA (Halko et al. 2010). We show in an empirical eval-
uation that the eigenvectors computed by our approaches converge to the centrally 
computed eigenvectors after sufficiently many iterations. In sum, the article contains 
the following main contributions:

• We present a federated PCA algorithm for vertically partitioned data which 
meets the requirements that apply in federated GWAS settings.

• We prove that our algorithm is equivalent to centralized power iteration and 
show that it exhibits an excellent convergence behavior in practice.

• Our algorithm is generically applicable for federated SVD on both “horizontally” 
and “vertically” partitioned data.

This article is an extended and consolidated version of a previous conference pub-
lication (Hartebrodt et al. 2021) with the following additional contributions: a dem-
onstration how iterative leakage can pose a problem for federated power iteration; 
a further reduction in transmission cost, and increase in privacy, due to the use of 
randomized PCA; a data-dependent speedup due to the use of approximate PCA. 
The remainder of this paper is organized as follows: In Sect. 2, we introduce con-
cepts and notations that are used throughout the paper and discuss related work. In 
Sect. 3, we describe the proposed algorithms. We then describe how to extract the 
covariance matrix from the updates in Sect. 4. In Sect. 5, we report the results of the 
experiments. Section 6 concludes the paper.

2  Preliminaries and related work

2.1  Federated learning, employed data model, and notations

Typically, a cross-silo architecture with a limited number of peers is used in biomed-
ical federated solutions (Steed and Fradinho Duarte de Oliveira  2010; Nasirigerdeh 
et al. 2020), with the data holders acting as clients. The datasets at the client sites 
will be called local datasets. The parameters or models learned using this data will 
be called local parameters or local models, while the final aggregated model will 
be called global model. The optimal result of the global model is achieved when it 
equals the result of the conventional model calculated on all data, which we call the 
centralized model.
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In federated settings, the data can be distributed in several ways. Either the clients 
observe a full set of variables for a subset of the samples (horizontal partitioning) or 
they have a partial set of variables for all samples (vertical partitioning) (Rodríguez 
et  al. 2017; Wu et  al. 2018). In this paper, we assume that we are given a global 
data matrix A ∈ ℝ

m×n , where m is the number of features (genetic variants, in the 
context of GWAS) and n is the overall number of samples. However, this global 
data matrix is never materialized. Instead, the data is split across S local sites as 
A = [A1 …As …AS] , where As ∈ ℝ

m×ns and ns denotes the number of samples 
available at site s. From a semantic point of view, the partitioning is hence horizon-
tal, since the samples are distributed over the local sites. However, from a technical 
point of view, the partitioning is vertical, since the samples correspond to the col-
umns of A . The reason for this rather unintuitive setup is that, when using PCA for 
GWAS, samples are treated as features, as detailed in the following paragraphs.

Table 1 provides an overview of notations which are used throughout the paper.

2.2  Principal component analysis and singular value decomposition

Given a data matrix A ∈ ℝ
m×n , the PCA is the decomposition of the covariance 

matrix M = A⊤A ∈ ℝ
n×n into M = V�V⊤ . � ∈ ℝ

n×n is a diagonal matrix contain-
ing the eigenvalues (�i)ni=1 of M in non-increasing order, and V ∈ ℝ

n×n is the cor-
responding matrix of eigenvectors (Joliffe 2002). Singular value decomposition is 
closely related to PCA and an extension of PCA to non-square matrices (in fact, 

Table 1  Notation table Syntax Semantics

[N] ⊂ ℕ Index set [N] = {i ∈ ℕ ∣ 1 ≤ i ≤ N}

S ∈ ℕ Number of sites
m ∈ ℕ Number of features (i.e., SNPs)
n ∈ ℕ Total number of samples
ns ∈ ℕ Number of samples at site s ∈ [S]

k ∈ ℕ Number of eigenvectors
A ∈ ℝ

m×n Complete data matrix
A

s ∈ ℝ
m×ns Subset of data available at site s ∈ [S]

G
i
∈ ℝ

n×k Right singular matrix of A at iteration i

G ∈ ℝ
n×k Right singular matrix of A

G
s

i
∈ ℝ

ns×k Partial right singular matrix of A at iteration i

G
s ∈ ℝ

ns×k Converged partial right singular matrix A

H
i
∈ ℝ

m×k Left singular matrix of A at iteration i

H ∈ ℝ
m×k Converged left singular matrix of A

V ∈ ℝ
r×k A generic column vector matrix

U ∈ ℝ
r×k An orthonormal matrix with span (U) = span (V)

M ∈ ℝ
m×m Exact covariance matrix

Â, M̂, Ĥ , Ĝ Approximations of A , M , H and G
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many PCA algorithms call SVD solvers to do the actual computation). Given a data 
matrix A ∈ ℝ

m×n , the SVD is its decomposition into A = U�V⊤ . The matrices U 
and V are the left and right singular vector matrices. Usually, one is only inter-
ested in the top k eigenvalues and corresponding eigenvectors. Since k is arbitrary 
but fixed throughout this paper, we let G ∈ ℝ

n×k and H ∈ ℝ
m×k denote these first k 

eigenvectors (i.e., , G corresponds to the first k columns of V ). G is typically used to 
obtain a low-dimensional representation A⊤

↦ A⊤H ∈ ℝ
n×k of the data matrix A , 

which can then be used for downstream data analysis tasks. This, however, is not the 
way PCA is used in GWAS, as we will explain next.

2.3  Genome‑wide association studies

The genome stores hereditary information that controls the phenotype of an indi-
vidual in interplay with the environment. The genetic information stored in the DNA 
is encoded as a sequence of bases (A, T, C, G). Positions in this sequence are called 
loci. If we observe two or more possible bases at a specific locus in a population, 
we call this locus a single-nucleotide polymorphism (SNP). The predominant base 
in a population is called the major allele; bases at lower frequency are called minor 
alleles (Tam et al. 2019).

GWAS seek to identify SNPs that are linked to a specific phenotype (Visscher 
et al. 2017; Tam et al. 2019). Phenotypes of interest can for example be the pres-
ence or absence of diseases, or quantitative traits such as height or body mass index. 
The SNPs for a large cohort of individuals are tested for association with the trait 
of interest. Typically, simple models such as linear or logistic regression are used 
for this (Visscher et al. 2017; Nasirigerdeh et al. 2020). The input to a GWAS is an 
n-dimensional phenotype vector y , a matrix of SNPs A ∈ ℝ

m×n , and confounding 
factors such as age or sex, given as column vectors xr ∈ ℝ

n . The SNPs are encoded 
as categorical values between 0 and 2, representing the number of minor alleles 
observed in the individual at the respective position. Each SNP l ∈ [m] is tested in 
an individual association test

where Al,∙ denotes the lth row of A.

2.4  Principal component analysis for genome‑wide association studies

Confounding factors such as ancestry and population substructure can alter the 
outcome of an association test and can create false hits if not properly controlled 
for (Tam et  al. 2019). PCA has emerged as a popular strategy to infer population 
substructure and a protocol based on secure multiparty computation (SMPC) has 
been presented by Cho et  al. (2018). More precisely, the first k (usually k = 10 ) 

(1)y ∼ �0 + �1 ⋅ A
⊤

l,∙
+

R∑
r=1

�r+1 ⋅ xr + �,
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eigenvectors G = [g1 … gk] ∈ ℝ
n×k of the sample covariance matrix A⊤A are 

included into the association test as covariates (Galinsky et  al. 2016; Price et  al. 
2006):

In federated GWAS, each local site s needs to have access only to the partial eigen-
vector matrix Gs corresponding to the locally available samples. Consequently, com-
puting the complete eigenvector matrix G at the aggregator and/or sharing Gs with 
other local sites s′ should be avoided to reduce the possibility of information leak-
age. This is especially important because Nasirigerdeh et al. (2021) have shown that, 
if G is available at the aggregator in a federated GWAS pipeline, the aggregator can 
in principle reconstruct the raw GWAS data Al,∙ for SNP l. Federated PCA algo-
rithms that are suitable for GWAS hence have to respect the following constraint:

Constraint 1 In a GWAS-suitable federated PCA algorithm, the aggregator does not 
have access to the complete eigenvector matrix G and each site s has access only to 
its share Gs of G.

The PCA in GWAS is usually performed on only a subsample of the SNPs, but 
there is no consensus as to how many SNPs should be used. Some PCA-based 
stratification methods rely on a small set of ancestry-informative markers (Li 
et al. 2016), while others employ over 100000 SNPs (Gauch et al. 2019).

Note that PCA for GWAS is conceptually different from “regular” PCA for fea-
ture reduction (see Fig. 2). For feature reduction, we would decompose the m × m 
SNP by SNP covariance matrix and compute a set of “meta-SNPs” for each sam-
ple. This is not what is required for GWAS. Instead, the n × n sample by sam-
ple covariance matrix A⊤A is decomposed. In our federated setting, where A is 

(2)y ∼ �0 + �1 ⋅ A
⊤

l,∙
+

R∑
r=1

�
r+1 ⋅ xr +

k∑
i=1

�
i+R+1 ⋅ gi + 𝜖

Fig. 2  Singular value decomposition for feature reduction (top) and GWAS (bottom)



 A. Hartebrodt et al.

1 3

vertically distributed across local sites s ∈ [S] , A⊤A looks as follows (recall that, 
unlike in regular PCA, columns correspond to samples and rows to features):

It is clear that A⊤A cannot be computed directly without sharing patient-level 
data. Moreover, with a growing number of samples, this matrix can become very 
large and computing it becomes infeasible. For instance, the UK Biobank—a large 
cohort frequently used for GWAS—contains more than 4 million SNPs for more 
than 500000 individuals. Following directly from the definition of PCA, an exact 
computation of the covariance matrix would furthermore violate constraint 1. These 
considerations lead to the second constraint for federated PCA algorithms suitable 
for GWAS:

Constraint 2 A GWAS-suitable federated PCA algorithm must work on vertically 
partitioned data and does not rely on computing or approximating the covariance 
matrix.

2.5  Gram–Schmidt orthonormalization

The Gram–Schmidt algorithm transforms a set of linearly independent vectors into 
a set of mutually orthogonal vectors. Given a matrix V = [v1 … vk] ∈ ℝ

r×k of k lin-
early independent column vectors, a matrix U = [u1 …uk] ∈ ℝ

r×k of orthogonal 
column vectors with the same span can be computed as

where ri,j = u⊤
j
vi∕nj with nj = u⊤

j
uj.

The vectors can then be scaled to unit Euclidean norm as ui ↦ (1∕
√
ni) ⋅ ui to 

achieve a set of orthonormal vectors. In the context of PCA, this can be used to 
ensure orthonormality of the candidate eigenvectors in iterative procedures, which 
otherwise suffer from numerical instability in practice (Guo et al. 2012).

2.6  Centralized, iterative, covariance‑free principal component analysis

While classical PCA algorithms rely on computing the covariance matrix A⊤A 
(Joliffe 2002), there are several covariance-free approaches to iteratively approxi-
mate the top k eigenvalues and eigenvectors (Saad 2011). Algorithm 1 summarizes 
the centralized, iterative, covariance-free PCA algorithm suggested by Halko et al. 
(2010), which will serve as starting point for our federated approach. First, an initial 

(3)A⊤A =

⎛⎜⎜⎜⎜⎝

A1⊤A1 A1⊤A2
⋯ A1⊤AS

A2⊤A1 A2⊤A2
⋯ A2⊤AS

⋮ ⋮ ⋱ ⋮

AS⊤A1 AS⊤A2
⋯ AS⊤AS

⎞⎟⎟⎟⎟⎠

(4)ui =

�
vi if i = 1

vi −
∑i−1

j=1
ri,j ⋅ uj if i ∈ [k] ⧵ {1}

,
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eigenvector matrix is sampled randomly and is then orthonormalized (Lines 1−2). 
In every iteration i, improved candidate eigenvectors Gi of A⊤A are computed (Lines 
5–8). Once a suitable termination criterion is met (e.g., convergence, maximal num-
ber of iterations, time limit, etc.), the last candidate eigenvectors are returned (Line 
10).

To update the candidate eigenvector matrices Gi = A⊤Hi = A⊤AGi−1 ∈ ℝ
n×k 

of A⊤A , the algorithm also computes candidate eigenvector matrices 
Hi = AGi−1 = AA⊤Hi−1 ∈ ℝ

m×k of AA⊤ . Since AA⊤ corresponds to the “classical” 
feature by feature covariance matrix, and A⊤A to the sample covariance matrix, the 
algorithm computes left and right singular vectors at the same time. This means, 
the present algorithm is actually an SVD algorithm. In this article, we will some-
times refer to left singular vectors as feature eigenvectors and right singular vectors 
as sample eigenvectors.

2.7  Federated principal component analysis for vertically partitioned data

Only few algorithms are designed to perform federated computation of PCA on ver-
tically partitioned data sets (Guo et al. 2012; Kargupta et al. 2001; Qi et al. 2003; 
Wu et al. 2018). However, none of them is suitable for the GWAS use-case consid-
ered in this paper: The algorithms reviewed by Wu et al. (2018) are specialised for 
distributed sensor networks and use gossip protocols and peer-to-peer communica-
tion. Therefore, they are not suited for the intended FL architecture in the medical 
setting. The algorithms presented by Kargupta et al. (2001) and Qi et al. (2003) rely 
on estimating a proxy covariance matrix and consequently do not meet constraint 
2 introduced above. Unlike these approaches, the algorithm proposed by Guo et al. 
(2012) is covariance-free and suitable for the intended cross-silo architecture. How-
ever, it broadcasts the eigenvectors to all sites in violation of constraint 1.
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2.8  Federated matrix orthonormalization

Matrix orthonormalization is a frequently used technique in many applications, 
including the solution of linear systems of equations and singular value decom-
position. There are three main approaches: Householder reflection, Givens rota-
tion, and the Gram–Schmidt algorithm. In distributed memory systems and grid 
architectures, tiled Householder reflection is a popular approach (Hadri et al. 2010; 
Hoemmen  2011). However, those algorithms are often highly specialized to the 
compute system and rely on shared disk storage. For distributed sensor networks, 
Gram–Schmidt procedures relying on push-sum have been proposed (Sluciak et al. 
2016; Straková et  al. 2012). However, these methods rely on gossip protocols 
and are not appropriate for the network architecture in this article. Consequently, 
no federated orthonormalization algorithm suitable for our setup is available. In 
Sect. 3.1, we present our own version of a federated orthonormalization algorithm 
fulfilling all constraints and subsequently utilize it as a subroutine in our federated 
PCA algorithm.

2.9  Federated principal component analysis for horizontally partitioned data

Previously, federated PCA algorithms have been described for horizontal data par-
titioning. In a previous article (Hartebrodt and Röttger 2022), we discuss potential 
algorithms for this task, summarize their advantages and drawbacks in the context 
of biomedical applications, and provide practical guidelines for users from the bio-
medical sciences. There are “single-round” approaches, where the eigenvectors are 
computed locally and sent to the aggregator (Balcan et al. 2014). At the aggregator, 
a global subspace is approximated from the local eigenspaces. The higher the num-
ber of transmitted intermediate dimensions, the better the global subspace approxi-
mation. In these algorithms, the solution quality hence depends on the number of 
transmitted dimensions. This algorithm is a more memory efficient version of the 
naïve algorithm (Liu et al. 2020), where the entire covariance matrix is processed 
by the aggregator. Since only the top k left singular values are transmitted, this 
algorithm fulfills constraint 2. Furthermore, iterative schemes have been proposed, 
where locally computed eigenvectors are sent to the aggregator, which performs an 
aggregation step and sends the obtained candidate subspace back to the clients (Bal-
can et  al. 2016; Chen et  al. 2021; Imtiaz and Sarwate 2018). The candidate sub-
space is then refined iteratively. Furthermore, there are several schemes for specific 
applications such as streaming (Sanchez-Fernandez et  al. 2015; Grammenos et  al. 
2020). These approaches assume that an approximation of the entire eigenvectors is 
possible at the clients, or that the global covariance matrix can be approximated. As 
we have discussed above, these assumptions do not hold in the intended GWAS use 
case.
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2.10  Randomized principal component analysis

In the context of GWAS, a randomized PCA algorithm (Halko et al. 2010; Galinsky 
et al. 2016) is popular as it speeds-up the computation compared to traditional algo-
rithms. Here, we briefly present the version proposed by Galinsky et al. (2016). The 
algorithm starts with I′ iterations of subspace iteration on the full-dimensional data 
matrix, resulting in feature eigenvector matrices Hi for all iterations i ∈ {1,… , I�} . 
Next, the data is projected on the concatenation of all Hi , forming approximate prin-
cipal components which approximate the data matrices. Then, subspace iteration is 
performed on these proxy data matrices. In practice, I� = 10 iterations are sufficient. 
This reduces the dimensionality of the data from m to k ⋅ I′ . In Sect. 3.3, we will 
present a fully federated version of this algorithm in detail. Note that this is a ran-
domized approach, because subspace iteration on the full-dimensional data is ini-
tialized randomly. Since it is interrupted before convergence after I′ iterations, the 
feature eigenvector matrices Hi inherit this randomness.

2.11  Privacy‑aware singular value decomposition

In the context of privacy-aware ML, several solutions have been proposed to allow 
the private computation of PCA and SVD. Differential privacy (DP) has been 
employed by multiple authors who suggest to privately construct a covariance 
matrix (Balcan et al. 2016; Chaudhuri et al. 2013; Imtiaz and Sarwate 2018; Imtiaz 
et al. 2019; Wang and Chang 2019). Similarly, the secure aggregation of the covari-
ance matrix using either secure multiparty computation (SMPC) or homomorphic 
encryption (HE) has been suggested (Al-Rubaie et al. 2017; Liu et al. 2020; Pathak 
and Raj 2011). Hardt and Price (2013) proposes a differentially private power 
method. Asi and Duchi  (2020) and Gonen et al. (2018) suggest to use output per-
turbation, assuming an SVD has been computed. Recently, Grammenos et al. (2020) 
have suggested a federated streaming PCA scheme, allowing the addition of noise at 
the nodes with favorable noise variance. However, Chai et al. (2021) deem the addi-
tion of noise prohibitive. HE-based methods incur a high runtime overhead (Chai 
et al. 2021), not yet suitable for large-scale computations. Cho et al. (2018) rely on 
sharding the data to two non-colluding servers. Froelicher et al. (2023) recently pro-
posed a hybrid approach, relying on SMPC and HE. Their approach significantly 
improves upon the runtime of previous HE-based methods but still incurs a high 
runtime overhead. In cross-device FL, other solutions using third party servers have 
been suggested, e.g., by Liu and Tang (2019); Cho et al. (2018). However, Liu and 
Tang (2019) assume that the computation of the covariance matrix is computation-
ally feasible.
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3  Algorithms

In this section, we present a federated SVD algorithm, which is designed for a cross-
silo FL setup, meets the requirements of constraint 1 and constraint 2, and is hence 
suitable for federated GWAS. Our base algorithm comes in two variants—with and 
without orthonormalization of the candidate right singular vectors of A . In Sect. 3.1, 
we present a federated Gram–Schmidt algorithm, which can be used as a subroutine 
in our federated SVD algorithm to ensure that right singular vectors of A remain at 
the local sites. We prove that our federated Gram–Schmidt algorithm is equivalent 
to the centralized counterpart. In Sect. 3.2, we describe the federated SVD algorithm 
and prove that the version with orthonormalization is equivalent to the centralized 
vertical subspace iteration algorithm by Halko et al. (2010), which we have summa-
rized in Algorithm 1 above. We then show how approximate horizontal PCA can be 
used to compute approximate principal components for immediate use or as initiali-
zation for subspace iteration in Sect. 3.3. In Sect. 3.4, we present randomized feder-
ated subspace iteration as a means to reduce the transmission cost in federated SVD. 
In addition to decreasing the communication cost, the use of the two latter strategies 
also prevents potential iterative leakage (detailed in Sect. 4). In Sect. 3.5, we analyze 
the network transmission costs of the proposed algorithms, and Sect. 3.6 provides an 
overview of possible configurations of our federated SVD algorithm. Note that, for 
the ease of notation, we describe our algorithm in terms of a star-like architecture. 
The algorithm can be deployed in a peer-to-peer system without loss of precision, 
but at the expense of a higher communication overhead.

3.1  Federated Gram–Schmidt algorithm

First, we describe federated Gram–Schmidt orthonormalization for vertically par-
titioned column vectors. Previous federated PCA algorithms require the complete 
eigenvectors to be known at all sites for the orthonormalization procedure. The 
naïve way of orthonormalizing the eigenvector matrices in a federated fashion would 
be to send them to the aggregator which performs the aggregation and then sends 
the orthonormal matrices back to the clients. However, in this naïve scheme, the 
transmission cost scales with the number of variables (individuals in GWAS) and all 
eigenvectors are known to the aggregator.

To address these two problems, we suggest a federated Gram–Schmidt orthonor-
malization procedure, summarized in Algorithm 2. The algorithm exploits the fact 
that the computations of the squared norms ni and of the residuals rij can be decom-
posed into independent computations of summands ns

i
 and rs

ij
 computable at the local 

sites s ∈ [S] . The clients compute the local summands and send them to the aggrega-
tor, where the squared norm of the first orthogonal vector is computed and sent to 
the clients (Lines 2–6). Subsequently, the remaining k − 1 vectors are orthogonal-
ized. For the ith vector vi , the algorithm computes the residuals rij w.r.t. all already 
computed orthogonal vectors uj , using the fact that the corresponding squared norms 
nj are already available (Lines 10 to 12). The residuals are aggregated by the central 
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server (Lines 14 to 15). Next, vi is orthogonalized at the clients, the local norms are 
computed (Lines 18 to 20), and the squared norm of the resulting orthogonal vector 
ui is computed at the aggregator and sent back to the clients (Line 22). After orthog-
onalization, all orthogonal vectors are scaled to unit norm at the clients (Lines 
25–28). This procedure returns exactly the same result as the centralized algorithm, 
as shown in Proposition 1 below.
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Proposition 1 Centralized and federated Gram–Schmidt orthonormalization are 
equivalent.

Proof Let V = [v1 … vk] be the matrix that should be orthonormalized, vs
i
 be 

the restriction of the ith columns vector to the samples available at site s, and 
us
i
 be the restriction of the ith orthogonal vector computed by the centralized 

Gram–Schmidt algorithm before normalization to the samples available at site 
s. Moreover, let ni and ri,j be the centrally computed norms and residuals, and ñi , 
r̃i,j , and ũs

i
 be the locally computed norms, residuals, and partial orthogonal vec-

tors before normalization. We show by induction on i that ni = ñi , rij = r̃ij , and 
us
i
= ũs

i
 holds for all i ∈ [k] and all j ∈ [i − 1] . This implies the proposition.

For i = 1 , we have us
1
= vs

1
= ũs

1
 and n1 = u⊤

1
u1 =

∑S

s=1
us
1
⊤us

1
=
∑S

s=1
ũs⊤
1
ũs
1
= ñ1 . 

For the inductive step, note that rij = uj
⊤vi∕nj =

∑S

s=1
us
j

⊤vs
i
∕nj =

∑S

s=1
ũs⊤
j
vs
i
∕ñj = r̃ij , 

where the third identity follows from the inductive assumption. Moreover, we have 
us
i
= vs

i
−
∑i−1

j=1
rij ⋅ u

s
j
= vs

i
−
∑i−1

j=1
r̃ij ⋅ ũ

s
j
= ũs

i
 , where the second identity follows 

from the inductive assumption and the identities rij = r̃ij established before. We 
hence obtain ni = u⊤

i
ui =

∑S

s=1
us
i

⊤us
i
=
∑S

s=1
ũs⊤
i
ũs
i
= ñi , which completes the 

proof.   ◻

3.2  Federated vertical subspace iteration

Algorithm 3 describes our federated vertical subspace iteration algorithm: Ini-
tially, the first partial candidate right singular matrices Gs

0
 of A are generated 

randomly and orthonormalized (Lines 6–9). Inside the main loop, the left sin-
gular vectors are updated at the clients, summed up element-wise and orthonor-
malized at the aggregator, and then sent back to the clients (Lines 14–17). Next, 
the clients update the partial right singular vectors (Line 21). In the version with 
orthonormalization, the candidate right singular vectors are now normalized by 
calling the federated Gram–Schmidt orthonormalization algorithm (Line 24) 
presented in Sect.  3.1 (Algorithm 2). Note that this algorithm ensures that the 
partial singular vectors Gs

i
 remain at the local sites. Finally, the full left singu-

lar matrices H and the orthonormalized partial right singular matrices Gs are 
returned to the clients (Line 30). In practice, the federated orthonormalization 
of Gi (Line 24) may be omitted to speed up computation. Note, however, that Hi 
is still orthonormalized in every iteration and that the final orthonormalization 
(Line 28) is required.
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Like the original centralized version described in Algorithm 1 above, our algo-
rithm can be run with various termination criteria. In our implementation, we use 
the convergence criterion
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using the angle as a global measure as suggested by Lei et al. (2016), where 1k is the 
k-dimensional vector of ones and t is a small positive number. With this criterion, 
the algorithm terminates once all right singular vectors of A are asymptotically col-
linear with respect to the eigenvectors of the previous iteration. Other convergence 
criteria could be used as drop-in replacements.

We now prove that the version of Algorithm 3 with orthonormalization is equiva-
lent to the centralized version described in Algorithm 1. Thus, it inherits its conver-
gence behavior from the centralized version.

Proposition 2 If orthonormalization is used, centralized and federated vertical sub-
space iteration are equivalent.

Proof Let Gi and Hi denote the eigenvector matrices maintained by the centralized 
algorithm described in Algorithm 1 at the end of the main while-loop, and Gs

i
 be 

the sub-matrix of Gi for the samples available at site s. Moreover, let H̃i , G̃i , G̃
s

i
 , and 

H̃
s

i
 be the (partial) eigenvector matrices maintained by our federated Algorithm 3 at 

the end of the main while-loop. We will show by induction on the iterations i that 
Hi = H̃i and Gs

i
= G̃

s

i
 for all s ∈ [S] holds throughout the algorithm, if the same ran-

dom seeds are used for initialization.
For i = 0 , we only have to show Gs

0
= G̃

s

0
 . This directly follows from Proposi-

tion 1 and our assumption that the same random seeds are used for initialization. 
For the inductive step, note that, before orthonormalization in Line 17, we have 
H̃i =

∑S

s=1
H̃

s

i
=
∑S

s=1
AsG̃

s

i−1
=
∑S

s=1
AsGs

i−1
= AGi−1 = Hi , where the third equal-

ity follows from the inductive assumption. Because of Proposition 1, this identity 
continues to hold at the end of the main while-loop.

Similarly, after updating in Line 21 but before orthonormalization, we have 
G̃

s

i
= As⊤H̃i = As⊤Hi = (A⊤Hi)

s = Gs

i
 , where the second equality follows the iden-

tity Hi = H̃i shown above and (A⊤Hi)
s denotes the sub-matrix of A⊤Hi for the sam-

ples available at site s. Again, Proposition 1 ensures that the identity continues to 
hold after orthonormalization.   ◻

The omission of the orthonormalization of Gi (Algorithm 3, Line 9 and Line 24) 
removes provable identity to Algorithm 1. However, other formulations of central-
ized power iteration exist which directly operate on the covariance matrix (Balcan 
et al. 2016). In these schemes, instead of splitting the iteration into Hi update (Algo-
rithm 1, Line 5) and Gi update (Algorithm 1, Line 7), the covariance matrix is com-
puted and Hi is updated as Hi = AA⊤Hi−1 at every iteration. Proposition 2 can be 
formulated and proven analogously for this version.

(5)diag (H⊤

i
Hi−1) ≥ 1k − t
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3.3  Approximate initialization

One major concern of iterative PCA is information leakage through the repeated 
transmission of the updated eigenvectors. This is presented in more detail in Sect. 4, 
where we will present an attack which leaks the covariance matrix. Briefly, the con-
sequence of the possible attack is that the number of iterations needs to be strictly 
limited. Therefore, we suggest to use federated approximate horizontal PCA as an 
initialization strategy to limit the number of iterations, and thereby prevent the pos-
sible leakage of the covariance matrix.

Balcan et al. (2014) presented a memory-efficient version of federated approxi-
mate PCA for horizontally partitioned data. We provide a minor modification which 
allows us to compute the sample eigenvectors. The algorithm can be used “as is” to 
compute the federated approximate vertical PCA by projecting the approximate left 
eigenvector to the data; or as an initialization strategy for federated subspace itera-
tion. For the latter, instead of initializing Gs

0
 randomly (Algorithm 3, Line 6), Gs

0
 is 

computed using the approximate algorithm described here (Algorithm 3, Line 2).

Algorithm 4 describes this approach. The algorithm proceeds as follows: At the 
clients, a local PCA is computed and the top c ⋅ k eigenvectors are shared with the 
aggregator, with c a constant multiplicative factor (Line 2). At the aggregator, the 
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local eigenvectors are stacked such that a new approximate covariance matrix M̂ 
with dim(M̂) = c ⋅ k ⋅ S × m is formed. M̂ is then decomposed using singular value 
decomposition, leading to a new eigenvector estimate Ĥ (Lines 5–6). At the clients, 
the feature eigenvector estimate Ĥ can be projected onto the data to form an approxi-
mation of the sample eigenvector Ĝ

s
 . The vectors Ĝ and Ĥ represent an “educated 

guess” of the final singular vectors.

3.4  Federated randomized principal component analysis

Another mitigation strategy for the aforementioned information leakage is the 
use of randomized SVD. In randomized SVD, a reduced representation of the 
data is computed and subspace iteration is applied on this reduced data matrix 
instead of the full data. By using the proxy data, only “reduced” eigenvectors 
become available at the aggregator, which makes the attack in Sect. 4 impossible, 
given not too many initial iteration I′ have been executed. Notably, I′ needs to be 
restricted depending on the number of features in the original data. Algorithm 5 
describes how to modify randomized SVD such that it can be run in a federated 
environment without sharing the random projections of the data or the sample 
eigenvectors.

We proceed according to Halko et al. (2011) and Galinsky et al. (2016). First, I′ 
iterations of federated vertical subspace iteration are run using the full data matri-
ces As . In order to do so, Algorithm 3 is called as a subroutine. The intermediate 
matrices H1,… ,H�

I
 are stored (Line 1) and concatenated to form P ∈ ℝ

k⋅I�×m (Line 
2), and singular value decomposition is used to orthonormalize P (Line 3). The 
data matrices As are then projected onto P to form proxy data matrices Â

s
∈ ℝ

k⋅I�×n 
(Line 5). Finally, the covariance matrix of the proxy data matrix is computed as 
Â

s
Â

s⊤
∈ ℝ

k⋅I�×k⋅I� at the clients. The clients send this covariance to the aggregator, 
which aggregates the covariance matrices MÂ =

∑
s Â

s
Â

s⊤
 by element-wise addi-

tion, computes its eigenvectors GÂ , and shares them with the clients. The eigen-
vectors GÂ ∈ ℝ

k⋅I�×k do not reflect properties of the original data, but they can be 
used to recompute G as G = Â

s⊤
GÂ ∈ ℝ

n×k . G needs to be normalized using the 
federated orthonormalization subroutine (Algorithm  2). The subroutine returns 
the correct right singular vectors G but only proxy vectors for H . Therefore, in the 
last step, H can be reconstructed by projecting the data onto G , aggregating and 
normalizing Hs at the aggregator, and returning the final left singular vectors H to 
the clients (Lines 18–21).

Algorithm 5 is exactly equivalent to the centralized version, which implies that 
convergence behaviour and error bounds which have been established for the cen-
tralized version (Musco and Musco 2015; Wang et  al. 2015) translate to Algo-
rithm  5. The algorithm proceeds in four phases: (1) the initial iterations, (2) the 
computation and decomposition of the aggregated reduced covariance matrix, (3) 
the projection and federated orthogonalisation of Gs , and (4) the computation and 
orthonormalization of H . We have shown that centralized and federated subspace 
iteration are equivalent (Proposition 2), which extends to the first and the fourth 
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phases of the algorithm. A global covariance matrix can be computed exactly as 
the sum of the local covariance matrices, which implies that the second phase of the 
algorithms maintains equivalence. From Proposition 1, it follows that also the third 
phase maintains equivalence.
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3.5  Network transmission costs

The main bottleneck in FL is the amount of data transmitted between the different 
sites and the number of network communications (Kairouz et al. 2021). The fol-
lowing Proposition 3 specifies these quantities for our federated PCA algorithm. 
Recall that S, k, m, n, and c denote, respectively, the numbers of sites, eigenvec-
tors, features, samples, and a user-defined constant multiplicative factor.

Proposition 3 Let D be the total amount of data transmitted by the federated SVD 
algorithm measured in matrix elements, N  be the total number of network com-
munications, and I be the total number of iterations of the main while-loop. Let fur-
ther I′ be the number of initial iteration for randomized SVD and k′ the intermediate 
dimensionality of the subspace for the approximate algorithm. Then, the following 
statements hold:

• If the Gi matrices are not orthonormalized, then D = O(I ⋅ S ⋅ k ⋅ m) and 
N = O(I ⋅ S).

• If federated Gram–Schmidt orthonormalization is used, then D = O(I ⋅ (S⋅

k ⋅ m + k2)) and N = O(I ⋅ S ⋅ k).
• If federated randomized subspace iteration is used, then O((S ⋅ (I� + 1)⋅

k ⋅ m) + (k ⋅ I�)2) and N = O((I� + 2) ⋅ S).
• Approximate initialization itself has a complexity of D = O(S ⋅ k ⋅ c ⋅ m) and 

N = O(S) , hence the other algorithms remain in the same complexity class if 
used in combination with approximate initialization.

Proof In each iteration i of our federated vertical subspace iteration algo-
rithm, the matrices Hs

i
∈ ℝ

m×k have to be sent from the clients to the aggrega-
tor and the matrix Hi ∈ ℝ

m×k has to be sent back to the clients. In iteration i, the 
amount of transmitted data and the number of communications due to Hi is hence 
O(S ⋅ k ⋅ m) and O(S) , respectively. For orthonormalizing the eigenvector matri-
ces Gi ∈ ℝ

n×k , we need to transmit a data volume of O(S ⋅ k2) and the number 
of communications increases to O(S ⋅ k) . By summing over the iterations i, this 
yields the statement of the proposition. In the randomized iteration the first I′ 
iterations have the same communication complexity that regular subspace itera-
tion. Then the dimensionality of the matrix is reduced to k ⋅ I� × n and the decom-
position of MÂ has transmission complexity (k ⋅ I�)2 . An additional communica-
tion of the final H is required which costs S ⋅ k ⋅ m . Thereby, the total complexity 
is D = O(I� ⋅ S ⋅ k ⋅ m + (I� ⋅ k)2 + S ⋅ k ⋅ m) = O((S ⋅ (I� + 1) ⋅ k ⋅ m) + (k ⋅ I�)2) . 
Approximate initialization has a complexity of one round of subspace iteration, 
as Hi needs to be communicated once to the aggregator and back. The complexity 
classes hence remain the same.   ◻

If our algorithms are used, the overall volume of transmitted data is hence 
independent of the number of samples n and can be executed in a constant 
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number of communication rounds. This is especially important in the intended 
GWAS setting, since the number of samples and features may be very large (Li 
et al. 2016; Londin et al. 2010). Moreover, k is small (typically, k = 10 is used for 
GWAS PCA), which implies that the additional factor k in the complexities of D 
and N  can be neglected. Therefore, using the suggested scheme is preferable over 
sending the eigenvectors to the aggregator for orthonormalization, both in terms 
of privacy and expected transmission cost. (In practice, it is advisable to perform 
the orthonormalization only at the end.) The algorithm by Guo et al. (2012) has a 
complexity of D = O(I ⋅ S ⋅ k) and N = O(I ⋅ S) per eigenvector. The algorithm by 
Chai et al. (2021) has a data transfer complexity of D = O(n ⋅ m) , with N = O(S) . 
The use of randomized SVD additionally partially removes the dependency of the 
algorithm on the number of SNPs/features, which can be quite large in practice. 
(The worst-case complexity does not change due to the first iterations.) Addition-
ally, only a few iterations of the true feature eigenvectors are transmitted. There-
fore, randomized SVD is preferable in terms of transmission cost.

3.6  Summary and applications

To conclude this section, we provide a brief summary of the main points and intro-
duce a naming scheme for the configurations evaluated in Sect. 5. We presented fed-
erated vertical subspace iteration with random (RI-FULL) initialization. To avoid the 
sharing of the sample eigenvector matrix, we introduced federated Gram–Schmidt 
orthonormalization (FED-GS) which can be run at every iteration, but should be 
run only at the end. In order to speed up the computation in terms of communi-
cation rounds, we suggest to use a modified version of the approximate algorithm 
(AI-ONLY) by Balcan et  al. (2014) as an initialization strategy for federated sub-
space iteration (AI-FULL). To reduce the transmitted data volume and the sharing of 
the feature eigenvectors, we suggest to use federated randomized subspace iteration 
(RANDOMIZED). GUO is the reference algorithm. We summarize the asymptotic 
communication costs in Table 2. We show that federated and centralized subspace 
iteration are equivalent and explain how this property propagates to the randomized 
algorithm.

Table 2  Algorithm overview and complexity

D denotes the total amount of transmitted data, N  the number of network communications

Algorithm(s) Name D N

Algorithm 3 RI-FULL O(I ⋅ S ⋅ k ⋅ m) O(I ⋅ S)

Algorithm 3 + 4 AI-FULL O(I ⋅ S ⋅ k ⋅ m) O(I ⋅ S)

Algorithm 3 + 2 RI-FULL/FED-GS O(I ⋅ (S ⋅ k ⋅ m + k2)) O(I ⋅ S ⋅ k)

Algorithm 5 RANDOMIZED O((S ⋅ (I� + 1) ⋅ k ⋅ m) + (k ⋅ I�)2) O((I� + 2) ⋅ S)

Algorithm 4 AI-ONLY O(S ⋅ k ⋅ m) O(S)

 Guo et al. (2012) GUO O(I ⋅ S ⋅ k ⋅ m) O(I ⋅ S)

 Chai et al. (2021) – O(n ⋅ m) O(S)
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The results returned by the algorithms are the left singular vectors (which are 
identical for all participants and known to all participants), the singular values (also 
known to all participants), and the partial right singular vectors, where each part is 
known only to its owner. The singular vectors can be used to compute the corre-
sponding reduced representation of the data locally, by projecting the data onto the 
leading eigenvectors, sometimes called the principal components. These projections 
can technically be shared with all other participants if desired. Thereby, at least in 
principle, all standard functionalities are covered by the presented algorithms. The 
next section will cover some privacy aspects related to these results.

4  Privacy

In this section, we describe how the iterative process discloses the covariance matrix 
when using sufficiently many iterations (Sect. 4.1). Next, we illustrate the problem 
using a simulation study (Sect. 4.2) and then discuss how it can be mitigated with 
the algorithms introduced above and via SMPC and DP (Sect. 4.3).

4.1  Iterative leakage of the covariance matrix

Iterative leakage at the aggregator might disclose the entire covariance matrix dur-
ing the execution of the algorithm, as many updates of the variables become avail-
able. Figure 3 visualizes the update process in power iteration, and the information 
used to reconstruct a single row of the covariance matrix at one iteration. Notably, 
the aggregated vector Hi becomes known in clear text at the aggregator in every 
iteration. The aggregator can store the sequence of vectors Hi . In the following, we 
will show how it is possible to construct a system of linear equations which will leak 
the covariance matrix. For the sake of this description, we will assume the eigenvec-
tor Hi is updated as Hi = KHi−1 , where K = D⊤D is the feature-by-feature covari-
ance matrix of the federated data matrix D , which are both unknown to the aggrega-
tor. This is equivalent to the two-step update from the aggregator’s perspective, but 
improves the readability.

Proposition 4 Let D ∈ ℝ
n×m be the data matrix and denote K = D⊤D the feature-

by-feature covariance matrix, which is unknown to the aggregator. Let k be the 
number of eigenvectors retrieved. When applying federated subspace iteration, the 

Fig. 3  Eigenvector update using 
the feature-by-feature covari-
ance matrix
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aggregator can reconstruct K after m/k distinct eigenvector updates by solving 
a system of linear equations of the form Kl,∙A = b for each row Kl,∙ of K , where 
A ∈ ℝ

m×m and b ∈ ℝ
m are known parameters.

Proof Let Kl,∙ denote a row of the covariance matrix K ∈ ℝ
m×m . First, we show how 

series (Hi

∙,1
)m
i=1

 of m updates of the first eigenvector can be used to retrieve the row 
Kl,∙ of K . Subsequently, we show that m/k updates are sufficient if all k eigenvectors 
are used.

Since Kl,∙ is a row vector of length m, one needs m equations, which can be 
derived from m consecutive updates of the column vector Hi

∙,1
 . The aggregator can 

store the consecutive updates of Hi

∙,1
 and, for each i, store an equation of the form 

Kl,∙H
i−1
∙,1

= Hi
l,1

 . After m iterations, the aggregator is able to formulate the following 
fully determined system of linear equations, given that the eigenvectors have not 
converged:

In order to reduce the number of required iterations, the aggregator can use all vec-
tors in H to formulate the linear system and thereby divide the number of required 
iterations by k:

The rows of K can be computed simultaneously, by forming a system for all Kl,∙ at 
the same time. Therefore, in theory, this means that after m/k iterations, one has the 
full system and can solve it as

which completes the proof of the proposition.   ◻

These theoretical results require to invert A , which may pose a problem in 
numerical applications, especially once the Hi grow large. By using a linear least 
squares solver, the inversion of the matrix A can be prevented at the cost of possibly 
sub-optimal solutions. Furthermore, in practice, more care needs to be taken when 
constructing the system, because, once converged, the eigenvectors do not provide 
a new equation to be added to the system anymore and hence lead to a singular 
system.

4.2  Covariance reconstruction experiment

We implemented the covariance reconstruction scheme and applied it on small 
example data, demonstrating its practicality. Using the breast cancer dataset and 

Kl,∙

[
H0

∙,1
⋯ Hm−1

∙,1

]
=
[
H1

l,1
⋯ Hm

l,1

]

Kl,∙

A

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞[
H0

∙,1
⋯ H0

∙,k
⋯ H

m

k
−1

∙,1
⋯ H

m

k
−1

∙,k

]
=

b

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞[
H1

l,1
⋯ H1

l,k
⋯ H

m

k

l,1
⋯ H

m

k

l,k

]

(6)Kl,∙ = bA−1,
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the diabetes data set from the UCI repository (Dua and Graff 2017), which have 
442 and 569 samples and 10 and 30 features, respectively, we computed the cen-
tralized covariance matrix which we aim to reconstruct. Then, we ran federated 
subspace iteration and recorded the eigenvector updates. After m/k iterations, we 
used the recorded matrices to form the linear system described in Sect. 4.1. Instead 
of inverting the matrix as described in Eq. 6, we used a linear least squares solver 
(scipy.lstsq) to compute the solution. We then computed the Pearson correla-
tion between the true and the reconstructed covariance matrix, with outcomes of 
1.0 and 0.997, (1.0 indicates perfect reconstruction) in negligible time (see Table 3). 
The results imply that the attack described above constitutes a practically relevant 
privacy risk and hence needs to be mitigated.

4.3  Mitigation strategies and remaining privacy concerns

Here, we briefly discuss the remaining privacy concerns with our algorithm. To do 
so, we distinguish two types of disclosure: information intentionally published as 
a result of the algorithm and information that is somehow obtained by any party 
(including outsiders) in the course of the execution, but is not part of the results. In 
this article, we assume honest-but-curious participants. This means that the partici-
pants execute the algorithm correctly but try to infer as much information as possi-
ble about the other participants. All participants want to obtain the correct and com-
plete result, which we define as the complete top k feature eigenvectors, the singular 
values, and the top k partial sample eigenvectors. An unintended information leak is 
hence information that can be inferred beyond the top k singular vectors. Such a leak 
would for instance be the disclosure of the exact covariance matrix, because it would 
allow the computation of additional singular vectors. We begin this part with a brief 
presentation of privacy-enhancing techniques.

4.3.1  Secure multiparty computation

SMPC allows multiple parties to compute a function collaboratively without sharing 
their secret inputs. An established concept is secret sharing, where the input values are 
split into shares, which disclose nothing about the original value. Modular arithmetic 
is used to mask the contributions. The N participants determine a fixed prime number 
p. Then, they split their secret sn ∈ ℤ

𝕡
 by uniformly generating random numbers rn,i , 

for i ∈ [N − 1] . The last random share is computed as rn,N = sn −
∑N−1

i=1
rn,i mod p . 

N − 1 of their shares rn,i are sent to the N − 1 players and the Nth share remains 

Table 3  Reconstruction of the 
covariance matrix

Shown are the number of samples and features, the correlation 
between the true and the reconstructed covariance matrix and the 
time required for the attack

Dataset Samples Features Correlation Time [s]

Breast cancer 442 10 1.0 0.001
Diabetes 569 30 0.997 0.004
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with them. Each player computes the sum over the shares, including their own, as 
ri =

∑N

n=1
rn,i and redistributes ri to all other players. Then, every participant can com-

pute the output o =
∑N

i
ri =

∑N

n=1
sn as the sum over all sn , while the private inputs 

are kept safe. While this protocol is correct and secure, it is not tolerant to the event 
that one of the participants leaves during the execution of the protocol (Cramer et al. 
2015). If this is a concern, more fault-tolerant methods such as Shamir’s secret sharing 
algorithm can be used (Cramer et al. 2015). In this protocol, the participants choose 
a secret polynomial f of degree k. This polynomial evaluates to the secret value at 
f(0). Instead of splitting the data, the participants distribute points of the polynomial. 
The secret can be reconstructed using k + 1 points of the polynomial with the help of 
Lagrangian multipliers. In this protocol, p > k players need to remain in the protocol, 
but k may be smaller than the number of participants ( k < n ). Float values can be pro-
cessed using fixed-point arithmetic (Ryffel et al. 2018).

4.3.2  Differential privacy

DP is a rigorous statistical framework designed to statistically query datasets with-
out disclosing too much about their contents (Dwork and Roth 2013). It hinges on 
the design of a mechanism M which yields very similar results when applied to two 
adjacent datasets. DP can be achieved through different techniques, e.g., the addition 
of noise to the input, to the parameters, or to the output of the algorithm. The noise 
is scaled to the sensitivity of the mechanism M , which is defined as the maximal 
difference of the outputs when the algorithm is run on two adjacent datasets. Since 
DP exhibits “closure under post-processing” (Dwork and Roth 2013), any computa-
tion performed on the result of a differentially private analysis remains differentially 
private. DP is hence a framework that allows the publication of results which them-
selves constitute potential privacy leakages (such as the right or left singular vectors 
in the case of federated SVD).

4.3.3  Properties of our algorithms limiting information leakage

The design of our algorithm includes some sensible defaults that limit information 
leakage. If complete information were available (including all singular vectors and 
values), lossless reconstruction of the data matrix would be possible. Consequently, 
for the privacy-preserving publication of the results, information has to be omitted 
or masked. In Sect. 3, we developed an algorithm which returns the top k singular 
subspace. This is often called a truncated SVD. It prevents the lossless reconstruc-
tion of the data but may result in a very good approximation, depending on the data 
and the number of eigenvectors k. Additionally, we discussed in Sect. 1 that the user 
can and should at least omit the sample-associated singular vectors. Therefore, the 
most straightforward measures to avoid excessive data leakage have already been 
included in the design of the algorithms.

We have established that the full global covariance matrix can be reconstructed 
after sufficiently many iterations. Once the covariance matrix has been recon-
structed, one can compute all singular vectors, i.e., , more than the top k. The 
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randomized Algorithm 5 shares the initial eigenvector updates, but then shares only 
proxy eigenvectors, whose entries do not correspond to real features in the data, 
effectively reducing the number of useful iterations for the aggregator to a constant 
number I′ . The first iterations do allow to estimate a proxy covariance matrix, but so 
do the top k singular vectors of the result, to higher accuracy. The limitation of the 
number of iterations hence improves the privacy of the randomized algorithm com-
pared to classical federated power iteration. In the envisaged use case, we assume 
I� ⋅ k ≪ min(d, n) , preventing the attack in practice.

4.3.4  Remaining privacy concerns: intermediate parameters

Even with the limited number of information exchanges, certain intermediate 
parameters are disclosed to all participants in order to compute the correct result—
in particular, the feature eigenvectors updates and the reduced representation of the 
data. This also poses a certain risk to the participants, which can be mitigated using 
SMPC and DP.

SMPC
 Disclosure of local intermediates in the presented algorithms can be prevented 

by using additive SMPC, which ensures that all additive aggregation steps in the 
algorithm can be performed securely. In the algorithms presented in this article, 
almost all aggregation steps use the sum operation as the first step in the aggrega-
tion routines (Lines 6, 15 and 22 in Algorithm 2,ine 16 in Algorithm 3, Line 5 in 
Algorithm 5). The only exception is Line 5 in Algorithm 4 (vertical stacking of par-
tial feature eigenvectors). Avoiding the use of vertical stacking here would require 
to expand the subspaces to approximate covariance matrices VsVs⊤ , which is prob-
lematic in the high-dimensional case due to the space requirements of these matri-
ces. The naïve communication would increase from O(S) to O(S2) , but with smarter 
schemes (e.g., Shamir’s scheme (Cramer et al. 2015)), the overhead can be limited.

Unfortunately, in the case of power iteration or low dimensional data, the securely 
aggregated intermediate parameters can still be attacked using the scheme described 
above, as the aggregated updates (i.e., , the 10 initial updates of H , and the inter-
mediate covariance matrix M ) still become available in clear text at the aggrega-
tor. However, the individual clients have masked their individual local updates (and 
hence their local covariance matrices). The SMPC schemes we presented assume a 
peer-to-peer communication between the clients. This means, it is possible to com-
plete the protocol without the involvement of a third party aggregator and therefore 
nothing is leaked to outside parties.

DP
The algorithm can be divided into different phases for which DP algorithms have 

been developed. Hardt and Price (2013) have determined a noise scheme for the 
power method, whereas Chaudhuri et al. (2013) provide the noise variance for the 
covariance perturbation. Consequently, both phases of the algorithm can be trans-
formed into differentially private mechanisms. By the composition theorem (Dwork 
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and Roth 2013), the result will also be a DP mechanism. Alternatively, if the parties 
have no concerns over sharing the unmasked intermediate parameters, the output 
can be masked using a noise scheme such as the one proposed by Asi and Duchi  
(2020). This would provide DP for outside third parties, but would not protect the 
participants from internal attacks. The noise scheme suggested by Grammenos et al. 
(2020) cannot be applied directly, as the algorithm is designed for a single pass over 
the data.

Hybrid methods
SMPC and DP can also be applied in combination, for instance to yield a certain 

� globally, instead of enforcing a local � . Small noise in combination with the lim-
ited extra disclosure due to the low number of iterations might provide a good trade-
off between privacy and utility.

4.3.5  Remaining privacy concerns: publication of the projections

Lastly, a popular application of SVD is PCA, which includes the projection of the 
data onto the leading eigenvectors to obtain a low-dimensional representation of the 
data. Although this is a publication of more information than we defined as the out-
put of the algorithm at the beginning of this section, we deem it important to com-
ment on this, due to the popularity of the procedure. In the federated use case, the 
projection can be performed entirely at the client for both singular subspaces. The 
clients can then choose to share the projections. For some applications—e.g., if the 
reduced representation is used as input to a neural network—sharing may not be 
necessary. For other applications such as the visual control of batch effects, users 
may choose to send the projections. In this case, users should keep in mind that 
computing projections using the perturbed eigenvectors does not fall under the clo-
sure under postprocessing because the data is reused. If a client is in possession of 
both the eigenvector and the low-dimensional embedding, they can be used to recon-
struct an approximation of the data (Hartebrodt and Röttger 2022). Even if only the 
projections and no global eigenvectors were known to the participants (a hypotheti-
cal scenario with the presented algorithm), users could use the inverted data matrix 
to reconstruct the eigenvectors based on their own data. Therefore, the publication 
of the projections presents a risk which is hard to mitigate even with DP.

4.4  Concluding remarks on privacy concerns

To conclude, the proposed randomized scheme does not achieve perfect privacy in 
the sense of an oracle which only outputs the required result, as the aggregated ini-
tial I′ iterations and the reduced covariance matrices are known to the participants. 
However, it reasonably reduces the available information beyond the final results 
and can be easily combined with DP and SMPC. Integrating DP and SMPC in the 
algorithms presented in this paper is left for future work.
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5  Empirical evaluation

5.1  Test datasets

To evaluate our federated PCA algorithm, we used several publicly available data-
sets: chromosome 1 and 2 from a genetic dataset from the 1000 Genomes Project 
(The 1000 Genomes Consortium, Auton 2015), the MNIST dataset of handwritten 
digits (LeCun et  al. 2005), the MOVIELENS 25  M dataset (Harper and Konstan 
2015), and a high-throughput sequencing dataset (Benz et al. 2022) containing sin-
gle-cells transcriptomics (MULTIOME-RNA) data. Table 4 provides an overview of 
the test datasets.

The two genetic datasets contain minor allele frequencies for 2502 individuals 
(samples). After applying standard pre-processing steps (MAF filtering, LD prun-
ing), we created 3 dataset versions for each chromosome, with 0.1 million, 0.5 mil-
lion, and > 1 million SNPs, respectively. To the best of our knowledge, publicly 
available genetic data sets with large numbers of patients are not readily available. 
MNIST contains 60000 grayscale images of handwritten numerals (samples), each 
of which has 784 pixels (features). MOVIELENS contains user ratings for roughly 
60000 movies (features) from about 162000 users (samples). We used two versions 
of this dataset: the original sparse dataset and a scaled dense version with unit vari-
ance and zero mean. MULTIOME-RNA containes gene expression counts for 23418 
genes (features) and 105942 cells. The experiments on MNIST, MOVIELENS, and 
MULTIOME demonstrate thei usefulness of the algorithms for applications beyond 
federated GWAS.

5.2  Compared methods

We compare several configurations of our algorithms: Federated subspace iteration 
with random initialization (RI-FULL), federated subspace iteration with approxi-
mate initialization (AI-FULL), and federated randomized subspace iteration (RAN-
DOMIZED). Federated subspace iteration with federated orthonormalization in 
every round (FED-GS) is extremely communication-inefficient; the c ⋅ k additional 
rounds per iteration have proven to be a major bottleneck in preliminary experi-
ments. Therefore, we omit this algorithm from the empirical evaluation. We com-
pare our algorithms to a centralized baseline and to the algorithm presented by Guo 

Table 4  Datasets used in the study

Dataset Samples Features Availability

1000 Genomes, Chrom. 1 2502 1069419  ftp:// ftp. 1000g enomes. ebi. ac. uk/ vol1/ ftp/ relea se/ 20130 
502/1000 Genomes, Chrom. 2 2502 1140556

MNIST 60000 784 http:// yann. lecun. com/ exdb/ mnist/
MOVIELENS 162541 59047 https:// group lens. org/ datas ets/ movie lens/
MULTIOME-RNA 105942 23418 https:// kaggle. com/ compe titio ns/ open- probl ems- multi 

modal

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/
http://yann.lecun.com/exdb/mnist/
https://grouplens.org/datasets/movielens/
https://kaggle.com/competitions/open-problems-multimodal
https://kaggle.com/competitions/open-problems-multimodal
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et al. (2012), denoted GUO, as they present a solution which omits the covariance 
matrix and a way to deal with vertical data partitioning. However, GUO shares the 
right singular vectors G and all updates of the left singular vectors H with the aggre-
gator. This should be avoided in federated GWAS, as emphasized in Sects. 3 and 4. 
We tested other configurations, including the use of approximate initialization for 
randomized PCA, but excluded them in this article as they did not bring a gain in 
performance in practice.

For all compared methods, we set the convergence criterion in Eq. 5 to t = 10−9 , 
which corresponds to a change of the angle between two consecutive eigenvectors 
updates of about 0.0026 degrees. Note that this angle does not equal the angle w.r.t. 
centrally computed eigenvectors, which we used as a test metric for measuring the 
quality of the compared methods (see next subsection). To avoid excessive computa-
tions, we used a restricted experimental setup for the tests on the MOVIELENS and 
MULTIOME datasets: On these larger datasets, we only compared RANDOMIZED 
(which showed the overall best performance among all tested federated algorithms 
on the other datasets) against the centralized baseline. For MOVILENS, we also 
compared the runtime of RANDOMIZED to the reported runtime of the approach 
by Chai et al. (2021) on the same dataset.

5.3  Test metrics

For measuring the quality of the compared methods, we computed the angles 
between the eigenvectors obtained from a reference implementation of a centralized 
PCA and their counterparts computed in a federated fashion. An angle of 0 between 
two eigenvectors of the same rank is the desired result. As a reference, we chose 
the version implemented in scipy.sparse.linalg, which internally interfaces 
LAPACK. The amount of transmitted data is estimated by calculating the number 
of transmitted floats and multiplying it by a factor of 4 bytes (single precision IEEE 
754). We choose this metric to remain agnostic with respect to the transmission pro-
tocol. Time measurements are wall clock times using Python’s time module. We 
chose to measure the runtime for matrix operations only, as they are the most impor-
tant contributors to the overall runtime apart from communication-related runtime.

5.4  Implementation, availability, and hardware specifications

All methods are implemented in Python, using mainly, but not exclusively numpy 
and scipy. They are available online at https:// github. com/ AnneH arteb rodt/ feder 
ated- svd. The simulation tests were run on a compute server with 48 virtual CPUs 
(2.5 GHz) and 502 GB available RAM. Tests for Table 6 were run on a CPU server 
with 96 virtual CPUs (2.8GHz) and 500GB RAM, restricted to use 22 CPUs on the 
same socket to reduce data copying and waiting times, unless otherwise specified. 
A federated tool compatible with the FeatureCloud ecosystem (Matschinske et  al. 
2023) is available at https:// featu reclo ud. ai/ app/ feder ated- svd. The corresponding 
source code can be found at https:// github. com/ AnneH arteb rodt/ fc- feder ated- svd. 

https://github.com/AnneHartebrodt/federated-svd
https://github.com/AnneHartebrodt/federated-svd
https://featurecloud.ai/app/federated-svd
https://github.com/AnneHartebrodt/fc-federated-svd
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We also created an AIMe report (Matschinske et al. 2021) to promote accessibility 
of machine learning research (Hartbrodt  2022).

5.5  Convergence behavior

To test the convergence behavior of the compared federated algorithms, we split the 
genetic datasets into 5 equally sized chunks and the MNIST dataset into 5 and 10 
chunks. For every algorithm, we then recorded the angles between the first 10 eigen-
vectors and the fully converged references at each iteration averaged across 10 runs.

Figures  4 and 5 show the convergence behaviours of the tested algorithms on 
MNIST and the genetic datasets. Each panel contains a line plot with one line per 
tested algorithm. On the x-axis, we show the number of iterations; on the y-axis, 
the angle of the eigenvector w.r.t. the reference in function of the number of itera-
tions. Each column of panels is dedicated to one eigenvector. In Fig. 4, the rows con-
tain the results for a test with different numbers of sites. In Fig. 5 the rows are split 
between a varying number of features (SNPs).

The most important result is that, for all algorithms, the eigenvectors perfectly 
converge to the reference eventually. For small k, AI-FULL starts with a good 
approximation of the eigenvectors and therefore converges very quickly, but for 
higher ranks, the initial approximation is on average not better than a random guess 
(see Fig. 5, Eigenvector 10). GUO shows good convergence behavior once the itera-
tion has started. However, unlike our algorithms RI-FULL, AI-FULL, and RAND-
OMIZED, GUO computes the eigenvectors sequentially. This means that eigenvec-
tor k has to converge before the computation of the eigenvector k + 1 starts, because 
of which all plots except the one for the first eigenvector start with a horizontal line 
for GUO. RANDOMIZED initially shows the same convergence behavior as RI-
FULL, but immediately jumps to the final approximation at iteration I� + 1 = 11 and 

Fig. 4  Convergence behaviour of federated algorithms on the MNIST data. The number of iterations 
is shown on the x-axis, the angle between the federated eigenvectors and the centralized eigenvector is 
shown on the y-axis. The omitted eigenvectors show similar behaviors. The top and bottom rows show 
the convergence for 5 and 10 simulated sites, respectively
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Fig. 5  Convergence behaviour of federated algorithms on Chromosome 1 and 2 of the 1000 Genomes 
data. The number of iterations is shown on the x-axis, the angle between the federated eigenvector and 
the centralized eigenvector is shown on the y-axis. The omitted eigenvectors show similar behaviors. The 
three rows in each plot show the results for 0.1 million, 0.5 million, and all SNPs in the datasets
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hence consistently exhibits the same fast convergence. For low-ranking eigenvectors, 
the approximate initialization speeds-up the computations, because these eigenvec-
tors can be well approximated and the computations hence already start with very 
small deviations from the reference. The gain decreases in higher dimensions. In 
sum, RANDOMIZED shows the overall best convergence behavior across all data-
sets and dimensions.

The number of sites does not influence the convergence behavior, as can be seen 
in the tests on the MNIST data, where the convergence curves (Fig.  4) and the 
required number of iterations (Fig. 7) are similar for the simulations with 5 clients 
and 10 clients. Varying the number of SNPs (features) in the genetic datsets does not 
show a clear effect. Although, in the convergence plots (Fig. 5), the algorithms seem 
to converge faster on the larger datasets, the overall number of iterations in Fig. 6 
does not confirm this trend. The reason for this is the dependence of the convergence 
speed on the eigengaps (the difference between two consecutive eigenvalues), which 
are inherent properties of each dataset: The smaller the eigengaps, the worse the 
convergence behavior (Li et al. 2021). Table 5 shows the eigengaps for Chromosome 
2. The higher-ranking eigengaps are generally quite small, indicating generally bad 
convergence for all datasets. Eigengap 8 for the dataset containing 1140556 SNPs is 
particularly small, which could explain the especially poor convergence.

5.6  Scalability

To gauge the scalability of the methods with respect to runtime and transmission 
cost, we recorded the number of iterations until convergence, the runtime for matrix 
operations, and the estimated total amount of transmitted data for the selected algo-
rithms. The results of the direct comparison of all algorithms for the genetic data-
sets and MNIST are summarized in Figs. 6 and 7. There are three plots per data-
set, which contain the number of iterations until convergence, the overall runtimes 
for matrix operations, and the estimated transmitted data. The tested algorithms are 
shown on the x-axes. In Fig. 6, for each algorithm and chromosome, there are three 
boxplots, one for each test with different numbers of SNPs. In Fig. 7, there are two 
boxplots for each algorithm, corresponding to splits of the data into 5 and 10 sites.

The amount of transmitted data is the smallest for RANDOMIZED, followed by 
GUO, AI-FULL, and RI-FULL (the latter two with a significant distance). RAND-
OMIZED also spends the least time on the matrix operations, which are the major 

Table 5  Eigengaps (EG) for full and sub-sampled versions of the GWAS data from Chromosome 2 of the 
1000 Genomes Project

SNPs EG 1 EG 2 EG 3 EG 4 EG 5 EG 6 EG 7 EG 8 EG 9

100000 15.14 16.02 1.19 3.95 0.9 1.87 0.32 0.05 0.12
500000 26.68 18.41 3.36 12.65 2.71 0.62 0.91 0.2 0.28
1140556 31.5 24.79 4.02 15.59 3.3 3.41 0.39 1.2 0.25
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contributors to the runtime. The number of required iterations is the smallest for 
RANDOMIZED, followed with large gap by AI-FULL, RI-FULL, and GUO on the 
last place. Since the required number of iterations correspond to the number of com-
munication steps, this factor significantly contributes to the overall runtime. Nota-
bly, the number of iterations for RANDOMIZED is constant on all datasets, indi-
cated by the horizontal bars in the plots. Overall, RANDOMIZED performs the best 
in all three measured categories. Generally, the bottleneck in FL is the number of 
transmission steps during the learning process, as this involves network communi-
cation. However, with increasing dataset size, also the reduction in local runtime 
shows considerable impact on the overall runtime.

5.7  Additional tests on MOVIELENS and MULTIOME datasets

Table 6 shows additional runtime and convergence results for RANDOMIZED on 
the MOVIELENS and the MULTIOME datasets. With respect to the convergence, 

Fig. 6  Iterations, runtimes for matrix computations, and total transmitted data for the two genetic data-
sets. On the x-axis, we show the tested algorithms, on the y-axis, the measured performance indicators. 
Single horizontal bars indicate that there is no spread in the data. For each algorithm and dataset, there 
are three boxplots, representing the number of SNPs in the data
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the most important result is that even higher-order eigenvectors can be retrieved to 
high accuracy. Our algorithm requires on average 18 min to compute k = 256 eigen-
vectors for the MOVIELENS dataset using scaled and centered data and 9 min 
using the original sparse data. According to their own benchmark, the algorithm by 
Chai et al. (2021) requires 222 min to compute the same number of eigenvectors for 
MOVIELENS. Since Chai et  al. (2021) simulated their PCA on a computer with 
8 CPUs (3.6 GHz), we carried out additional tests with the number of CPUs (2.8 
GHz) restricted to 8. Even with this setup, RANDOMIZED still achieves a runt-
ime of 25 ≪ 222  min on average. Therefore, our algorithm achieves a significant 
speed-up.

Fig. 7  Iterations, runtime for matrix computations, and total transmitted data for the MNIST dataset. On 
the x-axis, we show the tested algorithms, on the y-axis, the measured performance indicators. Single 
horizontal bars indicate that there is no spread in the data. For each algorithm and dataset, there are two 
boxplots, representing the number of simulated clients

Table 6  Results for the RANDOMIZED algorithm on the MOVIELENS and MULTIOME data

Shown are the simulation runtimes in minutes and the angles between selected federated singular vectors 
(SV) and their respective centralized references

Dataset CPUs Time [min] k Angle w.r.t. centralized reference

SV 1 SV 5 SV 10 SV k

MOVIELENS-dense 22 18 256 0.0 0.0 0.0 0.0
MOVIELENS-sparse 22 9 256 0.0 0.0 0.0 0.0
MOVIELENS-dense 8 25 256 0.0 0.0 0.0 0.0
MULTIOME-RNA 22 3 50 0.0 0.0 0.0 0.15
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6  Conclusions

In this paper, we presented an improved federated SVD algorithm, which is appli-
cable to both vertically and horizontally partitioned data and, at the same time, 
increases the privacy compared to previous solutions. The algorithm is applicable 
on sparse and dense matrices. Although our algorithm is motivated by the require-
ments of population stratification in federated GWAS, it is generically applicable. 
We proved that a first version of our algorithm is equivalent to a state-of-the-art cen-
tralized SVD algorithm and demonstrated empirically that it indeed converges to the 
centrally computed solutions. Subsequently, we improved the algorithm by includ-
ing techniques from other federated and centralized algorithms to increase scalabil-
ity and reduce the number of required communications.

There are two key advantages of our algorithm: Firstly, unlike in existing fed-
erated PCA algorithms, the sample eigenvectors remain at the local sites, due to 
the use of fully federated Gram–Schmidt orthonormalization. This significantly 
improves the privacy of the algorithm. Secondly, the algorithm limits the amount 
of transmitted data via smart initialization and data approximation. This leads to a 
better scalability and further prevents information leakage. In particular, the trans-
mission cost is no longer dependent on the number of samples and only partially 
depends on the number of features.

Funding Open access funding provided by University Library of Southern Denmark. The Feature-
Cloud project has received funding from the European Union’s Horizon 2020 research and innovation 
programme under grant agreement No 826078. This publication reflects only the authors’ view and the 
European Commission is not responsible for any use that may be made of the information it contains. AH 
and DBB were supported by the German Federal Ministry of Education and Research (BMBF, grant no. 
031L0309A).

Declarations 

Conflict of interest The authors have no relevant financial or non-financial interests to disclose.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative 
Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

Al-Rubaie M, Wu PY, Chang JM, et al (2017) Privacy-preserving PCA on horizontally-partitioned data. 
In: 2017 IEEE conference on dependable and secure computing, pp 280–287. https:// doi. org/ 10. 
1109/ DESEC. 2017. 80738 17

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/DESEC.2017.8073817
https://doi.org/10.1109/DESEC.2017.8073817


 A. Hartebrodt et al.

1 3

Asi H, Duchi JC (2020) Instance-optimality in differential privacy via approximate inverse sensitivity 
mechanisms. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in neural information 
processing systems, vol 33. Curran Associates, Inc., pp 14106–14117. https://proceedings.neurips.
cc/paper/2020/file/a267f936e54d7c10a2bb70dbe6ad7a89-Paper.pdf

Balcan MF, Kanchanapally V, Liang Y et al (2014) Improved distributed principal component analysis. 
In: Advances in neural information processing systems 4(January), pp 3113–3121. arXiv:  org/ abs/ 
1408. 5823

Balcan MF, Du SS, Wang Y et  al (2016) An improved gap-dependency analysis of the noisy power 
method. J Mach Learn Res 49(June):284–309 (http:// arxiv. org/ 1602. 07046)

Benz A, Chow A, Burkhardt D et al (2022) Open problems: multimodal single-cell integration. https:// 
kaggle. com/ compe titio ns/ open- probl ems- multi modal

Chai D, Wang L, Zhang J et  al (2021) Practical lossless federated singular vector decomposition over 
billion-scale data. arXiv:  org/ abs/ 2105. 08925

Chaudhuri K, Sarwate AD, Sinha K (2013) A near-optimal algorithm for differentially-private principal 
components. J Mach Learn Res 14:2905–2943

Chen X, Lee JD, Li H et al (2021) Distributed estimation for principal component analysis: a gap-free 
Approach. arXiv:  org/ abs/ 2004. 02336

Cho H, Wu DJ, Berger B (2018) Secure genome-wide association analysis using multiparty computation. 
Nat Biotechnol 36(6):547–551. https:// doi. org/ 10. 1038/ nbt. 4108

Cramer R, Damgård IB et al (2015) Secure multiparty computation. Cambridge University Press
Dua D, Graff C (2017) UCI machine learning repository. http:// archi ve. ics. uci. edu/ ml
Dwork C, Roth A (2013) The algorithmic foundations of differential privacy. Found Trends Theor Com-

put Sci 9(3–4):211–407. https:// doi. org/ 10. 1561/ 04000 00042
Froelicher D, Cho H, Edupalli M et al (2023) Scalable and privacy-preserving federated principal compo-

nent analysis. arXiv:  org/ abs/ 2304. 00129
Galinsky KJ, Bhatia G, Loh PR et al (2016) Fast Principal-Component Analysis Reveals Convergent Evo-

lution of ADH1B in Europe and East Asia. Am J Hum Genet 98(3):456–472. https:// doi. org/ 10. 
1016/j. ajhg. 2015. 12. 022

Gauch HG, Qian S, Piepho HP et al (2019) Consequences of PCA graphs, SNP codings, and PCA vari-
ants for elucidating population structure. PLoS ONE 14(6):1–26. https:// doi. org/ 10. 1371/ journ al. 
pone. 02183 06

Gonen A, Murphy K, Schölkopf B (2018) Smooth sensitivity based approach for differentially private 
principal component analysis. J Mach Learn Res 1:1–48

Grammenos A, Smith RM, Crowcroft J et al (2020) Federated principal component analysis. In: Larochelle 
H, Ranzato M, Hadsell R et al (eds) Advances in neural information processing systems, vol 33. Curran 
Associates, Inc., pp 6453–6464. https://proceedings.neurips.cc/paper/2020/file/47a658229eb2368a99f1
d032c8848542-Paper.pdf

Guo YF, Lin X, Teng Z et al (2012) A covariance-free iterative algorithm for distributed principal component 
analysis on vertically partitioned data. Pattern Recognit 45(3):1211–1219. https:// doi. org/ 10. 1016/j. pat-
cog. 2011. 09. 002

Hadri B, Ltaief H, Agullo E et al (2010) Tile QR factorization with parallel panel processing for multicore 
architectures. In: 2010 IEEE international symposium on parallel distributed processing (IPDPS), pp 
1–10. https:// doi. org/ 10. 1109/ IPDPS. 2010. 54704 43

Halko N, Martinsson PG, Shkolnisky Y et al (2010) An algorithm for the principal component analysis of 
large data sets. arXiv:  org/ abs/ 1007. 5510

Halko N, Martinsson PG, Tropp JA (2011) Finding structure with randomness: probabilistic algorithms for 
constructing approximate matrix decompositions. SIAM Rev 53(2):217–288. https:// doi. org/ 10. 1137/ 
09077 1806

Hardt M, Price E (2013) The noisy power method: a meta algorithm with applications. arXiv arXiv:  org/ abs/ 
1311. 2495

Harper FM, Konstan JA (2015) The MovieLens datasets: history and context. ACM Trans Interact Intell 
Syst. https:// doi. org/ 10. 1145/ 28278 72

Hartbrodt A (2022) Federated singular value decomposition for high dimensional data [AIMe lP0kqT]. 
https:// aime. report/ lP0kqT

Hartebrodt A, Röttger R (2022) Federated horizontally partitioned principal component analysis for biomedi-
cal applications. Bioinform Adv. https:// doi. org/ 10. 1093/ bioadv/ vbac0 26

http://arxiv.org/1408.5823
http://arxiv.org/1408.5823
http://arxiv.org/1602.07046
https://kaggle.com/competitions/open-problems-multimodal
https://kaggle.com/competitions/open-problems-multimodal
http://arxiv.org/2105.08925
http://arxiv.org/2004.02336
https://doi.org/10.1038/nbt.4108
http://archive.ics.uci.edu/ml
https://doi.org/10.1561/0400000042
http://arxiv.org/2304.00129
https://doi.org/10.1016/j.ajhg.2015.12.022
https://doi.org/10.1016/j.ajhg.2015.12.022
https://doi.org/10.1371/journal.pone.0218306
https://doi.org/10.1371/journal.pone.0218306
https://doi.org/10.1016/j.patcog.2011.09.002
https://doi.org/10.1016/j.patcog.2011.09.002
https://doi.org/10.1109/IPDPS.2010.5470443
http://arxiv.org/1007.5510
https://doi.org/10.1137/090771806
https://doi.org/10.1137/090771806
http://arxiv.org/1311.2495
http://arxiv.org/1311.2495
https://doi.org/10.1145/2827872
https://aime.report/lP0kqT
https://doi.org/10.1093/bioadv/vbac026


1 3

Federated singular value decomposition for high-dimensional data

Hartebrodt A, Nasirigerdeh R, Blumenthal DB et  al (2021) Federated principal component analysis for 
genome-wide association studies. In: IEEE international conference on data mining (ICDM) 2021. 
https:// doi. org/ 10. 1109/ ICDM5 1629. 2021. 00127

Hoemmen M (2011) A communication-avoiding, hybrid-parallel, rank-revealing orthogonalization method. 
In: 2011 IEEE international parallel distributed processing symposium, pp 966–977. https:// doi. org/ 10. 
1109/ IPDPS. 2011. 93

Imtiaz H, Sarwate AD (2018) Differentially private distributed principal component analysis. In: 2018 IEEE 
international conference on acoustics, speech and signal processing (ICASSP). IEEE, pp 2206–2210. 
https:// doi. org/ 10. 1109/ ICASSP. 2018. 84625 19

Imtiaz H, Mohammadi J, Sarwate AD (2019) Distributed differentially private computation of functions with 
correlated noise, pp 1–40. arXiv:  org/ abs/ 1904. 10059

Joliffe IT (2002) Principal component analysis. Springer. https:// doi. org/ 10. 1007/ b98835
Kairouz P, McMahan HB, Avent B et al (2021) Advances and open problems in federated learning. Found 

Trends Mach Learn 14(1–2):1–210. https:// doi. org/ 10. 1561/ 22000 00083
Kargupta H, Huang W, Sivakumar K et al (2001) Distributed clustering using collective principal component 

analysis. Knowl Inf Syst. https:// doi. org/ 10. 4324/ 97813 15799 476- 12
LeCun Y, Cortes C, Burges CJ (2005) MNNIST database of handwritten digits. http:// yann. lecun. com/ exdb/ 

mnist/
Lei Q, Zhong K, Dhillon IS (2016) Coordinate-wise Power Method. In: Lee D, Sugiyama M, Luxburg U, 

et  al (eds) Advances in neural information processing systems, vol  29. Curran Associates, Inc., pp 
2064–2072, https:// proce edings. neuri ps. cc/ paper/ 2016/ file/ 8b406 65547 30ddf aa026 6346b dc1b2 02- 
Paper. pdf

Li X, Wang S, Chen K et  al (2021) Communication-efficient distributed SVD via local power iterations. 
arXiv:  org/ abs/ 2002. 08014, [cs, math, stat]

Li Y, Byun J, Cai G et al (2016) FastPop: a rapid principal component derived method to infer intercontinen-
tal ancestry using genetic data. BMC Bioinform 17(1):1–8. https:// doi. org/ 10. 1186/ s12859- 016- 0965-1

Liu B, Tang Q (2019) Privacy-preserving decentralised singular value decomposition. https:// eprint. iacr. org/ 
2019/ 1346

Liu Y, Chen C, Zheng L, et al (2020) Privacy preserving PCA for multiparty modeling. arXiv:  org/ abs/ 2002. 
02091

Londin ER, Keller MA, Maista C et al (2010) CoAIMs: a cost-effective panel of ancestry informative mark-
ers for determining continental origins. PLoS ONE 5:e13443. https:// doi. org/ 10. 1371/ journ al. pone. 
00134 43

Matschinske J, Alcaraz N, Benis A et al (2021) The AIMe registry for artificial intelligence in biomedical 
research. Nat Methods. https:// doi. org/ 10. 1038/ s41592- 021- 01241-0

Matschinske JO, Späth J, Bakhtiari M et al (2023) The FeatureCloud platform for federated learning in bio-
medicine: unified approach. J Med Internet Res 25:e42621

Mothukuri V, Parizi RM, Pouriyeh S et al (2021) A survey on security and privacy of federated learning. 
Future Gener Comput Syst 115:619–640. https:// doi. org/ 10. 1016/j. future. 2020. 10. 007

Musco C, Musco C (2015) Randomized block Krylov methods for stronger and faster approximate singu-
lar value decomposition. In: Cortes C, Lawrence N, Lee D et al (eds) Advances in neural information 
processing systems, vol 28. Curran Associates, Inc. https:// proce edings. neuri ps. cc/ paper/ 2015/ file/ 1efa3 
9bcae c6f39 00149 16069 36945 36- Paper. pdf

Nasirigerdeh R, Torkzadehmahani R, Matschinske J et al (2020) sPLINK: a federated, privacy-preserving 
tool as a robust alternative to meta-analysis in genome-wide association studies. https:// doi. org/ 10. 1101/ 
2020. 06. 05. 136382

Nasirigerdeh R, Torkzadehmahani R, Baumbach J et  al (2021) On the privacy of federated pipelines. In: 
International ACM SIGIR conference on research and development in information retrieval 2021. 
ACM, New York, p 5. https:// doi. org/ 10. 1145/ 34048 35. 34629 96

Pathak MA, Raj B (2011) Efficient protocols for principal eigenvector computation over private data. Trans 
Data Priv 4(3):129–146

Price AL, Patterson NJ, Plenge RM et al (2006) Principal components analysis corrects for stratification in 
genome-wide association studies. Nat Genet 38(8):904–909. https:// doi. org/ 10. 1038/ ng1847

Qi H, Wang TW, Birdwell JD (2003) Global principal component analysis for dimensionality reduction in 
distributed data mining. In: Statistical data mining and knowledge discovery. Chapman and Hall/CRC, 
pp 323–338. https:// doi. org/ 10. 1201/ 97802 03497 159. ch19

Rodríguez MA, Fernández A, Peregrín A et  al (2017) A review of distributed data models for learning. 
Springer, Cham

https://doi.org/10.1109/ICDM51629.2021.00127
https://doi.org/10.1109/IPDPS.2011.93
https://doi.org/10.1109/IPDPS.2011.93
https://doi.org/10.1109/ICASSP.2018.8462519
http://arxiv.org/1904.10059
https://doi.org/10.1007/b98835
https://doi.org/10.1561/2200000083
https://doi.org/10.4324/9781315799476-12
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://proceedings.neurips.cc/paper/2016/file/8b4066554730ddfaa0266346bdc1b202-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/8b4066554730ddfaa0266346bdc1b202-Paper.pdf
http://arxiv.org/2002.08014
https://doi.org/10.1186/s12859-016-0965-1
https://eprint.iacr.org/2019/1346
https://eprint.iacr.org/2019/1346
http://arxiv.org/2002.02091
http://arxiv.org/2002.02091
https://doi.org/10.1371/journal.pone.0013443
https://doi.org/10.1371/journal.pone.0013443
https://doi.org/10.1038/s41592-021-01241-0
https://doi.org/10.1016/j.future.2020.10.007
https://proceedings.neurips.cc/paper/2015/file/1efa39bcaec6f3900149160693694536-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/1efa39bcaec6f3900149160693694536-Paper.pdf
https://doi.org/10.1101/2020.06.05.136382
https://doi.org/10.1101/2020.06.05.136382
https://doi.org/10.1145/3404835.3462996
https://doi.org/10.1038/ng1847
https://doi.org/10.1201/9780203497159.ch19


 A. Hartebrodt et al.

1 3

Ryffel T, Trask A, Dahl M et al (2018) A generic framework for privacy preserving deep learning. arXiv:  
org/ abs/ 1811. 04017

Saad Y (2011) Numerical methods for large eigenvalue problems. Classics in Applied Mathematics, Soci-
ety for Industrial and Applied Mathematics and Applied Mathematics. https:// doi. org/ 10. 1137/1. 97816 
11970 739

Sanchez-Fernandez A, Fuente M, Sainz-Palmero G (2015) Fault detection in wastewater treatment plants 
using distributed PCA methods. In: 2015 IEEE 20th conference on emerging technologies & factory 
automation (ETFA). IEEE, pp 1–7. https:// doi. org/ 10. 1109/ ETFA. 2015. 73015 04

Sluciak O, Straková H, Rupp M et  al (2016) Distributed Gram–Schmidt orthogonalization with simul-
taneous elements refinement. EURASIP J Adv Signal Process 1:1–13. https:// doi. org/ 10. 1186/ 
s13634- 016- 0322-6

Steed A, MFD de Oliveira (2010) More than two. Network graphics, pp 125–168. https:// doi. org/ 10. 1016/ 
B978-0- 12- 374423- 4. 00004-5

Straková H, Gansterer WN, Zemen T (2012) Distributed QR factorization based on randomized algorithms. 
In: Wyrzykowski R, Dongarra J, Karczewski K et al (eds) Parallel processing and applied mathematics. 
Springer, Berlin, Heidelberg, pp 235–244

Tam V, Patel N, Turcotte M et al (2019) Benefits and limitations of genome-wide association studies. Nat 
Rev Genet 20(8):467–484. https:// doi. org/ 10. 1038/ s41576- 019- 0127-1

The 1000 Genomes Consortium, Auton, A (2015) A global reference for human genetic variation. Nature 
526(7571):68–74. https:// doi. org/ 10. 1038/ natur e15393

Visscher PM, Wray NR, Zhang Q et al (2017) 10 years of GWAS discovery: biology, function, and transla-
tion. Am J Hum Genet 101(1):5–22. https:// doi. org/ 10. 1016/j. ajhg. 2017. 06. 005

Wang S, Chang JM (2019) Differentially private principal component analysis over horizontally partitioned 
data. In: DSC 2018–2018 IEEE conference on dependable and secure computing, pp 1–8. https:// doi. 
org/ 10. 1109/ DESEC. 2018. 86251 31

Wang S, Zhang Z, Zhang T (2015) Improved analyses of the randomized power method and block Lanczos 
method. arXiv arXiv:  org/ abs/ 1508. 06429

Wu SX, Wai HT, Li L et al (2018) A review of distributed algorithms for principal component analysis. Proc 
IEEE 106(8):1321–1340. https:// doi. org/ 10. 1109/ JPROC. 2018. 28465 68

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

http://arxiv.org/1811.04017
http://arxiv.org/1811.04017
https://doi.org/10.1137/1.9781611970739
https://doi.org/10.1137/1.9781611970739
https://doi.org/10.1109/ETFA.2015.7301504
https://doi.org/10.1186/s13634-016-0322-6
https://doi.org/10.1186/s13634-016-0322-6
https://doi.org/10.1016/B978-0-12-374423-4.00004-5
https://doi.org/10.1016/B978-0-12-374423-4.00004-5
https://doi.org/10.1038/s41576-019-0127-1
https://doi.org/10.1038/nature15393
https://doi.org/10.1016/j.ajhg.2017.06.005
https://doi.org/10.1109/DESEC.2018.8625131
https://doi.org/10.1109/DESEC.2018.8625131
http://arxiv.org/1508.06429
https://doi.org/10.1109/JPROC.2018.2846568

	Federated singular value decomposition for high-dimensional data
	Abstract
	1 Introduction
	2 Preliminaries and related work
	2.1 Federated learning, employed data model, and notations
	2.2 Principal component analysis and singular value decomposition
	2.3 Genome-wide association studies
	2.4 Principal component analysis for genome-wide association studies
	2.5 Gram–Schmidt orthonormalization
	2.6 Centralized, iterative, covariance-free principal component analysis
	2.7 Federated principal component analysis for vertically partitioned data
	2.8 Federated matrix orthonormalization
	2.9 Federated principal component analysis for horizontally partitioned data
	2.10 Randomized principal component analysis
	2.11 Privacy-aware singular value decomposition

	3 Algorithms
	3.1 Federated Gram–Schmidt algorithm
	3.2 Federated vertical subspace iteration
	3.3 Approximate initialization
	3.4 Federated randomized principal component analysis
	3.5 Network transmission costs
	3.6 Summary and applications

	4 Privacy
	4.1 Iterative leakage of the covariance matrix
	4.2 Covariance reconstruction experiment
	4.3 Mitigation strategies and remaining privacy concerns
	4.3.1 Secure multiparty computation
	4.3.2 Differential privacy
	4.3.3 Properties of our algorithms limiting information leakage
	4.3.4 Remaining privacy concerns: intermediate parameters
	4.3.5 Remaining privacy concerns: publication of the projections

	4.4 Concluding remarks on privacy concerns

	5 Empirical evaluation
	5.1 Test datasets
	5.2 Compared methods
	5.3 Test metrics
	5.4 Implementation, availability, and hardware specifications
	5.5 Convergence behavior
	5.6 Scalability
	5.7 Additional tests on MOVIELENS and MULTIOME datasets

	6 Conclusions
	References


